首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Two direct DNA transfer methods, biolistic transformation and a protoplast transformation approach using the INRA-clone 717 1B4 (Populus tremula?×?P. alba), are applied to poplars and compared. Both the in vitro culture and the transformation parameters were optimized to receive a maximum quantity of transformed cells to achieve a stable transformation. For the first time, the stable integration of gfp and dsred in the poplar genome and their expression as visual reporter genes in regenerated plantlets can be shown. For biolistic transformation, stem segments cut lengthwise and incubated for 10 days on a callus induction medium revealed the highest number of transient Gfp- and dsRed signals. After optimization of the in vitro culture parameter, Gfp and dsRed-expressing transgenic poplars were regenerated, proven by PCR and Southern blot analysis. For protoplast transformation, the focus was initially on the development of a highly efficient protoplast isolation and plant regeneration system. Using an enzyme solution consisting of 1.0% cellulase R10 and 0.24% macerozyme, 1?×?107 protoplasts were obtained from 1 g fresh weight leaves. Following incubation of the protoplasts in 600 mOsm culture medium, a high number of microcalli were obtained, from which plantlets were regenerated. The parameters for isolation and regeneration were then complemented by an efficient protoplast transformation protocol with 40% PEG1500. The results of this study confirm that both the biolistic and the protoplast transformation methods can be considered suitable for transferring cisgenes directly into poplar.  相似文献   

2.
The macrofungus Cordyceps militaris contains many kinds of bioactive ingredients that are regulated by functional genes, but the functions of many genes in C. militaris are still unknown. In this study, to improve the frequency of homologous integration, a genetic transformation system based on a split-marker approach was developed for the first time in C. militaris to knock out a gene encoding a terpenoid synthase (Tns). The linear and split-marker deletion cassettes were constructed and introduced into C. militaris protoplasts by PEG-mediated transformation. The transformation of split-marker fragments resulted in a higher efficiency of targeted gene disruption than the transformation of linear deletion cassettes did. The color phenotype of the Tns gene deletion mutants was different from that of wild-type C. militaris. Moreover, a PEG-mediated protoplast transformation system was established, and stable genetic transformants were obtained. This method of targeted gene deletion represents an important tool for investigating the role of C. militaris genes.  相似文献   

3.
4.
The production of hydrolytic enzymes by the mutant Trichoderma reesei Rut-C30 when cultivated in the presence of various carbon sources: glucose, wheat bran and autoclaved mycelium of Penicillium occitanis CT1 has been studied. Glucose was shown to repress all studied hydrolases, 3% of either wheat bran or autoclaved cell walls led to high titers of enzymes, and were favorably comparable to commercial lysing enzymes (LE). The lysing enzyme cocktail obtained when T. reesei Rut-C30 was cultivated in the presence of autoclaved P. occitanis CT1 mycelia appeared to be a most effective for P. occitanis CT1 protoplast formation. Maximal yield of protoplasts reached 13 × 106 protoplasts/mL while commercial LE preparation released only 4 × 106 protoplasts/mL. The protoplast yield was affected also by the osmotic stabilizer, with KCl giving the best results. Our results suggest that to achieve the best protoplastization rate, the enzyme preparation should be obtained following induction by the autoclaved mycelium of the autologous fungus.  相似文献   

5.
Genetic engineering approaches offer an alternative method to the conventional breeding of Citrus sp. ‘W. Murcott’ mandarin (a hybrid of ‘Murcott’ and an unknown pollen parent) is one of the most commercially important cultivars grown in many regions around the world. Transformation of ‘W. Murcott’ mandarin was achieved by direct DNA uptake using a protoplast transformation system. DNA construct (pAO3), encoding Green Fluorescent Protein (GFP) and the cDNA of Xa21, a Xanthomonas resistance gene from rice, was used to transform protoplasts of ‘W. Murcott’ mandarin. Following citrus protoplast culture and regeneration, transformed micro calli were microscopically designated via GFP expression, physically isolated from non-transformed tissue, and cultured on somatic embryogenesis induction medium. More than 150 transgenic embryos were recovered and from them, ten transgenic lines were regenerated and cultured on rooting medium for shoot elongation. Transgenic shoots were micrografted and established in the greenhouse with 3–5 replicates per line. The insertion of Xa21 and GFP was confirmed by PCR and southern blot analysis. GFP expression was verified by fluorescence microscopy and western blot analysis revealed expression of Xa21 although it was variable among transgenic lines, as shown by RT-qPCR. Transgenic plants challenged with the citrus canker pathogen by syringe inoculation showed a reduction in lesion number and bacterial populations within lesions compared to non-transgenic control plants. Transgenic ‘W. Murcott’ mandarin lines with improved canker resistance via protoplast transformation from embryogenic callus with the Xa21 gene from rice are being evaluated under field conditions to validate the level of resistance.  相似文献   

6.
7.

Key message

The development of transgenic citrus plants by the biolistic method.

Abstract

A protocol for the biolistic transformation of epicotyl explants and transgenic shoot regeneration of immature citrange rootstock, cv. Carrizo (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) and plant regeneration is described. Immature epicotyl explants were bombarded with a vector containing the nptII selectable marker and the gfp reporter. The number of independent, stably transformed tissues/total number of explants, recorded by monitoring GFP fluorescence 4 weeks after bombardment was substantial at 18.4 %, and some fluorescing tissues regenerated into shoots. Fluorescing GFP, putative transgenic shoots were micro-grafted onto immature Carrizo rootstocks in vitro, confirmed by PCR amplification of nptII and gfp coding regions, followed by secondary grafting onto older rootstocks grown in soil. Southern blot analysis indicated that all the fluorescing shoots were transgenic. Multiple and single copies of nptII integrations were confirmed in five regenerated transgenic lines. There is potential to develop a higher throughput biolistics transformation system by optimizing the tissue culture medium to improve shoot regeneration and narrowing the window for plant sampling. This system will be appropriate for transformation with minimal cassettes.
  相似文献   

8.
Botryosphaeria dothidea is a severe causal agent of die-back and cankers of many woody plants and causes great losses in many regions. The pathogenic mechanism of this pathogen has not been well explored due to lack of mutants and genetic information. In this study, we developed an Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for B. dothidea protoplasts using vector pBHt2 containing the hph gene as a selection marker under the control of trp C promoter. Using this protocol we successfully generated the B. dothidea transformants with efficiency about 23 transformants per 105 protoplasts. This is the first report of genetic transformation of B. dothidea via ATMT and this protocol provides an effective tool for B. dothidea genome manipulation, gene identification and functional analysis.  相似文献   

9.
With the release of the Phalaenopsis equestris (Schauer) Rchb.f. genome database, more in-depth studies of Phalaenopsis spp. will be carried out in the future. Transient gene expression in protoplasts is a useful system for gene function analysis, which is especially true for Phalaenopsis, whose stable genetic transformation is difficult and extremely time-consuming. In this study, juvenile leaves from aseptic Phalaenopsis seedlings were used as the starting material for protoplast isolation. After protocol refinement, the highest yield of viable protoplasts [5.94 × 106 protoplasts g?1 fresh weight (FW)] was achieved with 1.0% (w/v) Cellulase Onozuka R-10, 0.7% (w/v) Macerozyme R-10, and 0.4 M D-mannitol, with an enzymolysis duration of 6 h. As indicated by transient expression of green fluorescent protein (GFP), a transformation efficiency of 41.7% was achieved with 20% (w/v) polyethylene glycol (PEG-4000), 20 μg plasmid DNA, 2 × 105 mL?1 protoplasts, and a transfection duration of 30 min. The protocol established here will be valuable for functional studies of Phalaenopsis genes.  相似文献   

10.
The induction, regeneration, and biolistic sensitivities of different genotypes of common wheat (Triticum aestivum L.) have been determined in order to develop an efficient system for transformation of Russian cultivars of spring wheat. Short-term (two days) cold treatment (4°C) has been demonstrated to distinctly increase the frequency of morphogenetic callus induction. The optimal phytohormonal composition of the nutrient medium ensuring an in vitro regeneration rate of the common wheat cultivar Lada as high as 90% has been determined. The optimal temporal parameters of genetic transformation of wheat plants (10–14 days of culturing after initiation of a morphogenetic callus) have been determined for two transformation methods: biolistic without precipitated DNA and transformation with the plasmid psGFP-BAR. Analysis of the transient expression of the gfp gene has confirmed that 14 days of culturing is the optimal duration.  相似文献   

11.
Somatic hybridisation of Hydrangea is a promising tool to obtain new basic material for breeding. Viable mesophyll protoplasts were isolated from 21 cultivars and accessions of H. macrophylla, H. paniculata, H. arborescens, H. quercifolia and H. febrifuga. Induction of cell divisions was observed after electromanipulation and fusion by polyethylene glycol. Multi-cellular structures developed in liquid media. Plated microcalli grew on different solid regeneration media. Several phytohormones, their concentration and combination influenced the development of callus and roots. The regular appearance of endophytes challenged successful plant regeneration. As a result of endophytes, the development of microcolonies stopped and they died in liquid protoplast media. Plated microcalli or growing calli turned brown on regeneration medium. Antibiotic Timentin® inhibited expansion of endophytes for a short time. The addition of ascorbic and citric acid to the regeneration media had inhibiting effect on endophyte growth. Calli showed more vitality and grew faster. The supplement of the regeneration media with karrikinolide, a recently discovered new plant growth regulator, brought contradictory results. After addition of karrikinolide microcolonies looked healthier by their shining green colour in liquid media followed by a severe browning of callus soon afterwards. In the further course, karrikinolide promoted the development of endophytes. Shoot induction and plant regeneration succeeded only once from callus that was a result from H. macrophylla ‘Schneeball’ and H. macrophylla ‘Nachtigall’ fusion.  相似文献   

12.
Aspergillus flavus often invade many important corps and produce harmful aflatoxins both in preharvest and during storage stages. The regulation mechanism of aflatoxin biosynthesis in this fungus has not been well explored mainly due to the lack of an efficient transformation method for constructing a genome-wide gene mutant library. This challenge was resolved in this study, where a reliable and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for A. flavus NRRL 3357 was established. The results showed that removal of multinucleate conidia, to collect a homogenous sample of uninucleate conidia for use as the transformation material, is the key step in this procedure. A. tumefaciens strain AGL-1 harboring the ble gene for zeocin resistance under the control of the gpdA promoter from A. nidulans is suitable for genetic transformation of this fungus. We successfully generated A. flavus transformants with an efficiency of ~ 60 positive transformants per 106 conidia using our protocol. A small-scale insertional mutant library (~ 1,000 mutants) was constructed using this method and the resulting several mutants lacked both production of conidia and aflatoxin biosynthesis capacity. Southern blotting analysis demonstrated that the majority of the transformants contained a single T-DNA insert on the genome. To the best of our knowledge, this is the first report of genetic transformation of A. flavus via ATMT and our protocol provides an effective tool for construction of genome-wide gene mutant libraries for functional analysis of important genes in A. flavus.  相似文献   

13.
Cereal grains offer great potential as a storage system for production of highly valuable proteins using biotechnological approaches, but such applications require tight temporal and spatial control of transgene expression. Towards this aim, we have undertaken a detailed analysis of α-kafirin (α-kaf) promoter and α-kaf signal peptide (sp) in transgenic sorghum plants, using green fluorescent protein gene (gfp) as a reporter. Constructs containing either the α-kaf promoter or the constitutive maize ubiquitin-1 (ubi) promoter driving either gfp or sp-gfp translational fusion were introduced into Sorghum bicolor inbred line Tx430 by particle bombardment. We show for the first time that the α-kaf promoter directs endosperm-specific transgene expression, with activity first detected at 10 days post-anthesis (dpa), peaking at 20 dpa, and remaining active through to physiological maturity. Furthermore, we demonstrate for the first time that the α-kafirin sp is sufficient to direct foreign protein to protein bodies in the endosperm. The evidence is also provided for possible mis-targeting by α-kaf sp in vegetative tissues of transgenic lines with ubi-sp-gfp, resulting in loss of reporter gene translational activity that no GFP signal was observed. These results demonstrate that α-kaf promoter and α-kaf sp are well suited for seed bioengineering to produce recombinant proteins in sorghum endosperm or deposit foreign proteins into sorghum protein bodies.  相似文献   

14.
15.
Optimization of different factors for efficient protoplast release fromMetarhizium anisopliae was investigated. Factors like culture media, age of the mycelium, incubation time, different enzymatic combinations and osmotic stabilizer were studied. Mycelium harvested at 40th h in Sabouraud Dextrose broth showed the best protoplast yield over the other media and age of mycelium tested. An incubation time of 3 h and Lysing enzyme at a concentration of 10 mg/ml was the best among the different enzymatic concentrations and combinations tested and yielded a protoplast release of 7.3×108 protoplasts/ml. The most suitable osmotic stabilizer for efficient protoplast release was 0.7M KCl.  相似文献   

16.
Avocado globular somatic embryos were transformed with three binary vectors, pK7FNF2, pK7RNR2 and pK7S*NF2, harboring the marker genes gfp, DsRed and a gfp-gus fusion gene, respectively. GFP and DsRed fluorescence was detected in embryogenic lines growing in selection medium 2 months after Agrobacterium inoculation. The fluorescence signal was maintained thereafter in transgenic calli, as well as in mature somatic embryos. Red fluorescence in pK7RNR2 transgenic lines was higher and more easily observable than GFP fluorescence. Furthermore, calli transformed with pK7S*NF2, harboring gfp-gus, showed higher level of fluorescence than those transformed with pK7FNF2, containing two gfp. To improve plant recovery, maturated transgenic embryos that failed to germinate or showed an underdeveloped shoot were cultured for 4 weeks in a medium with 1 mg l?1 TDZ and 1 mg l?1 BA after partial removal of cotyledons. A 50% of embryos developed one or several shoots on the cut surface. These embryos were cultured for 4 additional weeks in a medium with 1 mg l?1 BA for shoot elongation and then, shoots were grafted in vitro onto seedling rootstocks. Culture of micrografts in solid MS medium supplemented with 1 mg l?1 BA allowed a 60–80% success rate. Young leaves from transgenic plants showed GFP or DsRed fluorescence located in the nucleus. The results obtained indicate that fluorescent marker genes, especially DsRed, could be useful for early selection of transgenic material and optimization of the transformation parameters in avocado. Furthermore, the protocol established allowed the successful recovery of transgenic plants, one of the main limiting steps in avocado transformation.  相似文献   

17.
Escherichia coli does not have the methanol sensing apparatus, was engineered to sense methanol by employing chimeric two-component system (TCS) strategy. A chimeric FlhS/EnvZ (FlhSZ) chimeric histidine kinase (HK) was constructed by fusing the sensing domain of Paracoccus denitrificans FlhS with the catalytic domain of E. coli EnvZ. The constructed chimeric TCS FlhSZ/OmpR could sense methanol by the expression of ompC and gfp gene regulated by ompC promoter. Real-time quantitative PCR analysis and GFP-based fluorescence analysis showed the dynamic response of the chimeric TCS to methanol. The expression of ompC and the gfp fluorescence was maximum at 0.01 and 0.5% of methanol, respectively. These results suggested that E. coli was successfully engineered to sense methanol by the introduction of chimeric HK FlhSZ. This strategy can be employed for the construction of several chimeric TCS based bacterial biosensors for the development of biochemical producing recombinant microorganisms.  相似文献   

18.
19.
In vitro culture and genetic transformation of black gram are difficult due to its recalcitrant nature. Establishment of gene transfer procedure is a prerequisite to develop transgenic plants of black gram in a shorter period. Therefore, genetic transformation was performed to optimize the factors influencing transformation efficiency through Agrobacterium tumefaciens-mediated in planta transformation using EHA 105 strain harbouring reporter gene, bar, and selectable marker, gfp-gus, in sprouted half-seed explants of black gram. Several parameters, such as co-cultivation, acetosyringone concentration, exposure time to sonication, and vacuum infiltration influencing in planta transformation, have been evaluated in this study. The half-seed explants when sonicated for 3 min and vacuum infiltered for 2 min at 100 mm of Hg in the presence of A. tumefaciens (pCAMBIA1304 bar) suspensions and incubated for 3 days co-cultivation in MS medium with 100 µM acetosyringone showed maximum transformation efficiency (46 %). The putative transformants were selected by inoculating co-cultivated seeds in BASTA® (4 mg l?1) containing MS medium followed by BASTA® foliar spray on 15-day-old black gram plants (35 mg l?1) in green house, and the transgene integration was confirmed by biochemical assay (GUS), Polymerase chain reaction, Dot-blot, and Southern hybridisation analyses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号