首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We monitored 24 storms during the period 1998–2002 in order to elucidate whether the origin of nitrate could be inferred from water sources in the catchment. The study was performed in the Fuirosos catchment (10.5 km2) drained by an intermittent stream. Water sources were estimated through end member mixing analysis (EMMA) using chloride, sulfate and dissolved organic carbon as tracers. Three end members were identified in the catchment: event water, hillslope groundwater and riparian groundwater. Streamwater data encompassed the mixing space defined by the end members only during the 12 storms occurred during the wet period (from December to May). Water sources were related to stream nitrate concentrations during 6 of the 12 storms indicating a linkage between hydrological and nitrate sources. However, there was not a consistent pattern of a particular end member being a source of nitrate. EMMA was used to determine expected nitrate concentrations in stream water based on conservative mixing of the different water sources. The effect of the near- and in- stream zones on stream nitrate was inferred by comparing predicted nitrate concentrations to measured stream nitrate concentration. At discharges below 80 l s−1 stream nitrate concentrations were lower than expected from catchment sources in 82% of the cases suggesting nitrate retention in the near stream zones. The trend was the opposite at higher discharges.  相似文献   

2.
Dissolved organic carbon (DOC) and total and inorganic nitrogen and phosphorus concentrations were determined over 3 years in headwater streams draining two adjacent catchments. The catchments are currently under different land use; pasture/grazing vs plantation forestry. The objectives of the work were to quantify C and nutrient export from these landuses and elucidate the factors regulating export. In both catchments, stream water dissolved inorganic nutrient concentrations exhibited strong seasonal variations. Concentrations were highest during runoff events in late summer and autumn and rapidly declined as discharge increased during winter and spring. The annual variation of stream water N and P concentrations indicated that these nutrients accumulated in the catchments during dry summer periods and were flushed to the streams during autumn storm events. By contrast, stream water DOC concentrations did not exhibit seasonal variation. Higher DOC and NO3 concentrations were observed in the stream of the forest catchment, reflecting greater input and subsequent breakdown of leaf-litter in the forest catchment. Annual export of DOC was lower from the forested catchment due to the reduced discharge from this catchment. In contrast however, annual export of nitrate was higher from the forest catchment suggesting that there was an additional NO3 source or reduction of a NO3 sink. We hypothesize that the denitrification capacity of the forested catchment has been significantly reduced as a consequence of increased evapotranspiration and subsequent decrease in streamflow and associated reduction in the near stream saturated area.  相似文献   

3.
Stream DOC dynamics during snowmelt have been the focus of much research, and numerous DOC mobilization and delivery mechanisms from riparian and upland areas have been proposed. However, landscape structure controls on DOC export from riparian and upland landscape elements remains poorly understood. We investigated stream and groundwater DOC dynamics across three transects and seven adjacent but diverse catchments with a range of landscape characteristics during snowmelt (April 15–July 15) in the northern Rocky Mountains, Montana. We observed a range of DOC export dynamics across riparian and upland landscape settings and varying degrees of hydrologic connectivity between the stream, riparian, and upland zones. DOC export from riparian zones required a hydrologic connection across the riparian–stream interface, and occurred at landscape positions with a wide range of upslope accumulated area (UAA) and wetness status. In contrast, mobilization of DOC from the uplands appeared restricted to areas with a hydrologic connection across the entire upland–riparian–stream continuum, which generally occurred only at areas with high UAA, and/or at times of high wetness. Further, the relative extent of DOC-rich riparian and wetland zones strongly influenced catchment DOC export. Cumulative stream DOC export was highest from catchments with a large proportion of riparian to upland area, and ranged from 6.3 to 12.4 kg ha?1 across the study period. This research suggests that the spatial/temporal intersection of hydrologic connectivity and DOC source areas drives stream DOC export.  相似文献   

4.
Changes in atmospheric deposition, stream water chemistry, and solute fluxes were assessed across 15 small forested catchments. Dramatic changes in atmospheric deposition have occurred over the last three decades, including a 70% reduction in sulphur (S) deposition. These changes in atmospheric inputs have been associated with expected changes in levels of acidity, sulphate and base cations in streams. Soil retention of S appeared to partially explain rates of chemical recovery. In addition to these changes in acid–base chemistry we also observed unexpected changes in nitrogen (N) biogeochemistry and nutrient stoichiometry of stream water, including decreased stream N concentrations. Among all catchments the average flux of dissolved inorganic nitrogen (DIN) was best predicted by average runoff, soil chemistry (forest floor C/N) and levels of acid deposition (both S and N). The rate of change in stream DIN flux, however, was much more closely correlated with reductions in rates of S deposition rather than those of DIN. Unlike DIN fluxes, the average concentrations as well as the rates of decline in streamwater nitrate (NO3) concentration over time were tightly linked to stream dissolved organic carbon/dissolved organic nitrogen ratios DOC/DON and DON/TP rather than catchment characteristics. Declines in phosphorus adsorption with increasing soil pH appear to contribute to the relationship between C, N, and P in our study catchments. Our observations suggest that catchment P availability and its alteration due to environmental changes (e.g. acidification) might have profound effects on N cycling and catchment N retention that have been largely unrecognized.  相似文献   

5.
Reductions in emissions have successfully led to a regional decline in atmospheric nitrogen depositions over the past 20 years. By analyzing long‐term data from 110 mountainous streams draining into German drinking water reservoirs, nitrate concentrations indeed declined in the majority of catchments. Furthermore, our meta‐analysis indicates that the declining nitrate levels are linked to the release of dissolved iron to streams likely due to a reductive dissolution of iron(III) minerals in riparian wetland soils. This dissolution process mobilized adsorbed compounds, such as phosphate, dissolved organic carbon and arsenic, resulting in concentration increases in the streams and higher inputs to receiving drinking water reservoirs. Reductive mobilization was most significant in catchments with stream nitrate concentrations <6 mg L?1. Here, nitrate, as a competing electron acceptor, was too low in concentration to inhibit microbial iron(III) reduction. Consequently, observed trends were strongest in forested catchments, where nitrate concentrations were unaffected by agricultural and urban sources and which were therefore sensitive to reductions of atmospheric nitrogen depositions. We conclude that there is strong evidence that the decline in nitrogen deposition toward pre‐industrial conditions lowers the redox buffer in riparian soils, destabilizing formerly fixed problematic compounds, and results in serious implications for water quality.  相似文献   

6.
7.
Permafrost thaw in peatlands has the potential to alter catchment export of dissolved organic carbon (DOC) and thus influence downstream aquatic C cycling. Subarctic peatlands are often mosaics of different peatland types, where permafrost conditions regulate the hydrological setting of each type. We show that hydrological setting is key to observed differences in magnitude, timing, and chemical composition of DOC export between permafrost and nonpermafrost peatland types, and that these differences influence the export of DOC of larger catchments even when peatlands are minor catchment components. In many aspects, DOC export from a studied peatland permafrost plateau was similar to that of a forested upland catchment. Similarities included low annual export (2–3 g C m?2) dominated by the snow melt period (~70%), and how substantial DOC export following storms required wet antecedent conditions. Conversely, nonpermafrost fens had higher DOC export (7 g C m?2), resulting from sustained hydrological connectivity during summer. Chemical composition of catchment DOC export arose from the mixing of highly aromatic DOC from organic soils from permafrost plateau soil water and upland forest surface horizons with nonaromatic DOC from mineral soil groundwater, but was further modulated by fens. Increasing aromaticity from fen inflow to outlet was substantial and depended on both water residence time and water temperature. The role of fens as catchment biogeochemical hotspots was further emphasized by their capacity for sulfate retention. As a result of fen characteristics, a 4% fen cover in a mixed catchment was responsible for 34% higher DOC export, 50% higher DOC concentrations and ~10% higher DOC aromaticity at the catchment outlet during summer compared to a nonpeatland upland catchment. Expansion of fens due to thaw thus has potential to influence landscape C cycling by increasing fen capacity to act as biogeochemical hotspots, amplifying aquatic C cycling, and increasing catchment DOC export.  相似文献   

8.
Leaf litter plays a critical role in regulating ecological functions in headwater forest streams, whereas the effects of leaves on water quality in urbanized streams are not fully understood. This study examined the potential importance of leaf litter for the release and transformations of organic carbon and nutrients in urban streams, and compared the effects with other types of natural organic substrates (periphyton and stream sediment). Nutrients and organic carbon were leached from senescent leaves of 6 tree species in the laboratory with deionized water, and maximal releases, leaching rate constants, composition and bioavailability of the leached dissolved organic carbon (DOC) were determined. Stream substrates (leaf debris, rocks with periphyton, and sediment) were seasonally collected from urban and forest reference streams of the NSF Baltimore Long-term Ecological Research Site and incubated with overlying stream water to estimate areal fluxes of DOC and nitrogen. Leaf litter leaching showed large ranges in maximal releases of DOC (7.0–131 mg g?1), dissolved organic nitrogen (DON; 0.07–1.39 mg g?1) and total dissolved phosphorus (TDP; 0.14–0.70 mg g?1) among tree species. DOC leaching rate constants, carbon to nitrogen ratios, and DOC bioavailability were all correlated with organic matter quality indicated by fluorescence spectroscopy. Results from substrate incubation experiments showed far higher DOC and DON release and nitrate retention with leaf debris than with sediment, or rocks with periphyton. DOC release from leaf debris was positively correlated with stream nitrate retention at residential and urban sites, with the highest values observed during the fall and lowest during the summer. This study suggests the potential importance of leaf litter quantity and quality on fostering DOC and nutrient release and transformations in urban streams. It also suggests that species-specific impacts of leaves should be considered in riparian buffer and stream restoration strategies.  相似文献   

9.
We evaluated (1) the longitudinal pattern of stream chemistry and (2) the effects of the riparian zone on this longitudinal pattern for nitrate (NO3 ), dissolved organic carbon (DOC), and total dissolved iron (Fe). We selected two small watersheds; the “southern watershed” had an extending riparian wetland and the “northern watershed” had a narrow riparian area. Stream NO3 concentrations decreased from the spring to outlet of both watersheds. In the southern watershed, stream DOC concentration decreased from the spring to midstream and then increased to the outlet. Stream Fe concentration in the southern watershed longitudinally increased. On the other hand, the northern watershed exhibited no longitudinal pattern for DOC and Fe concentrations. In both watersheds, while NO3 concentrations in the soil and ground water were lower than those in the stream waters, DOC and Fe concentrations exhibited the opposite patterns. The longitudinal decreases of NO3 concentrations in both streams and increase of stream Fe in the southern watershed mainly resulted from the inflow of the soil and ground water to the stream. The decrease in stream DOC from the spring to midstream in the southern watershed was due to the deep groundwater having low DOC, while the subsequent increase to the surrounding soil and ground water. Moreover, considerations of stream solute flow with soil and ground water chemistry suggested other mechanisms adding NO3 and removing/diluting DOC and Fe, especially for the northern watershed; coexistence of oxidizing and reducing conditions in the riparian zone might control the longitudinal concentration change in the stream water chemistry.  相似文献   

10.
1. Due to the hierarchical organization of stream networks, land use changes occurring at larger spatial scales (i.e. the catchment) can affect physical, chemical and biological characteristics at lower spatial scales, ultimately altering stream structure and function. Anthropogenic effects on streams have primarily been documented using structural metrics such as water chemistry, channel alteration and algal biomass. Functional parameters, including metrics of nutrient retention and metabolism, are now being widely used as indicators of stream condition. 2. Within this hierarchical context, we used a multivariate approach to examine how structural and functional (i.e. nutrient retention and metabolism) attributes of streams are related to catchment variables, including land use. The study was done in 13 streams located within a single Mediterranean catchment, but draining sub‐catchments with contrasting land use. 3. At the catchment scale, results showed two contrasting land use gradients: (i) from forested‐ to urban‐dominated catchments and (ii) from low to moderate agricultural‐dominated catchments. Variation in structural and functional parameters was strongly related to these land use gradients. Specifically, NH4+ demand (measured as the uptake velocity, Vf) decreased along the gradient from forested‐ to urban‐dominated catchments primarily in response to increases in stream nutrient concentrations [NH4+, dissolved organic nitrogen (DON) and carbon (DOC)]. Both primary production and respiration increased along the gradient of agricultural development in response to increases in algal biomass (chlorophyll a). Soluble reactive phosphorus demand was not related to any of the land use gradients. 4. Our results illustrate the connections among factors operating at different spatial scales (i.e. from catchments to streams) and their distinct influence on stream ecosystem function. Managers should take into consideration these connections when designing stream management and restoration plans. Because ecologically successful stream management and restoration is expected to restore function as well as structure to streams, the use of appropriate measures of functional processes is required. Nutrient retention and metabolism parameters are good candidates to fill this gap.  相似文献   

11.
Processes operating at the terrestrial-lotic interface may significantly alter dissolved nitrogen concentrations in groundwater as a result of shifting redox conditions and microbial communities. We monitored concentrations of total dissolved nitrogen, NO 4 , NH 4 , O2 and Fe2+ for 10 months along two transects tracing groundwater flow from an upland (terra firme) forest, beneath the riparian forest, and into the stream channel of a small Central Amazonian catchment. Our aim was to examine the role of near-stream processes in regulating groundwater transfers of dissolved nitrogen from terrestrial to lotic ecosystems in the Central Amazon. We found pronounced compositional differences in inorganic nitrogen chemistry between upland, riparian, and stream hydrologic compartments. Nitrate dominated (average 89% of total inorganic nitrogen; TIN) the inorganic nitrogen chemistry of oxygenated upland groundwater but decreased markedly upon crossing the upland-riparian margin. Conversely, NH 4 dominated (average 93% of TIN) the inorganic chemistry of apparently anoxic riparian groundwater; NH 4 and TIN concentrations decreased markedly across the riparian-stream channel margin. In the oxygenated streamwater, NO 3 again dominated (average 82% of TIN) inorganic nitrogen chemistry. Denitrification followed by continued ammonification is hypothesized to effect the shift in speciation observed at the upland-riparian margin, while a combination of several processes may control the shift in speciation and loss of TIN observed at the riparian-stream margin. Dissolved organic nitrogen concentrations did not vary significantly between upland and riparian groundwater, but decreased across the riparian-stream margin. Our data suggest that extensive transformation reactions focused at the upland and stream margins of the riparian zone strongly regulate and diminish transfers of inorganic nitrogen from groundwater to streamwater in the catchment. This suggestion questions the veracity of attempts in the literature to link stream nitrogen chemistry with nutrient status in adjacent forests of similar catchments in the Central Amazon. It also complicates efforts to model nitrogen transfers across terrestrial-lotic interfaces in response to deforestation and changing climate.  相似文献   

12.
1. Urbanisation severely affects stream hydrology, biotic integrity and water quality, but relatively little is known about effects on organic matter dynamics. Coarse particulate organic matter (CPOM) is a source of energy and nutrients in aquatic systems, and its availability has implications for ecosystem productivity and aquatic communities. In undisturbed environments, allochthonous inputs from riparian zones provide critical energy subsidies, but the extent to which this occurs in urbanised streams is poorly understood. 2. We investigated CPOM inputs, standing stocks, retention rates and retention mechanisms in urban and peri‐urban streams in Melbourne, Australia. Six streams were chosen along a gradient of catchment urbanisation, with the presence of reach scale riparian canopy cover as a second factor. CPOM retention was assessed at baseflow via replicate releases of marked Eucalyptus leaves where the retention distance and mechanism were recorded. CPOM and small wood (>1 cm diameter) storage were measured via cores and direct counts, respectively, while lateral and horizontal CPOM inputs were assessed using riparian litter traps. Stream discharge, velocity, depth and width were also measured. 3. CPOM inputs were not correlated with urbanisation, but were significantly higher in ‘closed’ canopy reaches. Urbanisation and riparian cover altered CPOM retention mechanisms, but not retention distances. Urban streams showed greater retention by rocks; while in less urban streams, retention by small wood was considerably higher. CPOM and small wood storage were significantly lower in more urban streams, but we found only a weak effect of riparian cover. 4. These findings suggest that while riparian vegetation increases CPOM inputs and has modest/weak effects on storage, catchment scale urbanisation decreases organic matter availability. Using an organic matter budget approach, it appears likely that the increased frequency and magnitude of high flows associated with catchment urbanisation exerts an overriding influence on organic matter availability. 5. We conclude that to maintain both organic matter inputs and storage, the restoration and protection of streams in urban or rapidly urbanising environments relies on the management of both riparian vegetation and catchment hydrology.  相似文献   

13.
In Prince Edward Island, Canada, widespread intensive potato production has contributed to elevated nitrate concentrations in groundwater and streams, and eutrophic or anoxic conditions occur regularly in several estuarine systems. In this research, the stable isotopes of nitrogen and oxygen in nitrate in intertidal groundwater discharge and stream water were used, in conjunction with water quality and quantity data and land use information, to better understand the characteristics of nitrate delivered to two small estuaries with contrasting land use in their contributory catchments. Most of the water samples collected during the two-year study had isotopic signatures that fell in the range expected for nitrate derived from ammonium-based fertilizers (26.5 % of the samples) or in the overlapping range formed between ammonium-based fertilizers and nitrate derived from soil (64 % of the samples). Overall, isotopic signatures spanned over relatively narrow ranges, and correlations with other water quality parameters, or catchment characteristics, were weak. Nitrate in groundwater discharge and surface water in the Trout River catchment exhibited significantly different isotopic signatures only for the nitrogen isotope, while in the McIntyre Creek catchment groundwater discharge and surface water had similar isotopic signatures. When the isotopic results for the waters from the two catchments were compared, the surface waters were found to be similar, while the isotopic signatures of nitrate in groundwater were distinct only for the nitrogen isotope. Denitrification in the two study catchments was not evident based on the isotopic results for nitrate; however, in the case of the Trout River catchment, where a small freshwater pond exists, an average nitrate load reduction of 14 % was inferred based on a comparison of nitrate loads entering and leaving the pond. Overall, it appears that natural attenuation processes, occurring either in the streams or groundwater flow systems, do not significantly reduce nitrate loading to these estuaries.  相似文献   

14.
We measured net nitrate retention by mass balance in a 700-m upwelling reach of a third-order sand plains stream, Emmons Creek, from January 2007 to November 2008. Surface water and groundwater fluxes of nitrate were determined from continuous records of discharge and from nitrate concentrations based on weekly and biweekly sampling at three surface water stations and in 23 in-stream piezometers, respectively. Surface water nitrate concentration in Emmons Creek was relatively high (mean of 2.25 mg NO3?CN l?1) and exhibited strong seasonal variation. Net nitrate retention averaged 429 mg NO3?CN m?2 d?1 and about 2% of nitrate inputs to the reach. Net nitrate retention was highest during the spring and autumn when groundwater discharge was elevated. Groundwater discharge explained 57?C65% of the variation in areal net nitrate retention. Specific discharge and groundwater nitrate concentration varied spatially. Weighting groundwater solute concentrations by specific discharge improved the water balance and resulted in higher estimates of nitrate retention. Our results suggest that groundwater inputs of nitrate can drive nitrate retention in streams with high groundwater discharge.  相似文献   

15.
Atmospheric deposition contributes a large fraction of the annual nitrogen (N) input to the basin of the Susquehanna River, a river that provides two-thirds of the annual N load to the Chesapeake Bay. Yet, there are few measurements of the retention of atmospheric N in the Upper Susquehanna’s forested headwaters. We characterized the amount, form (nitrate, ammonium, and dissolved organic nitrogen), isotopic composition (δ15N- and δ18O-nitrate), and seasonality of stream N over 2 years for 7–13 catchments. We expected high rates of N retention and seasonal nitrate patterns typical of other seasonally snow-covered catchments: dormant season maxima and growing season minima. Coarse estimates of N export indicated high rates of inorganic N retention (>95%), yet streams had unexpected seasonal nitrate patterns, with summer peaks (14–96 μmol L−1), October crashes (<1 μmol L−1), and modest rebounds during the dormant season (<1–20 μmol L−1). Stream δ18O-nitrate values indicated microbial nitrification as the primary source of stream nitrate, although snowmelt or other atmospheric source contributed up to 47% of stream nitrate in some March samples. The autumn nitrate crash coincided with leaffall, likely due to in-stream heterotrophic uptake of N. Hypothesized sources of the summer nitrate peaks include: delayed release of nitrate previously flushed to groundwater, weathering of geologic N, and summer increases in net nitrate production. Measurements of shale δ15N and soil-, well-, and streamwater nitrate within one catchment point toward a summer increase in soil net nitrification as the driver of this pattern. Rather than seasonal plant demand, processes governing the seasonal production, retention, and transport of nitrate in soils may drive nitrate seasonality in this and many other systems.  相似文献   

16.
The aim of our study was; (i) to characterize the composition of DOM in stream water and their potential sources (groundwater, overland flow, subsurface flow and rain water) and (ii) to analyze changes in DOM concentration and composition under different hydrological conditions (baseflow and high flow) in a third-order Pampean stream (Argentina). Pampean streams are mainly fed by the shallow aquifer under baseflow conditions and they lack of riparian forest. In addition, water velocity is low due to the gentle slope of the region and nutrient levels are high, favoring the development of rich macrophyte communities. DOM optical properties in the stream and end members were determined by combining absorbance-fluorescence spectroscopy techniques. Our results indicated that DOM chemical characteristics in the stream were mainly modulated by a differential contribution of end members to stream water depending on hydrological conditions. We observed that DOM in groundwater showed a microbial origin while DOM in runoff was terrestrially-derived. DOC concentration and inputs of humic substances from the riparian zone increased with discharge at high flow conditions. Due to the strong link between DOC properties and the riparian environment, structural alterations in the stream channel and changes in riparian vegetation (forestation) may result in changes in DOM composition and dynamics.  相似文献   

17.
1. Assessment of the role of landscape structures such as buffers is a necessary prerequisite for the sustainable management of water resources in an agricultural setting. 2. We monitored nitrate concentrations during interstorm periods at the outlet of 16 subcatchments of different orders within a catchment of 378 km2. We characterised stream network, wetlands, agricultural practices and land cover and identified their relationships with nitrate fluxes and concentrations. 3. Two main factors controlled annual nitrate fluxes: the agricultural nitrogen surplus and the nature of the system comprising the wetland zone and adjoining watercourses. In the latter case, nitrate fluxes were reduced in proportion to the surface area of the riparian wetland and the flowpath distance of fluxes in the stream network. At the scale of the order‐6 stream, 53% of annual nitrate flux during interstorm periods was removed during transfer via the wetland and the river, corresponding to 21.1 kg N ha?1 per year. 4. The influence of the riparian wetland zone/watercourse system increased during periods of low water level, explaining up to 64% of nitrate concentration variation among locations within the river network, but only 9% during periods of high water level. 5. The buffering role was stronger at higher stream orders, and the dependence on stream order was more apparent at low water level, when we observed mean nitrate concentrations in the order‐6 stream that were 47% lower than observed in order‐2 or order‐3 streams.  相似文献   

18.
An urban watershed continuum framework hypothesizes that there are coupled changes in (1) carbon and nitrogen cycling, (2) groundwater-surface water interactions, and (3) ecosystem metabolism along broader hydrologic flowpaths. It expands our understanding of urban streams beyond a reach scale. We evaluated this framework by analyzing longitudinal patterns in: C and N concentrations and mass balances, groundwater-surface interactions, and stream metabolism and carbon quality from headwaters to larger order streams. 52 monitoring sites were sampled seasonally and monthly along the Gwynns Falls watershed, which drains 170 km2 of the Baltimore Long-Term Ecological Research site. Regarding our first hypothesis of coupled C and N cycles, there were significant inverse linear relationships between nitrate and dissolved organic carbon (DOC) and nitrogen longitudinally (P < 0.05). Regarding our second hypothesis of coupled groundwater-surface water interactions, groundwater seepage and leaky piped infrastructure contributed significant inputs of water and N to stream reaches based on mass balance and chloride/fluoride tracer data. Regarding our third hypothesis of coupled ecosystem metabolism and carbon quality, stream metabolism increased downstream and showed potential to enhance DOC lability (e.g., ~4 times higher mean monthly primary production in urban streams than forest streams). DOC lability also increased with distance downstream and watershed urbanization based on protein and humic-like fractions, with major implications for ecosystem metabolism, biological oxygen demand, and CO2 production and alkalinity. Overall, our results showed significant in-stream retention and release (0–100 %) of watershed C and N loads over the scale of kilometers, seldom considered when evaluating monitoring, management, and restoration effectiveness. Given dynamic transport and retention across evolving spatial scales, there is a strong need to longitudinally and synoptically expand studies of hydrologic and biogeochemical processes beyond a stream reach scale along the urban watershed continuum.  相似文献   

19.
Concentrations of soluble reactive phosphorus (SRP), nitrate, and soluble reactive silicon (SRSi) were monitored in 12 streams draining small catchments (<10 km2) in the English Lake District. The catchments varied with respect to underlying geology, soil type and land cover. Average concentrations of SRP were in the range 0.5–11.2 μg P l-1, and estimated loads ranged from 0.01 to 0.14 kg P ha-1 a-1. The higher concentrations and loads were associated with catchments containing improved pasture. Mean streamwater concentrations of nitrate varied from 55 to 660 μg N l-1, while loads were in the range 0.8–9.6 kg N ha-1 a-1; no general dependence on catchment properties was discerned. Concentrations of SRSi were similar in all the streams (0.8–2 mg Si l-1), and annual loads were in the range 10–26 kg Si ha-1 a-1. Loads of all three nutrients were greatest during the winter, because of higher discharges, but in some catchments containing improved pasture, considerable transport of P also took place during the summer. Concentrations of nitrate in streams draining unimproved moorland catchments are approximately twice those reported for samples taken from similar streams in 1973 and 1974, possibly because of increased atmospheric deposition of inorganic nitrogen (ammonium and nitrate). Concentrations of SRP in such streams were similar to those reported for the earlier samples. Comparisons of stream loads of SRP and nitrate with estimated inputs suggest that catchment soils retain substantial amounts of these nutrients. Implications for surface water eutrophication of changes in P retention by soils are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
1. Groundwater nitrate contamination has become a worldwide problem as increasing amounts of nitrogen fertilisers are used in agriculture. Alluvial groundwater is uniquely juxtaposed between soils and streams. Hydrological connections among these subsystems regulate nutrient cycling. 2. We measured denitrification using an in situ acetylene‐block assay in a nitrate‐contaminated portion of the Garonne River catchment along a gradient of surface water–ground water mixing during high (snowmelt) and low flow. 3. During high flow (mid‐April to early June) the water table rose an average of 35 cm and river water penetrated the subsurface to a great extent in monitoring wells. Denitrification rates averaged 5.40 μgN2O L?1 min?1 during the high flow period, nearly double the average rate (2.91 μgN2O L?1 min?1) measured during base flow. This was driven by a strong increase in denitrification in groundwater under native riparian vegetation. Nitrate concentrations were significantly lower during high flow compared with base flow. Riparian patches had higher dissolved organic carbon concentrations that were more aromatic compared with the gravel bar patch closest to the river. 4. Multiple linear regression showed that the rate of denitrification was best predicted by the concentration of low molecular weight organic acids. These molecules are probably derived from decomposition of soil organic matter and are an important energy source for anaerobic respiratory processes like denitrification. The second best predictor was per cent surface water, reflecting higher denitrification rates during spring when hydrological connection between surface water and ground water was greatest. 5. Our results indicate that, while denitrification rates in Garonne River alluvium were spatially and temporally variable, denitrification was a significant NO3 sink during transport from the NO3‐contaminated floodplain to the river. DOC availability and river–floodplain connectivity were important factors influencing observed spatial and temporal patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号