首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The development of rhizobial inoculants requires the selection of isolates that are symbiotically efficient as well as adapted to the local environmental conditions. Our aim was to find indigenous chickpea rhizobia tolerant to adverse environmental conditions, such as temperature and pH. Thirteen isolates of chickpea mesorhizobia from southern Portugal were examined. Tolerance to stress temperatures and pH was evaluated by quantification of bacterial growth at 20–37°C and pH 5–9, respectively. Tolerance to heat shocks was studied by submitting isolates to 46°C and 60°C. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis protein analysis revealed qualitative and quantitative differences when isolates were submitted to temperature stress. A 60-kDa protein was overproduced by all isolates under heat stress. Almost all isolates revealed to be more tolerant to 20°C than to 37°C. A positive correlation was found between the maximum growth pH and the isolate origin soil pH. Generally, isolates more tolerant to temperature stress showed a lower symbiotic efficiency.  相似文献   

2.
Coastal sand dunes harbor a variety of free living and symbiotic microorganisms, which are adapted to stress conditions such as temperature, salinity and pH. The current paper explores the ability of sole‐source‐carbon utilization by symbiotic rhizobia isolated from tropical coastal sand dune wild legumes. Fast‐growing rhizobia isolated from five legume plant species (Canavalia cathartica, Canavalia maritima, Crotalaria retusa, Crotalaria verrucosa, and Derris triflorum) grown on the two coastal sand dunes of the southwest coast of India (Someshwara, S1–S5; Padubidri, P1–P5) were assessed for sole‐carbon‐source utilization patterns based on BIOLOG GN2 microplate technique. All the isolates showed high extents of utilization of the different carbon sources within 24 h of incubation at 30 °C. Cluster analysis based on quantitative and qualitative utilization of a sole carbon source revealed two distinct clusters. Cluster I consists of four isolates (S1, P2, P4, and P5), of which P2 and P5 showed greater similarities. The cluster II encompasses six isolates (S2–S5, P1 and P3), among them S3 and S5 showed high similarities. Based on the utilization of six guilds by the isolates S1, S2, P1, and P2 (polymers, carbohydrates, carboxylic acids, amides and amines, amino acids and miscellaneous), S2 and P1 exhibited high functional diversity. Principal component analysis revealed a close catabolic potential between the isolates S5 and P1; S1 and P3; S3, P2, and P5. The symbiotic rhizobia of the southwest coastal sand dune wild legumes of India studied might serve as novel inoculants to achieve legume production through nitrogen fixation under the varied conditions of tropical soils. These rhizobia were able to utilize a wide range of carbon sources, possessed functional diversity, withstood extreme conditions (temperature, salinity, pH), exhibited non‐host specificity and induced high biomass in edible legumes.  相似文献   

3.
The submersed aquatic vegetation (SAV) species Vallisneria americana Michx. (tape grass) is a valuable resource in the Caloosahatchee estuary and in many other aquatic systems. Given the variable nature of freshwater inflows and environmental conditions in the Caloosahatchee, it is necessary to understand how tape grass will respond to high and low salinity conditions at different light and temperature levels. Specifically, quantitative information is needed as input to modeling tools that can be applied to predict growth and survival of tape grass under a range of environmental conditions present in the estuary. We determined growth rates for small and medium sized tape grass plants obtained from the Caloosahatchee estuary, southwest coastal Florida, USA in freshwater (0.5 psu) under high (331 μE m?2 s?1) and low light (42 μE m?2 s?1) and at 10 psu under high light conditions. We ran six treatments at five temperatures spanning 13–32 °C for 8–9 weeks. The optimum temperature for growth was roughly 28 °C, with a minimum threshold temperature of 13 °C and a maximum threshold temperature of 38 °C. Plants grew fastest in freshwater, at high light and temperatures greater than 20 °C. The slowest growth rates were observed at 13 °C regardless of salinity, light or plant size. Our results suggest that tape grass growth is strongly influenced by water temperature and that additional stressors such as low light and elevated salinity can reduce the range of temperature tolerance, especially at colder water temperatures.  相似文献   

4.
Two algal cultures, TvB and SH, were isolated from extreme habitats along the Syrian-African rift Valley (Israel). These cultures were initially identified as Chlorella spp. according to their morphology and lack of bristles, but following molecular phylogenetic analyses, re-identified as Micractinium spp. closely related to Chlorella. The strains were subjected to a bi-factorial study in the search for algae that grow well at elevated temperatures and salinities for future biotechnological uses. Cell density (CD) and optical density (OD) were measured for each strain at three temperatures: 35, 40 and 45ºC, and five salinities of seawater (SW): 34.8 ppt (100% SW), 26.5 ppt (75% SW), 18.3 ppt (50% SW) 10 ppt (25% SW) and 1.8 ppt (0% SW). Both strains grew best at 35–40ºC and at 0–50% SW. Increased salinity enhanced temperature tolerance to 45ºC, particularly for strain TvB. At 45ºC, following a short initial growth spurt, cultures underwent a lag period of c. 7 days, followed by a significant growth phase. During the lag period, algae underwent a substantial increase in average cell diameter (ACD). These enlarged or gigantic cells with diameters of up to ~20 μm, produced and eventually released multiple autospores. By day 13, original size distribution was almost restored. The observed morphological alterations appear to enable these strains to survive and grow autotrophically at supra-optimal temperatures (SOT). These natural adjustments may be exploited for reducing costs associated with both cooling and desalination in future cultivation.  相似文献   

5.
Pandey  Anita  Dhakar  Kusum  Sharma  Avinash  Priti  Payal  Sati  Priyanka  Kumar  Bhavesh 《Annals of microbiology》2015,65(2):809-816
Twenty-eight bacterial cultures, isolated from hot springs in Uttarakhand, were characterized with particular reference to their wide temperature and pH tolerance and production of enzymes in the thermophilic range. All the bacterial isolates were observed as Gram-positive or variable rods in varied arrangement. Bacterial isolates exhibited tolerance to a wide temperature range (20–80 °C), from mesophilic (+11° to +45 °C) to thermophilic (+46 ° to +75 °C); few almost reached the hyperthermophilic range (+76 °C). The isolates also tolerated a wide pH range (4–14) and moderate salt concentration. The optimum growth of the bacterial isolates was observed at 55 °C and 7 pH. Out of 28 isolates, 25 produced lipase, 25 amylase, 24 cellulase, 22 protease and 13 xylanase at 55 and 65 °C. Tolerance to a wide temperature and pH range and the production of enzymes in a thermophilic temperature range can be considered as indicators of ecological competence of these bacterial isolates for colonizing the high temperature environment. On the basis of 16S rDNA similarity, 20 bacterial isolates belonged to Bacillus licheniformis, five to Paenibacillus ehimensis and one each to Bacillus sonorensis, B. tequilensis, and Staphylococcus epidermidis. Besides variation in phenotypic characters, strains of B. licheniformis and P. ehimensis showed varying 16S rDNA similarity between 97–99 % and 95–99 %, respectively. Consideration of temperature preferences in classifying microorganisms on the basis of their minimum, maximum, and optimum growth requirements is also discussed. The study has ecological relevance in the context of colonization of high temperature environments by thermophilic bacteria.  相似文献   

6.
Thermal tolerance shapes organisms' physiological performance and limits their biogeographic ranges. Tropical terrestrial organisms are thought to live very near their upper thermal tolerance limits, and such small thermal safety factors put them at risk from global warming. However, little is known about the thermal tolerances of tropical marine invertebrates, how they vary across different life stages, and how these limits relate to environmental conditions. We tested the tolerance to acute heat stress of five life stages of the tropical sea urchin Lytechinus variegatus collected in the Bahía Almirante, Bocas del Toro, Panama. We also investigated the impact of chronic heat stress on larval development. Fertilization, cleavage, morula development, and 4‐armed larvae tolerated 2‐h exposures to elevated temperatures between 28–32°C. Average critical temperatures (LT50) were lower for initiation of cleavage (33.5°C) and development to morula (32.5°C) than they were for fertilization (34.4°C) or for 4‐armed larvae (34.1°C). LT50 was even higher (34.8°C) for adults exposed to similar acute thermal stress, suggesting that thermal limits measured for adults may not be directly applied to the whole life history. During chronic exposure, larvae had significantly lower survival and reduced growth when reared at temperatures above 30.5°C and did not survive chronic exposures at or above 32.3°C. Environmental monitoring at and near our collection site shows that L. variegatus may already experience temperatures at which larval growth and survival are reduced during the warmest months of the year. A published local climate model further suggests that such damaging warm temperatures will be reached throughout the Bahía Almirante by 2084. Our results highlight that tropical marine invertebrates likely have small thermal safety factors during some stages in their life cycles, and that shallow‐water populations are at particular risk of near future warming.  相似文献   

7.
Crossing the Limits of Rhizobium Existence in Extreme Conditions   总被引:1,自引:1,他引:0  
An ecological survey was conducted to characterize 5000 Rhizobium sp. sesbania strains of diverse geographical origin, isolated from the root nodules of Sesbania aculeata growing in neutral (pH 7) and alkaline (pH 8.5 and above) soils. The rhizobia from the alkaline soil showed significantly higher salt tolerance than those isolated from neutral soil. Upper limits of stress survival of rhizobial isolates, Rhizobium sp. NBRI0102 sesbania selected from neutral soil, and Rhizobium sp. NBRI2505 sesbania selected from alkaline soil, were studied under free living conditions. Rhizobium sp. NBRI0102 sesbania and Rhizobium sp. NBRI2505 sesbania tolerated yeast extract mannitol broth (YEB) containing 10% and 28% salt (NaCl, wt/vol) for up to 18 h of incubation at 30°C. Growth of Rhizobium sp. NBRI0102 sesbania and Rhizobium sp. NBRI2505 sesbania at pH 7, 11, and 12 was identical, except for a lag period of about 10 h in the growth of Rhizobium sp. NBRI0102 sesbania at pH 11 and 12, as compared with pH 7. Rhizobium sp. NBRI0102 sesbania and Rhizobium sp. NBRI2505 sesbania survived at 50°C and 65°C, in YEB at pH 7 for up to 4 and 2 h, respectively. To our knowledge, this is the first report of rhizobia demonstrating survival of Rhizobium sp. NBRI2505 sesbania, estimated by counting viable cells, to such extreme conditions of salt and temperature, individually. In contrast to Rhizobium sp. NBRI0102 sesbania, high temperature was tolerated efficiently by Rhizobium sp. NBRI2505 sesbania, in the presence of salt at higher pH. Our results suggest that the possession of the trait of high salt tolerance might be of some evolutionary significance for the survival of rhizobia in alkaline soils, at high pH and temperature. Received: 23 May 2000 / Accepted: 26 June 2000  相似文献   

8.

Coral reef ecosystems are under threat from the frequent and severe impacts of anthropogenic climate change, particularly rising sea surface temperatures. The effects of thermal stress may be ameliorated by adaptation and/or acclimation of the host, symbiont, or holobiont (host + symbiont) to increased temperatures. We examined the role of the symbiont in promoting thermal tolerance of the holobiont, using Antillogorgia bipinnata (octocoral host) and Breviolum antillogorgium (symbiont) as a model system. We identified five distinct genotypes of B. antillogorgium from symbiont populations isolated from Antillogorgia colonies in the Florida Keys. Three symbiont genotypes were cultured and maintained at 26 °C (ambient historical temperature), and two were cultured and maintained at 30 °C (elevated historical temperature) for 2 yrs. We analyzed the growth rate and carrying capacity of each symbiont genotype at both ambient and elevated temperatures in culture (in vitro). All genotypes grew well at both temperatures, indicating that thermal tolerance exists among these B. antillogorgium cultures. However, a history of long-term growth at 30 °C did not yield better performance for B. antillogorgium at 30 °C (as compared to 26 °C), suggesting that prior culturing at the elevated temperature did not result in increased thermal tolerance. We then inoculated juvenile A. bipinnata polyps with each of the five symbiont genotypes and reared these polyps at both ambient and elevated temperatures (in hospite experiment). All genotypes established symbioses with polyps in both temperature treatments. Survivorship of polyps at 30 °C was significantly lower than survivorship at 26 °C, but all treatments had surviving polyps at 56 d post-infection. Our results suggest broad thermal tolerance in B. antillogorgium, which may play a part in the increased resilience of Caribbean octocorals during heat stress events.

  相似文献   

9.
Abstract

Six varieties of lentil (Lens culinaris Medik.) – Asha, Subrata, IPL 406, IPL 81, Lv and Sehore – were exposed to temperatures ranging from 30–50°C which resulted in retarded germination and seedling growth at higher temperatures. Tolerance index and membrane stability tests revealed Sehore and Lv to be susceptible to elevated temperatures while IPL 406, IPL 81, Asha and Subrata were tolerant. Catalase, ascorbate peroxidase and superoxide dismutase showed an initial increase before declining at 50°C, while peroxidase and glutathione reductase activities declined at all temperatures. Lipid peroxidation significantly increased in all varieties. In the tolerant varieties, there was an initial decrease in accumulation of H2O2 followed by an increase from 40°C onwards; however, in the susceptible varieties, accumulation was enhanced at all high temperatures. Ascorbate and glutathione also showed initial increase followed by a decline. Total antioxidant activity was at a maximum at 35–40°C in the tolerant varieties and at 30°C in the susceptible ones. Oxidative stress induced by high temperature was ameliorated by treatment with salicylic acid, abscisic acid or CaCl2, of which salicylic acid was the most effective.  相似文献   

10.
Isolates ofFusarium poae, F. sporotrichioides, F. sporotrichioides var.chlamydosporum andF. sporotrichioides var.tricinctum made their best growth on PDA substrates at 24 °C, but good growth was also made at 18 °C and 30 °C. At 35 °C growth made by theF. sporotrichioides var.chlamydosporum was quite good, and superior to that of the other fungi. Moderate growth was made by all fungi at 12 °C and byF. sporotrichioides var.tricinctum also at 6 °C, while growth of the other fungi at that temperature was slight. At low temperatures toxic isolates of all butF. sporotrichioides grew better than non-toxic isolates, and growth of all isolates usually was better in light than in darkness up to temperatures of 18 °C. F. poae andF. sporotrichioides produced highest toxicity on rabbit skins when grown at 5–8 °C,F. sporotrichioides var.tricinctum at 15–20 °C. Darkness always favoured toxin development at all temperatures. In a comparison of 3 liquid substrates, overall toxin production was stronger on a starch substrate than on Czapek's or carbohydrate-peptone substrates. Among grain substrates, barley gave highest overall toxicity, which was again favoured by darkness.F. poae isolates were most toxic when derived from soil,F. sporotrichioides isolates when derived from barley. Further tests with 8 liquid substrates confirmed thatF. poae andF. sporotrichioides produce stronger toxicity at 8 °C than at 25 °C, and substrates favoured toxin production at pH 5.6 more than at pH 3.8 or 7.2. At pH 5.6 the isolates induced marked changes in the pH level of the substrate on which they grew. No relation was found to exist between the vigour of growth made by any of these fungi under various environmental conditions and the severity of the toxiç reaction their extracts produced on rabbit skins.  相似文献   

11.
Archaeal microorganisms that grow optimally at Na+ concentrations of 1.7 M, or the equivalent of 10% (w/v) NaCl, and greater are considered to be extreme halophiles. This review encompasses extremely halophilic archaea and their growth characteristics with respect to the correlation between the extent of alkaline pH and elevated temperature optima and the extent of salt tolerance. The focus is on poly-extremophiles, i.e., taxa growing optimally at a Na+ concentration at or above 1.7 M (approximately 10% w/v NaCl); alkaline pH, at or above 8.5; and elevated temperature optima, at or above 50°C. So far, only a very few extreme halophiles that are able to grow optimally under alkaline conditions as well as at elevated temperatures have been isolated. The distribution of extremely halophilic archaea growing optimally at 3.4 M Na+ (approximately 20% w/v NaCl) is bifurcated with respect to pH optima, either they are neutrophilic, with a pHopt of approximately 7, or strongly alkaliphilic, with pHopt at or above 8.5. Amongst these extreme halophiles which have elevated pH optima, only four taxa have an optimum temperature above 50°C: Haloarcula quadrata (52°C), Haloferax elongans (53°C), Haloferax mediterranei (51°C) and Natronolimnobius ‘aegyptiacus’ (55°C).  相似文献   

12.
Yu Fukasawa 《Mycoscience》2018,59(3):259-262
Hyphal growth rates were tested on malt extract agar plates at eight different temperatures (5–40?°C) using 36 isolates of 17 basidiomycete species obtained from Pinus densiflora deadwood in Japan. All isolates of four brown rot species showed optimum growth at 30?°C, whereas the optimum growth temperature of white rot species varied from 20?°C to 30?°C. Analysis using a dataset from four cooler sites showed that brown rot fungi grew more rapidly than white rot fungi at higher temperatures (25?°C, 30?°C, and 35?°C). These results suggest that the hyphal growth of brown rot fungi might be physiologically adapted to higher temperatures than those of white rot fungi among the fungal species inhabiting deadwood of P. densiflora in Japan.  相似文献   

13.
Entomopathogenic fungi, such as Metarhizium anisopliae (Metch.) Sorokin, are important agents for the biological control of insect pests. However, these fungi are not compatible with high temperatures. In this study, mutagenesis using ion beams or gamma rays was used to generate five potentially thermotolerant mutants from two wild-type isolates of M. anisopliae (two using ion beams and three using gamma rays). The mutant isolates had a higher upper thermal limit for vegetative growth compared to the wild types (by 2–3°C) and enhanced tolerance to wet–heat stress of 45°C for conidial germination. At 25°C and 30°C, most mutants were as virulent to maize weevil adults as the wild type, however, one mutant produced using ion beams almost lost virulence entirely. These results indicate that ion beams and gamma rays are useful tools for improving biological characteristics, such as thermotolerance, in entomopathogenic fungi, but that mutants must be carefully evaluated for unpredictable negative side effects.  相似文献   

14.
Temperature tolerances and relative growth rates were determined for different isolates of the tropical to warm temperate seaweed species Cladophoropsis membranacea (C. Agardh) Boergesen (Siphonodadales, Chlorophyta) and some related taxa. Most isolates of C membranacea survived undamaged at 18° C for at least 8 weeks. Lower temperatures (5°–15°C) were tolerated for shorter periods of time but caused damage to cells. All isolates survived temperatures up to 34° C, whereas isolates from the eastern Mediterranean and Red Sea survived higher temperatures up to 36°C. Growth occurred between 18° and 32° C, but an isolate from the Red Sea had an extended growth range, reaching its maximum at 35°C. Struvea anastomosans (Harvey) Piccone & Grunow, Cladophoropsis sundanensis Reinbold, and an isolate of C. membranacea from Hawaii were slightly less cold- tolerant, with damage occurring at 18°C. Upper survival temperatures were between 32° and 36° C in these taxa. Temperature response data were mapped onto a phylogenetic tree. Tolerance for low temperatures appears to be a derived character state that supports the hypothesis that C. membranacea originated from a strictly tropical ancestor. Isolates from the Canary Islands, which is near the northern limit of distribution, are ill adapted to local temperature regimes. Isolates from the eastern Mediterranean and Red Sea show some adaptation to local temperature stress. They are isolated from those in the eastern Atlantic by a thermal barrier at the entrance of the Mediterranean.  相似文献   

15.
Bioinvasion events causing serious environmental damage have been a concern with the mariculture of Kappaphycus alvarezii (Doty) Doty ex P.C. Silva, suggesting the importance of studying the biological aspects of drifting specimens of K. alvarezii for monitoring programs. The present study aims to evaluate the tolerance and growth of drifting color variants of K. alvarezii under different temperatures and salinities to determine their physiological capacity for growing outside cultivation rafts. Drifting color variants were collected in Paraíba State, Brazil, in November 2011(dry month) and August 2012 (rainy month), and cultivated in the laboratory under different temperatures (20, 24, 28, and 32 °C) and salinities (15, 25, 35, 45, and 55 psu). Growth rates as well as pigment and protein contents were determined. Results showed that drifting specimens collected in the dry month showed higher tolerance to variation in temperature (20 to 28 °C) and salinity (25 to 35 psu) than drifting specimens collected in the rainy month. Higher growth rates occurred in samples cultured at 20 and 24 °C (2.8–3 % day?1) and 25 to 35 psu (3.4–3.5 % day?1), suggesting temperature and salinity optima. Higher phycobiliprotein levels were observed in the red and brown variants under hypersaline conditions (45 and 55 psu). Higher chlorophyll a contents were associated with samples cultivated at 20–24 °C and 24–35 psu. Based on the results of the present study, drifting specimens collected in dry month are more tolerant to temperature and salinity variations, suggesting that the drifting K. alvarezii should be monitored especially during this period to prevent its establishment outside the cultivation rafts and dispersion along the northeastern coast of Brazil.  相似文献   

16.
Eight obligately halophilic, euryhaline cyanobacteria from intertidal soil were isolated in artificial seawater nutrients III (ASN‐III) medium. Antimicrobial activity, 16S rRNA gene sequences, phenotypic characters as well as growth and antibiosis in response to variable salinity, temperature, phosphate concentration, and pH were studied. Minimum inhibitory concentrations (MIC) of the extracts against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and multiple drug‐resistant clinical isolates ranged between 0.25 and 0.5 mg · mL−1. Cytotoxicity tests showed 73%–84% human colon adenocarcinoma (HT‐29/C1) cell survival at MIC values, indicating that the extracts were nontoxic. Morphologically, six cyanobacteria were assigned to the Lyngbya‐Phormidium‐Plectonema (LPP) group B, and one each was assigned to Oscillatoria and Synechocystis genera. Glycerol, mannitol, and starch supported better photoheterotrophic growth than simpler mono‐ and disaccharides. No heterocyst formation was observed when grown under nitrogen‐starved conditions. All isolates survived 7‰ salinity, grew at minimum 32‰ salinity, and showed sustained growth throughout 32‰–82‰ salinity but matured poorly in freshwater medium supplemented with 30.0 g · L−1 NaCl. Antimicrobial production occurred only at 32‰ salinity. While four of the eight isolates demonstrated sustained growth at 37°C, maximum antimicrobial activity was obtained at 25°C. All strains showed maximum growth and antimicrobial elaboration at 0.04 g · L−1 phosphate. All isolates thrived at pH 9.5; six grew at pH 4.5, though antimicrobial production occurred only at pH 7.5. Molecular phylogenetic analysis based on 16S rRNA gene sequences of the filamentous isolates validated the previous taxonomic affiliations established on morphological characteristics. This is the first study of antimicrobial‐producing halophilic cyanobacteria from the mangroves.  相似文献   

17.
We studied the effects of different combinations of temperature (5, 10, 14, 17, 20, and 22°C) and salinity (from 32 to 8‰) on the development of the starfish Asterias amurensis Lutken from Vostok Bay, Sea of Japan. Embryonic development is the most vulnerable stage; it passes successfully at 10–17°C and the salinity range of 32 to 26‰. Blastulae are the most tolerant of changing environmental factors. They survive and develop at the temperatures of 5–17°C and in the salinity range of 32–18‰. Gastrulae and bipinnariae survive under higher temperature values and salinity from 32 to 20‰. The tolerance for decreased salinity during the process of fertilization and in the latest stage of development, the brachiolaria with the developing juvenile starfish, was confined to the salinity range of 32–22‰, which agrees with the tolerance of adult starfish Asterias amurensis. Thus, for normal development of the Amur starfish in the early stages, some particular conditions of temperature and salinity are required. This is, probably, due to adaptive capabilities of each developmental stage and the peculiarities of the ecological conditions at particular depths.  相似文献   

18.
Physiological changes that increase plant performance during exposure to high temperatures may play an inverse role during exposure to low temperatures. The objective of this study was to test variations in photosystem II response to heat and cold stress in the leaves of a bromeliad with crassulacean acid metabolism submitted to high or low temperatures. Leaves were maintained under constant temperatures of 10 and 35°C and used to examine possible relationships among physiological responses to high and low temperatures and organic acid accumulation. We also tested if distinct parts of bromeliad leaves show differences in photosynthetic thermotolerance. The samples from leaves maintained at 35°C showed greater heat tolerance values, while those from leaves maintained at 10°C showed lower cold tolerance values. Our results identified a strong negative relationship between the organic acid accumulation and thermal tolerance of bromeliad leaves that largely explained the differences in thermal tolerance among groups. One of these differences occurred among regions of a single leaf, with the base showing critical heat values of up to 8°C higher than the top region, suggesting a possible partitioning of leaf response among its regions. Differences in thermal tolerance were also observed between sampling times, with higher values observed in the morning.  相似文献   

19.
The relationship between distribution boundaries and temperature responses of some North AtlanticCladophora species (Chlorophyta) was experimentally examined under various regimes of temperature, light and daylength. Experimentally determined critical temperature intervals, in which survival, growth or reproduction was limited, were compared with annual temperature regimes (monthly means and extremes) at sites inside and outside distribution boundaries. The species tested belonged to two phytogeographic groups: (1) the tropical West Atlantic group (C. submarina: isolate from Curaçao) and (2) the amphiatlantic tropical to warm temperate group (C. prolifera: isolate from Corsica;C. coelothrix: isolates from Brittany and Curaçao; andC. laetevirens: isolates from deep and shallow water in Corsica and from Brittany). In accordance with distribution from tropical to warm temperate regions, each of the species grew well between 20–30°C and reproduction and growth were limited at and below 15°C. The upper survival limit in long days was <35°C in all species but high or maximum growth rates occurred at 30°C.C. prolifera, restricted to the tropical margins, had the most limited survival at 35°C. Experimental evidence suggests thatC. submarina is restricted to the Caribbean and excluded from the more northerly American mainland and Gulf of Mexico coasts by sporadic low winter temperatures in the nearshore waters, when cold northerly weather penetrates far south every few years. Experimental evidence suggests thatC. prolifera, C. coelothrix andC. laetevirens are restricted to their northern European boundaries by summer temperatures too low for sufficient growth and/or reproduction. Their progressively more northerly located boundaries were accounted for by differences in growth rates over the critical 10–15°C interval.C. prolifera andC. coelothrix are excluded or restricted in distribution on North Sea coasts by lethal winter temperatures, again differences in cold tolerance accounting for differences in their distribution patterns. On the American coast, species were probably restricted by lethal winter temperatures in the nearshore and, in some cases, by the absence of suitable hard substrates in the more equable offshore waters. Isolates from two points along the European coast (Brittany, Corsica) ofC. laetevirens showed no marked differences in their temperature tolerance but the Caribbean and European isolates ofC. coelothrix differed markedly in their tolerance to low temperatures, the lethal limit of the Caribbean isolate lying more than 5°C higher (at ca 5°C).  相似文献   

20.
Some fish species, such as killifish, that normally inhabit temperate water environments are also found in extreme thermal environments such as thermal springs. The extent of the adaptations involved is not known. In the present laboratory study, we exposed killifish (Aphanius dispar) acclimated to a normal thermal environment to elevated temperatures (37–40 °C) in which related killifish species live permanently. Our objective was to determine whether there is evidence that killifish have heat-shock characteristics that make permanent adaptation likely. The fish was exposed to this temperature for a period of 44 days and then compared with control fish kept at their normal temperature (24 °C) with respect to growth, survival and histopathology of gill and heart tissues. At the end of the experimental time, the percentage of body weight gain and specific growth rate were significantly lower in fish kept in thermal stress compared with the control group. Feed conversion ratio (FCR) was also significantly affected by water temperature, so that during thermal stress the values of FCR were negative. Fish condition (Condition factor: CF) did not differ significantly between both groups at the end of the experiment. On days 11 and 33, however, CF was significantly lower in the thermal stress group. The gill showed blood congestion in primary lamellae and shortened secondary lamellae in fish kept at 37–40 °C. No specific alterations were found in the cardiac tissue of fish kept in thermal stress conditions. Under thermal stress, 40% of fish survived until the end of the experiment. A preliminary conclusion drawn from this work is that A. dispar, which lives at normal temperatures, shows evidence of adaptability to elevated temperatures that could be a factor in the ability of killifish to adapt permanently over time to thermal environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号