首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
KRAAK  H. L.; VOS  J. 《Annals of botany》1987,59(3):343-349
Seeds of two lettuce cultivars (Lactuca sativa L., cv. Meikoninginand cv. Grand Rapids) were hermetically stored with constantmoisture contents ranging between 3.6 and 17.9 per cent (freshweight basis) at constant temperatures ranging between 5 and75 °C. The decline with time in percentage germination andpercentage normal seedlings was determined for each storagetreatment. The data were fitted to an equation which containsthe constants: K1, the probit of the initial percentage germinationor normal seedlings; KE, a species constant; CW, the constantof a logarithmic moisture term; CH, the constant of a lineartemperature term and CQ, the constant of a quadratic temperatureterm. Regression analysis of data from storage periods up to5.5 years at temperatures of 5–75 °C and seed moisturecontents of 3.6–13.6 per cent yielded the following values:KE= 8.218, CW=4.797±0.163, CH=0.0489±0.0050 andCQ=0.000365±0.000056. Although this equation consistentlyprovided a better fit, simplified equations, assuming eithera log-linear relationship between seed longevity and temperature,or a log-linear relationship between seed longevity and bothmoisture content and temperature, accounted for more than 94per cent of the variation at the restricted temperature rangeof 5–40 °C. Longevity of the same seed lots at sub-zero temperatures (–5,–10 and –20 °C) was studied in separate tests.Freezing damage, resulting in abnormal seedlings in the germinationtest, occurred at –20 °C when the moisture contentof the seeds exceeded 12 per cent. No decline in percentagenormal seedlings was observed after a storage period of 18 monthsor longer at –20 °C, provided the seed moisture contentdid not exceed 9.5 per cent. For seeds stored at –5 and–10 °C with 9.6–12.5 per cent moisture content,the observed rate of decline of percentage normal seedlingswas adequately predicted by the viability equation, using theabove values for the constants. This suggests that for low moisturecontents the viability equation can be applied to estimate longevityat sub-zero temperatures. Lettuce, Lactuca sativa (L.), seed longevity, seed storage, viability constants, storage conditions  相似文献   

2.
Data are given for Kochia indica seeds showing retention ofviability after storage for various periods of time open tothe air under laboratory conditions, open at 30° C., openat 38° C., and sealed over CaCl2 at 30° C. Seeds have been stored without deterioration at 30° C. sealedover CaC12 for over 14 months. Rapid deterioration of seed inopen storage at laboratory temperature and at 30° C. showsthat loss of viability is accelerated by moisture more thanby temperature.  相似文献   

3.
This research determined constants for a viability equationto predict the longevity of groundnut seeds and to improve themanagement of seedlot storage throughout the trading period.Seeds of the Brazilian cultivar ‘Tatu’ (Valenciabunch type) were tested. Nine moisture content levels (rangingfrom 2.4 to 12.8%) and three storage temperatures (40, 50 and65 °C) were used. Sub-samples for each moisture content-storagetemperature combination were sealed in laminated aluminium-foilpackets and stored in incubators until complete survival curveswere obtained. A reliable equation was obtained to predict groundnutseed longevity through the constantsKE=6.177,CW=3.426,CH=0.0304andCQ=0.000453.Copyright 1998 Annals of Botany Company Arachis hypogaeaL., seed longevity, seed storage, viability equation.  相似文献   

4.
The germination of cassava seed in response to various constantand alternating temperature regimes within the range 19–40°C was investigated using a two-dimensional temperaturegradient plate. It was found that almost all seeds were incapableof germination unless the temperature for part of the day exceeded30 °C and the mean temperature was at least 24 °C. However,dormant seeds required environments where the temperature forpart of the day exceeded 36 °C, the mean temperature wasat least 33 °C, and the amplitude of the diurnal temperaturealteration was within the range 3–18 °C. Providingthese conditions were met, the times spent at the upper andlower temperatures within a diurnal cycle were not critical.Hermetic storage of the seed for 77 days at 40 °C with 7.9per cent moisture content did not influence the pattern of germinationin response to constant and alternating temperatures. It issuggested that an alternating temperature regime of 30 °Cfor 8 h/38 °C for 16 h applied for a minimum of 21 daysis appropriate for cassava seed viability tests. Manihot esculenta Crantz, cassava, germination, dormancy, temperature  相似文献   

5.
Ellis  R. H.; Hong  T. D. 《Annals of botany》1994,73(5):501-506
The longevity and desiccation tolerance of samples of seedsof a japonica rice (Oryza sativa L.) harvested serially duringdevelopment from plants grown in two temperature regimes, viz28/20 °C and 32/24 °C (12/12 h) were determined. Massmaturity (defined as the end of the seed-filling phase) occurred19·7 and 18·3 d after 50% anthesis, respectively.Longevity (determined at 40 °C with 15% moisture contentand quantified by the value of the constant Ki of the seed viabilityequation) improved during seed development and maturation until17 and 14 d after mass maturity in the cooler and warmer regimes,respectively, but declined thereafter. Changes in Ki with timewere similar in the two environments until mass maturity, butthe increase in Ki values after mass maturity was much greaterin the cooler regime. Tolerance of desiccation to low (4%) moisturecontents improved until 22 and 14 d after mass maturity in thecooler and warmer regimes, respectively, when maturation dryinghad reduced seed moisture contents naturally to 24 and 32% moisturecontent, respectively. Further delays to seed harvest reduceddesiccation tolerance, particularly in the warmer environment.Comparison among 15 samples of seeds harvested at differenttimes in the two environments showed a strong correlation (r= 0·947, P < 0·01) between longevity (Ki) anddesiccation tolerance (to 4% moisture content). Hence, it issuggested that the regulation of desiccation tolerance to lowmoisture contents and potential air-dry longevity during seeddevelopment and maturation determined here may have a commoncause.Copyright 1994, 1999 Academic Press Oryza sativa L., rice, desiccation tolerance, genebanks, seed development, seed longevity, temperature  相似文献   

6.
In previous work, we demonstrated that there was an optimummoisture level for seed storage at a given temperature (Vertucciand Roos, 1990), and suggested, using thermodynamic considerations,that the optimum moisture content increased as the storage temperaturedecreased (Vertucci and Roos, 1993b). In this paper, we presentdata from a two year study of aging rates in pea (Pisum sativum)seeds supporting the hypothesis that the optimum moisture contentfor storage varies with temperature. Seed viability and vigourwere monitored during storage under dark or lighted conditionsat relative humidities between 1 and 90%, and temperatures between-5 and 65°C. The optimum moisture content varied from 0·015g H2O g-1 d.wt at 65°C to 0·101 g H2O g-1 d.wt at15°C under dark conditions and from 0·057 at 35°Cto 0·092 g H2O g-1 d.wt at -5°C under lighted conditions.Our results suggest that optimum moisture contents cannot beconsidered independently of temperature. This conclusion hasimportant implications for 'ultra-dry' and cryopreservationtechnologies.Copyright 1994, 1999 Academic Press Seed storage, seed aging, seed longevity, water content, temperature, glass, desiccation damage, ultradry, Pisum sativum L., pea, cryopreservation  相似文献   

7.
Controlled environment experiments were performed to determinethe effects of temperature and water potential on germination,radicle elongation and emergence of mungbean (Vigna radiata(L.) Wilczek cv. IPB-M79-17-79). The effects of a range of constant temperatures (15–45°C) and water potentials (0 to –2.2 MPa) on germinationand radicle elongation rates were studied using an osmoticumtechnique, in which seeds were held against a semi-permeablemembrane sac containing a polyethylene glycol solution. Linearrelationships were established between median germination time(Gt50) and water potential at different temperatures, and betweenreciprocal Gt50 (germination rate) and temperature at differentwater potentials. Germination occurred at potentials as lowas –2.2 MPa at favourable temperatures (30–40 °C),but was fastest at 40 °C when water was not limiting, withan estimated base temperature (Tb) of about 10 °C. Subsequentradicle elongation, however, was restricted to a slightly narrowertemperature range and was fastest at 35 °C. The conceptof thermal time was used to develop an equation to model thecombined effects of water potential and temperature on germination.Predictions made using this model were compared with the actualgermination obtained in a related series of experiments in columnsof soil. Some differences observed suggested the additionalimportance of the seed/soil/water contact zone in influencingseed germination in soil. Seedling emergence appeared to reflectfurther the radicle elongation results by occurring within anarrower range of temperatures and water potentials than germination.Emergence had an estimated Tb of 12.6 °C and was fastestat 35 °C. A soil matric potential of not less than about–0.5 MPa at sowing was required to obtain 50% or moreseedling emergence. Key words: Germination, temperature, water potential  相似文献   

8.
Several models have been proposed to describe germination rates,but most are limited in statistical analysis and biologicalmeaning of indices. Therefore, a mathematical model is proposedto utilize the logistic function. The function was defined asan overall response including time, temperature, and the interactionbetween time and temperature. Cumulative germination percentagesover time were used to develop the model. Germination tests were conducted on indiangrass (Sorghastrumnutans (L.) Nash) strain ‘IG-2C-F1’, at constanttemperatures of 9, 12, 15, 20, 25, and 30 °C. The functionfitted the observed data over six temperatures at r2 = 0.99.Time to reach 10% of final germination (Gt10) increased from2.5 d at 30 °C to 44.0 d at 9 °C, and Gt50 (time toreach 50% of final germination) increased from 3.6 d at 30 °Cto 53.8 d at 9 °C. True germination rate (% d–1) foreach temperature was maximum at Gt50. A linear model of 1/Gt50versus temperature was used to estimate the base temperatureof 8.3 °C for germination. An Arrhenius plot indicated achange occurred between 20 °C and 25 °C for temperatureresponse of germination. Published data on hypocotyl growthof Cucumis melo L. were recalculated using the model. Absolutegrowth rates showed a temperature response similar to the publishedweighted-mean elongation rates. Base temperature for hypocotylgrowth of C. melo was estimated as 8.8 °C. The proposedmodel proved to be useful in calculating and interpreting germinationand growth kinetics. Key words: Indiangrass, Sorghastrum nutans (L.) Nash, Germination rate, Threshold temperature, Arrhenius plot, Growth rate, Cucumis melo L  相似文献   

9.
The effects of storage conditions on the germination of developingmuskmelon (Cucumis melo L.) seeds were tested to determine whetherafter-ripening is required to obtain maximum seed vigour. Seedswere harvested at 5 d intervals from 35 (immature) to 60 (fullymature) days after anthesis (DAA), washed, dried, and storedat water contents of 3·3 to 19% (dry weight basis) at6, 20, or 30°C for up to one year. Germination was testedin water and in polyethylene glycol 8000 solutions ( –0·2to –1·2 MPa osmotic potential) at 15, 20, 25 or30°C. Germination percentages and rates (inverse of meantimes to radicle emergence) were compared to those of newlyharvested, washed and dried seeds. For 40 and 60 DAA seeds,one year of storage at 20°C and water contents <6·5%significantly increased germination percentages and rates at20°C, but had little effect on germination at 25 and 30°C.Storage reduced the estimated base temperature (Tb) and meanbase water potential (b) for germination of both 40 and 60 DAAseeds by approximately 5°C and 0·3 MPa, respectively.Immature 35 DAA seeds showed the greatest benefit from storageat 3 to 5% water content and 30°C, as germination percentagesand rates increased at all water potentials (). Storage underthese same conditions had little effect on the germination ofmature seeds in water, but increased germination percentagesand rates at reduced 's. Accelerated ageing for one month at30°C and water contents from 15 to 19° increased germinationrates and percentages of mature seeds at reduced 's, but longerdurations resulted in sharp declines in both parameters. Immatureseeds lost viability within one month under accelerated ageingconditions. An after-ripening period is required at all stagesof muskmelon seed development to expand the temperature andwater potential ranges allowing germination and to achieve maximumgerminability and vigour. Post-harvest dormancy is deepest atthe point of maximum seed dry weight accumulation and declinesthereafter, both in situ within the ripening fruit and duringdry storage. Key words: Muskmelon, Cucumis melo L., seed, development, dormancy, germination, vigour, after-ripening  相似文献   

10.
Winter wheat (Triticum aestivum L.) cv. Hereward was grown inthe field in two double-walled polyethylene-covered tunnelswithin each of which a temperature gradient was superimposedon diurnal and seasonal fluctuations in temperature. The meantemperature between anthesis and harvest maturity varied from14.3 to 18.4C among plots within these tunnels. The CO2 concentrationwas controlled at different values in each tunnel; seasonalmean concentrations were 380 and 684 µmol CO2 mol–1air. Crops were also grown outside the tunnels at ambient temperaturesand CO2. Samples of seeds were harvested sequentially from eachplot between anthesis and harvest maturity. Seed germinationand seed survival during subsequent air-dry storage were determinedfor each sample. The onset of both ability to germinate anddesiccation tolerance (ability to germinate after rapid desiccationto 10–15% moisture content and subsequent rehydration)coincided in all environments. Full germination capacity (>97%, determined at 10C) was reached 4–18 d before theend of the seed-filling phase (mass maturity) in most cases.There was little or no decline in germination capacity duringsubsequent seed development and maturation. Differences in seedquality were evident, however, throughout seed development andmaturation when seed survival curves during subsequent storagewere compared. Potential longevity in air-dry storage (assessedby the value K1 of the seed viability equation) improved consistentlyboth before and after mass maturity. There was a significantpositive relation between the rate of increase in potentiallongevity (dK1Idt) and temperature (the minimum temperaturefor seed quality development was 4.8 C), but neither CO2 concentrationnor production within the polyethylene tunnels affected thisrelation. Key words: Wheat, Triticum aestivum L., seed development, seed longevity, carbon dioxide, temperature  相似文献   

11.
The Dry Storage of Citrus Seeds   总被引:1,自引:0,他引:1  
The survival of seeds of lemon (Citrus limon L.), lime [C. arantifolia(Christm.) Swing.] and sour orange (C. aurantium L.) was examinedunder a wide range of constant moisture contents and temperatures.Seed longevity was increased by decreasing the moisture contentand temperature of the storage environment. Maximum viabilitywas maintained in the combination of storage conditions includingthe lowest moisture content (5 per cent) and lowest temperature(–20 °C) investigated. The practicality of dry storageof citrus seed for genetic conservation is discussed. Citrus limon L., lemon, Citrus aurantifolia (Christm.), Swing, lime, Citrus aurantium L., sour orange, dry storage, moisture content, temperature, seed viability, seed longevity  相似文献   

12.
Effects of Temperature on Pollen Viability in Mango cv. 'Kensington'   总被引:3,自引:0,他引:3  
The response of pollen development to low or high temperatureregimes was studied to determine the conditions suitable forthe formation of fertile pollen in the mango cv. 'Kensington'.The phase most sensitive to the degree and duration of temperaturestress was that from meiosis to the pre-vacuolate microspore(about 3 d duration at 25/20 °C) though vacuolated microsporeswere also sensitive to low temperature. Night temperatures below10 °C resulted in pollen grains with a low viability (<50%). A temperature between 15 and 33 °C during the phasefrom meiosis to the pre-vacuolate microspore was optimum forpollen development (70-85% pollen viability). Analysis of field records showed a linear negative correlationbetween percentage of pollen viability and number of days whichhad a mean night temperature lower than 10 °C during theperiod from meiosis to early mature stage (y = 77·7-3·4x,r2 = 0·60). The temperature sensitive phase was estimatedto begin 155 degree days D = [(Tmax + Tmin)/2 - 10] before anthesisand to end 78 degree days before anthesis. This equation maybe useful as a means of predicting pollen viability in the fieldfrom temperature records and thus fruit set, date of maturityand yield. It may also aid in the selection of areas for growingmangoes in marginal climates.Copyright 1994, 1999 Academic Press Mangifera indica L. mango, microsporogenesis, pollen development, viability, sterility, temperature  相似文献   

13.
Responses to Drying of Recalcitrant Seeds of Quercus nigra L.   总被引:4,自引:0,他引:4  
BONNER  F. T. 《Annals of botany》1996,78(2):181-187
It has been suggested that rate of desiccation can influencethe expression of recalcitrant behaviour in seeds, thus complicatingthe task of determining which seeds are truly recalcitrant.The objective of this study was to see if variable rates ofdesiccation influenced such behaviour inQuercus nigra L., atree seed known to be recalcitrant. Acorn moisture content, leachate conductivity, and germinationwere determined at various times during desiccation at threerates at 27 and 40°C. Moisture contents and germinationdecreased as the severity of desiccation increased. Leachateconductivity increased slightly but was not a sensitive indicatorof loss of viability. The critical (lethal) moisture contentfor these acorns was 10–15%, although rehydration within48 h of reaching this level prevented death in about 25% ofthe acorns. At 27°C any desiccation treatment that producedlosses of 30–50mg of moisture per g of acorn dry weightper day should be suitable as a test for recalcitrance in thegenus. Apparent physiological or fungal damage at 40°C rulesout the higher temperature for such a test. Quercus nigra L.; desiccation rate; temperature; recalcitrant; leachate conductivity; germination; viability  相似文献   

14.
Effects of dehydration, storage temperature and humidificationon germination of Salix alba andS. matsudana seeds were studied.Newly released seeds showed 100% germination before and afterdehydration to 11–12% moisture content. Germination ofthe high vigour lot (100% initial normal germination) was notaffected by dehydration to 6.7% moisture content but germinationdecreased with further dehydration to 4.3%. The lower vigourlot (75% initial normal germination) was more susceptible todehydration and germination decreased following dehydrationto 6.7% moisture content. Dry seeds of both species survivedimmersion in liquid nitrogen without loss of viability. Thegermination of seeds stored with 9% moisture content decreasedto 35–40% in 5 months at -20°C or in 2 months at 5°C.However, at 25°C seeds entirely lost viability within 2weeks. Seeds showed improved performance when stored at -70°C> - 20°C > 5°C > 25°C and tolerated dehydrationto a moisture content in equilibrium with 15% relative humidity.Results suggest that they are orthodox in storage behaviouralthough they are short-lived. Humidification treatment of lowvigour seed lots resulted in a remarkable increase in germinationpercentage. Copyright 2000 Annals of Botany Company Salix alba, Salix matsudana, willow, seed storage behaviour, dehydration, humidification, cryopreservation  相似文献   

15.
TOMPSETT  P. B. 《Annals of botany》1986,57(6):875-883
Seeds of the Smooth-leafed Elm (Uimus carpinifolia) and of thetropical forest tree Terb (Terminalia brassii) were stored hermeticallyand sampled at intervals for periods of up to two years. Bothspecies possess ‘orthodox’ seed (increasing longevityis observed as either moisture content or temperature are reduced)within the temperature ranges from — 13 to 52°C (Elm)and from —4 to 42°C (Terb) and within the moisturecontent ranges from 3 to 19 per cent (Elm) and from 5 to 14per cent (Terb) on a fresh weight basis. Elm seed stored at—75°C showed the expected relationship between longevityand moisture content, but did not differ significantly in longevityfrom seed kept at — 13°C when moisture contents wereheld constant. Probit analysis of the relationship between germinationpercentage and time was performed for each storage environment,yielding a slope from which the standard deviation of the distributionof seed deaths over time () was calculated. Standard deviationvalues were used in turn to determine the values of constantsin a viability equation which had previously been applied toseed of barley, chickpea, cowpea and soybean. The equation,which gave a good fit to the results obtained, can be used topredict viability for seed in storage over a wide range of environmentalconditions. Some limitations to the applicability of the viability equationwere defined. At 22 per cent and higher moisture contents Elmseed survived longer than predicted. Furthermore, all Elm andTerb seed was killed quickly on placing in —75°C at22 and 20 per cent moisture content respectively, but high viabilitywas retained for several days at 19 and 17 per cent respectively.Practical implications of the results are discussed. Uimus carpinifolia Gleditsch, Smooth-leafed Elm, Terminalia brassii Exell, Terb, seed longevity, seed storage, moisture content, temperature  相似文献   

16.
The emergence of celery (Apium graveolens L. cv. Utah 52–70)seeds was promoted by growth regulators when exposed to hightemperatures during the germination period. The growth regulatorswere applied to dry seeds prior to sowing, by means of the organicsolvent dichloromethane (DCM). A mixture of gibberellins A4and A7 (GA4/7) strongly enhanced emergence at a high day-timetemperature of 35°C alternating with night temperaturesof 20°C and 25°C; however, emergence was very poor whenthe night temperature was raised to 30°C. Under the latterregime, only mixtures of GA4/7 with 6-benzylaminopurine (BA)or with 2-chlorophosphonic acid (ethephon) promoted seed emergence.However, BA and ethephon applied separately or in combinationwere much less effective in enhancing seed emergence withoutthe addition of GA4/7, under all the temperature regimes.  相似文献   

17.
Effects of 2 °C chilling on the threshold moisture contentsand water potentials for various physiological processes wereestimated forAesculus hippocastanumL. seed. Seed harvested atthe time of maximum seed fall exhibited a dual response to drying:partial drying from near 50% to 32–40% moisture contentprogressively increased germination percentage (at 16 °C)up to various peak values; further desiccation was detrimental,confirming that the seeds are ‘recalcitrant’. Themoisture content for optimum germination was increased by atleast 10% as the chilling period was raised from 0 to 9 weeks.A negative linear relationship was found between log10mean timeto germinate and probit final germination, regardless of pre-treatment,indicating that partial desiccation and chilling are interchangeablein promoting germination of hydrated seed. For nearly fullyhydrated seeds, increasing the chilling period from 6 to 26weeks increased the viability-loss onset point for desiccationinjury from near 40% to about 48% moisture content without alteringthe drying rates of seed tissues. Extending moist chilling invarious seed lots from 0 to 26 weeks decreased subsequent longevityat 16 °C. For 26-week-chilled seeds longevity (the periodto lose one probit of germination) differed above and belowa threshold moisture content of 48%. It remained constant inthe moisture-content range 48–38%, but increased progressivelyas moisture content was raised above 48%. This threshold moisturecontent coincided with the value above which chilled seed pre-germinatedin storage. The results indicate that post-harvest desiccationand chilling alter the water relations of various physiologicalprocesses and a schematic summary is presented which relatesthe results to an axis water sorption isotherm.Copyright 1998Annals of Botany Company Aesculus hippocastanumL., horse chestnut, chilling, moisture content, water potential, desiccation tolerance, longevity, recalcitrant seed, embryo axis, maturation, germination.  相似文献   

18.
Seeds of Hancornia speciosa germinated best at a temperatureof 20–30 °C. The viability of the seeds during storagewas short and the best storage conditions for viability entailedkeeping the seeds in polyethylene bags. Seed viability was maintainedonly when the seeds were stored at a moisture content above30%; storage conditions which allowed dehydration resulted ina rapid loss of viability (the seeds showed recalcitrant behaviour). Low temperature during storage did not improve longevity. Arelationship between germination and moisture content was established,but when the moisture content fell below 25% there was a drasticreduction of germination. After 9 weeks of storage, even athigh moisture content, seeds lost viability. Loss of seed viability during seed dehydration was associatedwith increased leakage of electrolytes and organic solutes,and reduced tetrazolium staining during subsequent imbibition. Hancornia speciosa, germination, recalcitrant seeds, storage, moisture  相似文献   

19.
The lower limit to the negative logarithmic relation betweenseed longevity and moisture content was determined in threesubspecies of rice (Oryza satwa L.) by storing seeds of fivecultivars at 65 °C with 11 different moisture contents (1.5–15.3%f. wt) for various periods up to 150 d and then testing forgermination. The estimates of the low-moisture-content limit(mc) were 4.3% for subsp. indica, 4.4% for subsp. japonica,and 4.5% for subsp. javanica. These moisture contents were inequilibrium with 10.5—12.0% r.h. No significant effectof moisture content between 1.5% and mc on longevity was detected(P > 0.05), while between mc and 15.3% there were negativelogarithmic relations between longevity and moisture content.There were no significant differences in the relations betweenlongevity and moisture either above or below mc between thetwo japonica cultivars or between the two javanica cultivars(P > 0.10). There was also no significant difference in theslope of the negative logarithmic relation between longevityand moisture above mc among the three subspecies (P > 0.25).However, there were significant differences in the standarddeviation of the frequency distribution of seed deaths in timeat any one moisture content, both above and below mc; this isa measure of seed longevity which is independent of pre-storageenvironment, and the differences observed show that there aregenetically determined differences in longevity among the threesubspecies (P < 0.005), indica being the longest and japonicathe shortest lived. The results provide no evidence for intra-specificvariation in mc and support the view that the maximum seed storagemoisture content which provides the maximum longevity is thatwhich is in equilibrium with about 10–11% r.h. It is concludedthat while the seed viability constant Cw of the seed viabilityequation is species specific and therefore applies to most,if not all, cultivars of rice, variation in the value of KEis the source of the differences in potential longevity of thethree subspecies. Rice, Oryza sativa L, seed storage, seed longevity, seed moisture, viability equation  相似文献   

20.
Alternating Temperatures and Rate of Seed Germination in Lentil   总被引:2,自引:2,他引:0  
Ellis  R. H.; Barrett  S. 《Annals of botany》1994,74(5):519-524
The effect of alternating temperatures on the times taken byseeds of lentil (Lens culinaris Medikus) to germinate was investigatedusing a two-way temperature-gradient plate. Between 5 and 25°C,warmer temperatures increased the rate of germination. Variationamong the individual seeds in the times required for germinationat different constant temperatures within this range were describedwell by a log-normal distribution of thermal times, accumulatedabove a base temperature of 1·5°C. Even with amplitudesas great as 20°C, no effect of alternation per se on thethermal time required for germination was detected—whetherthe cool temperature was applied for 8 or 16 h d-1. Similarly,in alternating temperature regimes where the minimum temperatureof the diurnal cycle was between 0°C and the base temperature,the thermal times required for germination (where no thermaltime accrued during the periods when temperature was below Tb)were in close agreement with those values provided by the modeldetermined at warmer constant temperatures. However, where theminimum temperature applied was < 0°C the germinationof all but the earliest germinators was delayed beyond modelpredictions, and more so where the sub-zero minimum temperaturewas applied for 16 rather than 8 h d-1. The results, therefore,contradict the view that alternation in temperature per se reducesthe thermal time required for seed germination. Rather, rateof germination responds instantaneously to current temperature,but prolonged exposure to sub-zero temperatures can result indamage sufficient to delay germination when seeds are returnedto regimes warmer than the base temperature.Copyright 1994,1999 Academic Press Lens culinaris Medikus, lentil, seed germination, alternating temperatures, thermal time, temperature-gradient plate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号