首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
5.
6.
The genome of murine cytomegalovirus, extracted from extracellular virions, is a linear double-stranded DNA molecule ca. 240 kilobase pairs long. In our initial cloning of subgenomic fragments of the murine cytomegalovirus genome, we obtained a HindIII clone which contained fused HindIII-terminal fragments. By hybridizing this cloned DNA fragment to infected-cell DNA, we identified an intracellular restriction fragment which was the length of the sum of the two authentic termini. This fusion fragment was not present in virion DNA but could be detected as early as 2 h postinfection and reached its highest level shortly after the onset of DNA replication at 16 h postinfection. The prereplicative increase of fused ends was not inhibited by a level of phosphonoacetic acid which effectively shut off viral DNA synthesis, nor was the early conversion from free to fused ends prevented by inhibitors of protein or RNA synthesis. The results are consistent with the fused state of viral DNA being a replicative intermediate and precursor to DNA synthesis.  相似文献   

7.
8.
Evidence that the Human Foamy Virus Genome Is DNA   总被引:9,自引:6,他引:3       下载免费PDF全文
  相似文献   

9.
Oh J  Fraser NW 《Journal of virology》2008,82(7):3530-3537
Previous work has determined that there are nucleosomes on the herpes simplex virus (HSV) genome during a lytic infection but that they are not arranged in an equally spaced array like in cellular DNA. However, like in cellular DNA, the promoter regions of several viral genes have been shown to be associated with nucleosomes containing modified histone proteins that are generally found associated with actively transcribed genes. Furthermore, it has been found that the association of modified histones with the HSV genome can be detected at the earliest times postinfection (1 h postinfection) and increases up to 3 h postinfection. However from 3 h to 6 h postinfection (the late phase of the replication cycle), the association decreases. In this study we have examined histone association with promoter regions of all kinetic classes of genes. This was done over the time course of an infection in Sy5y cells using sucrose gradient sedimentation, bromodeoxyuridine labeling, chromatin immunoprecipitation assays, Western blot analysis, trypsin and DNase digestion, and quantitative real-time PCR. Because no histones were detected inside HSV type 1 capsids, the viral genome probably starts to associate with histones after being transported from infecting virions into the host nucleus. Promoter regions of all gene classes (immediate early, early, and late) bind with histone proteins at the start of viral gene expression. However, after viral DNA replication initiates, histones appear not to associate with newly synthesized viral genomes.  相似文献   

10.
11.
The synthesis of viral and host DNA in phage-infected Staphylococcus aureus was examined. Three intracellular forms of phage 52HJD DNA were demonstrated: covalently closed circular, open circular, and linear DNA species. It was noted that infection of S. aureus-propagating strains 81 and 52 with phage 52HJD inhibited the replication of the bacterial chromosome and a stringently controlled penicillinase plasmid. A small tetracycline plasmid, normally under relaxed replication control, continued to replicate in the postinfection period. No breakdown of the host chromosome into small-molecular-weight fragments or utilization of bacterial DNA material for the synthesis of viral DNA was observed.  相似文献   

12.
In cytomegalovirus-infected cells, the rate of protein synthesis was detected as two peaks. One occurred during the early phase of infection, 0 to 36 h postinfection, and the other occurred during the late phase, after the initiation of viral DNA synthesis. Double-isotopic-label difference analysis demonstrated that host and viral proteins were synthesized simultaneously during both phases. In the early phase, approximately 70 to 90% of the total proteins synthesized were host proteins, whereas approximately 10 to 30% were viral, even at a multiplicity of infection of 20 PFU/cell. Virus-related proteins or glycoproteins were referred to as infected-cell specific (ICS). Two ICS glycoproteins (gp145 and 100) were clearly detectable and were synthesized preferentially in the early phase of infection. Their synthesis was concomitant with stimulation of the protein synthesis rate. In the late phase of infection, approximately 50 to 60% of the total protein synthesis was viral and approximately 40 to 50% was host. The ICS proteins and glycoproteins detected during the late phase of infection were viral structural proteins. Infectious virus was not detectable until 48 to 72 h postinfection. An inhibitor of viral DNA synthesis, phosphonoacetic acid, prevented the appearance of the late-phase ICS proteins and glycoproteins, but there was little or no effect on early ICS glycoprotein synthesis. Radiolabeled ICS proteins and glycoproteins were identified by their relative rates of synthesis, by their different electrophoretic mobilities compared with those of host proteins and host glycoproteins, and by their similar electrophoretic mobilities compared to those of proteins and glycoproteins associated with virions and dense bodies of cytomegalovirus. Structural viral antigens in the infected-cell extracts were removed by immunoprecipitation, using F(ab')(2) fragments of cytomegalovirus-specific antibodies, and identified as described above. The last two criteria were used to identify viral structural ICS proteins and glycoproteins. Although approximately 35 structural proteins were found to be associated with purified virions and dense bodies, the continued synthesis of host cell proteins complicated their identification in infected cells. Nevertheless, seven of the nine structural glycoproteins were identified as ICS glycoproteins.  相似文献   

13.
14.
15.
Adenovirus protein VII is the major component of the viral nucleoprotein core. It is a highly basic nonspecific DNA-binding protein that condenses viral DNA inside the capsid. We have investigated the fate and function of protein VII during infection. "Input" protein VII persisted in the nucleus throughout early phase and the beginning of DNA replication. Chromatin immunoprecipitation revealed that input protein VII remained associated with viral DNA during this period. Two cellular proteins, SET and pp32, also associated with viral DNA during early phase. They are components of two multiprotein complexes, the SET and INHAT complexes, implicated in chromatin-related activities. Protein VII associated with SET and pp32 in vitro and distinct domains of protein VII were responsible for binding to the two proteins. Interestingly, protein VII was found in novel nuclear dot structures as visualized by immunofluorescence. The dots likely represent individual infectious genomes in association with protein VII. They appeared within 30 min after infection and localized in the nucleus with a peak of intensity between 4 and 10 h postinfection. After this, their intensity decreased and they disappeared between 16 and 24 h postinfection. Interestingly, disappearance of the dots required ongoing RNA synthesis but not DNA synthesis. Taken together these data indicate that protein VII has an ongoing role during early phase and the beginning of DNA replication.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号