首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Bogs J  Geider K 《Journal of bacteriology》2000,182(19):5351-5358
Sucrose is an important storage and transport sugar of plants and an energy source for many phytopathogenic bacteria. To analyze regulation and biochemistry of sucrose metabolism of the fire blight pathogen Erwinia amylovora, a chromosomal fragment which enabled Escherichia coli to utilize sucrose as sole carbon source was cloned. By transposon mutagenesis, the scr regulon of E. amylovora was tagged, and its nucleotide sequence was determined. Five open reading frames, with the genes scrK, scrY, scrA, scrB, and scrR, had high homology to genes of the scr regulons from Klebsiella pneumoniae and plasmid pUR400. scrB and scrR of E. amylovora were fused to a histidine tag and to the maltose-binding protein (MalE) of E. coli, respectively. ScrB (53 kDa) catalyzed the hydrolysis of sucrose with a K(m) of 125 mM. Binding of a MalE-ScrR fusion protein to an scrYAB promoter fragment was shown by gel mobility shifts. This complex dissociated in the presence of fructose but not after addition of sucrose. Expression of the scr regulon was studied with an scrYAB promoter-green fluorescent protein gene fusion and measured by flow cytometry and spectrofluorometry. The operon was affected by catabolite repression and induced by sucrose or fructose. The level of gene induction correlated to the sucrose concentration in plant tissue, as shown by flow cytometry. Sucrose mutants created by site-directed mutagenesis did not produce significant fire blight symptoms on apple seedlings, indicating the importance of sucrose metabolism for colonization of host plants by E. amylovora.  相似文献   

4.
5.
A detailed restriction map of a 12.4-kilobase EcoRI fragment of Salmonella typhimurium deoxyribonucleic acid (DNA) containing the entire histidine transport operon and the argT gene is presented. Subclones of specific regions of the transport operon of S. typhimurium were constructed in plasmid vectors. An accurate correlation between the restriction map and the location of genetically defined deletions was obtained by hybridizing restriction digests of chromosomal DNA from strains carrying each deletion with cloned transport operon DNA as a probe. These data were used to position the histidine transport genes on the cloned 12.4-kilobase fragment of DNA.  相似文献   

6.
The scrA gene coding for sucrose EnzymeII of the phosphoenolpyruvate dependent phosphotransferase system previously isolated from Streptococcus mutans was fused in vitro to the promoterless lacZ' gene to monitor the expression of the scrA gene. The scrA::lacZ gene fusion was introduced back into S. mutans GS-5IS3 by two independent transformation procedures involving either linear or plasmid DNA to produce both scrA and scrA+ mutants. These mutants should prove useful for analyzing the regulation of sucrose transport in S. mutans.  相似文献   

7.
Sucrose utilization in Staphylococcus xylosus is dependent on two genes, scrA and scrB; encoding a PTS permease and a sucrose phosphate hydrolase, respectively. The genes are encoded on separate loci and are transcribed from two promoters, P(scrA) and P(scrB), both of which are controlled by the repressor ScrR by binding to the operator sequences O(A) and O(B). In the scrA promoter region, a catabolite-responsive element (cre), operator for the global catabolite control protein CcpA, is also present, but its contribution to scrA regulation has not been determined. Using an integrative promoter probe plasmid, the activities of the promoters P(scrA) and P(scrB) were determined under different growth conditions. Both promoters are induced by sucrose and induction is prevented when glucose is also present. Without a functional CcpA, glucose-mediated prevention of induction is lost, clearly demonstrating that CcpA ensures hierarchical sugar utilization with glucose as preferred substrate. Measurements of promoter activities in the absence of a functional ScrR repressor indicated that CcpA also acts upon the operators O(A) and O(B), albeit not as efficiently as on the genuine cre in P(srcA). Besides determining the choice of the carbon source, CcpA has a second effect on sucrose gene expression. When sucrose is the sole carbon source, sucrose catabolism activates carbon catabolite repression and CcpA prevents full induction of the sucrose utilization genes by partially repressing the scrA promoter. Thus, CcpA-dependent regulation serves as a built-in autoregulatory device to restrict sucrose uptake.  相似文献   

8.
9.
The conjugative plasmid pUR400 determines tetracycline resistance and enables cells of Escherichia coli K-12 to utilize sucrose as the sole carbon source. Three types of mutants affecting sucrose metabolism were derived from pUR400. One type lacked a specific transport system (srcA); another lacked sucrose-6-phosphate hydrolase (scrB); and the third, a regulatory mutant, expressed both of these functions constitutively (scrR). In a strain harboring pUR400, both transport and sucrose-6-phosphate hydrolase were inducible by fructose, sucrose, and raffinose; if a scrB mutant was used, fructose was the only inducer. These data suggested that fructose or a derivative acted as an endogenous inducer. Sucrose transport and sucrose-6-phosphate hydrolase were subject to catabolite repression; these two functions were not expressed in an E. coli host (of pUR400) deficient in the adenosine 3-,5'-phosphate receptor protein. Sucrose uptake (apparent Km = 10 microM) was dependent on the scrA gene product and on the phosphoenolpyruvate-dependent sugar:phosphotransferase system (PTS) of the host. The product of sucrose uptake (via group translocation) was identified as sucrose-6-phosphate, phosphorylated at C6 of the glucose moiety. Intracellular sucrose-6-phosphate hydrolase catalyzed the hydrolysis of sucrose-6-phosphate (Km = 0.17 mM), sucrose (Km = 60 mM), and raffinose (Km = 150 mM). The active enzyme was shown to be a dimer of Mr 110,000.  相似文献   

10.
Using in vitro methods, a 14.2-kb EcoRI fragment of the Salmonella typhimurium chromosome containing the trp operon plus associated flanking sequences from deletion mutant delta trpDCB763 was cloned into the EcoRI site of plasmid pBR322 in a S. typhimurium host. An in vivo cloning vector was constructed from the recombinant plasmid by the in vitro excision of a SalI fragment that contains the entire trp operon. The derived plasmid (pSTP21) carries a hybrid insert made up of the 5.4-kb EcoRI-SalI upstream flanking sequence and the 3.2-kb SalI-EcoRI downstream flanking sequence. Plasmid pSTP21 has been used as a receptor plasmid to clone a variety of mutant and wild-type trp operons by RecA-dependent in vivo recombination between the insert DNA of the plasmid and the homologous trp flanking sequences of transducing DNA fragments transferred into the cell by bacteriophage P22. The host-vector system developed for the in vivo cloning permits the differentiation of plasmid transductants from chromosomal transductants on the primary selective medium. Expression of the cloned trp operons is regulated normally by tryptophan. A substantial amplification of trp enzymes is attainable upon derepression. The recombinant plasmids are stably inherited in RecA+ and RecA- S. typhimurium hosts. However, conditions of high expression of the trp operon lead to a rapid loss of cellular viability and of plasmid stability.  相似文献   

11.
Sucrose-6-phosphate hydrolase from Lactococcus lactis subsp. lactis K1-23 (formerly Streptococcus lactis K1-23) has been purified 600-fold to electrophoretic homogeneity. Purification of the enzyme was achieved by DEAE-Sephacel, phosphocellulose P-11, and gel exclusion (Ultrogel AcA 54) chromatography. The purified enzyme (specific activity 31 units/mg) catalyzed the hydrolysis of both 6-O-phosphoryl-alpha-D-glucopyranosyl-1,2-beta-D-fructofuranoside (sucrose 6-phosphate) and sucrose (Km = 0.1 and 100 mM, respectively). Ultracentrifugal analysis of sucrose-6-phosphate hydrolase indicated an Mr = 52,200. The purified enzyme migrated as a single protein during sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr = 52,000). However, four distinct polypeptides were detected by analytical electrofocusing, and all four species hydrolyzed sucrose and sucrose 6-phosphate. The amino acid composition of sucrose-6-phosphate hydrolase, and the sequence of the first 12 amino acids from the NH2 terminus, have been determined. Hybridization studies with oligonucleotide probes show that the genes for sucrose-6-phosphate hydrolase (scrB), Enzyme IIScr of the phosphoenolypyruvate-dependent sucrose:phosphotransferase system (scrA), and N5-(carboxyethyl)ornithine synthase (ceo) are encoded by the same approximately 20-kilobase EcoRI fragment. This fragment is part of a large transposon Tn5306 that also encodes the nisin precursor gene, spaN, and IS904. In L. lactis ATCC 11454, spaN, IS904, scrA, and scrB (but not ceo) are encoded on a related transposon, Tn5307.  相似文献   

12.
Structure of the sucrose utilization locus in a Lactobacillus plantarum type strain was studied using PCR and Southern hybridization. Restriction map analysis revealed its high similarity to the sequenced sucrose utilization locus of Pediococcus pentosaceus pSRQ1. The L. plantarum locus proved containing oppositely oriented scrA and the scrBRagl operon, but not agaS. The L. plantarum sucrase gene (scrB) was partly sequenced. A higher (98.6%) homology was revealed between scrB than between the 16S rRNA genes of L. plantarum and P. pentosaceus, suggesting horizontal transfer of the sucrose utilization locus between the genera of lactic acid bacteria. Amino acid sequence analysis showed that the ScrB proteins of the two species belong to a subfamily of glycosyl hydrolase family GH32 which includes various beta-fructosidases.  相似文献   

13.
Pseudomonas putida MT53 contains a TOL plasmid, pWW53, that encodes toluene-xylene catabolism. pWW53 is nonconjugative, is about 105 to 110 kilobase pairs (kbp) in size, and differs significantly in its restriction endonuclease digestion pattern and incompatibility group from the archetypal TOL plasmid pWW0. An RP4::pWW53 cointegrate plasmid, pWW53-4, containing about 35 kbp of pWW53 DNA, including the entire catabolic pathway genes, was formed, and a restriction map for KpnI, HindIII, and BamHI was derived. The entire regulated meta pathway genes for the catabolism of m-toluate were cloned into pKT230 from pWW53 on a 17.5-kbp HindIII fragment. The recombinant plasmid supported growth on m-toluate when mobilized into plasmid-free P. putida PaW130. A restriction map of the insert for 10 restriction enzymes was derived, and the locations of xylD, xylL, xylE, xylG, and xylF were determined by subcloning and assaying for their gene products in both Escherichia coli and P. putida hosts. Good induction of the enzymes by m-toluate and m-methylbenzyl alcohol but not by m-xylene was measured in P. putida, but little or no regulation was found in E. coli. The restriction map and the gene order showed strong similarities with published maps of the DNA encoding both the entire meta pathway operon (xylDLEGFJIH) and the regulatory genes xylS and xylR on the archetype TOL plasmid pWW0, suggesting a high degree of conservation in DNA structure for the catabolic operon on the two different plasmids.  相似文献   

14.
The replication region of a 28-kilobase-pair (kbp) cryptic plasmid from Lactococcus lactis subsp. lactis biovar diacetylactis SSD207 was cloned in L. lactis subsp. lactis MG1614 by using the chloramphenicol resistance gene from the streptococcal plasmid pGB301 as a selectable marker. The resulting 8.1-kbp plasmid, designated pVS34, was characterized further with respect to host range, potential cloning sites, and location of replication gene(s). In addition to lactococci, pVS34 transformed Lactobacillus plantarum and, at a very low frequency, Staphylococcus aureus but not Escherichia coli or Bacillus subtilis. The 4.1-kbp ClaI fragment representing lactococcal DNA in pVS34 contained unique restriction sites for HindIII, EcoRI, XhoII, and HpaII, of which the last three could be used for molecular cloning. A region necessary for replication was located within a 2.5-kbp fragment flanked by the EcoRI and ClaI restriction sites. A 3.8-kbp EcoRI fragment derived from a nisin resistance plasmid, pSF01, was cloned into the EcoRI site of pVS34 to obtain a nisin-chloramphenicol double-resistance plasmid, pVS39. From this plasmid, the streptococcal chloramphenicol resistance region was subsequently eliminated. The resulting plasmid, pVS40, contains only lactococcal DNA. Potential uses for this type of a nisin resistance plasmid are discussed.  相似文献   

15.
The replication region of a 28-kilobase-pair (kbp) cryptic plasmid from Lactococcus lactis subsp. lactis biovar diacetylactis SSD207 was cloned in L. lactis subsp. lactis MG1614 by using the chloramphenicol resistance gene from the streptococcal plasmid pGB301 as a selectable marker. The resulting 8.1-kbp plasmid, designated pVS34, was characterized further with respect to host range, potential cloning sites, and location of replication gene(s). In addition to lactococci, pVS34 transformed Lactobacillus plantarum and, at a very low frequency, Staphylococcus aureus but not Escherichia coli or Bacillus subtilis. The 4.1-kbp ClaI fragment representing lactococcal DNA in pVS34 contained unique restriction sites for HindIII, EcoRI, XhoII, and HpaII, of which the last three could be used for molecular cloning. A region necessary for replication was located within a 2.5-kbp fragment flanked by the EcoRI and ClaI restriction sites. A 3.8-kbp EcoRI fragment derived from a nisin resistance plasmid, pSF01, was cloned into the EcoRI site of pVS34 to obtain a nisin-chloramphenicol double-resistance plasmid, pVS39. From this plasmid, the streptococcal chloramphenicol resistance region was subsequently eliminated. The resulting plasmid, pVS40, contains only lactococcal DNA. Potential uses for this type of a nisin resistance plasmid are discussed.  相似文献   

16.
R K Koduri  D M Bedwell  J E Brenchley 《Gene》1980,11(3-4):227-237
The glnA gene, encoding glutamine synthetase in Salmonella typhimurium, has been cloned into the plasmid pBR322. One hybrid plasmid, pJB1, containing an 8.5 kb insert generated by a HindIII digest, was analyzed using eleven different restriction enzymes. Evidence that the region controlling glutamine synthetase expression remained on the insert was obtained by showing that the regulation is normal in cells carrying plasmids with the insert in the original and reversed orientation. Several new plasmids derived from pJB1 following SalI and EcoRI digestions were examined for their ability to complement a glnA202 mutation in order to locate the DNA segment needed for glutamine synthetase expression. The results show that cells containing plasmid pJB8, which has a 21 kb deletion, produce and regulate glutamine synthetase normally, whereas cells with a plasmid (pJB11) similar to pJB8, but lacking a 0.25 kb EcoRI fragment, do not exhibit glutamine synthetase activity. The analysis of proteins produced in minicells containing pJB8 and pJB11 show that they both produce a protein that migrates with the glutamine synthetase subunit. Because pJB11 makes an inactive protein of similar size to the glutamine synthetase subunit, the 0.25 kb deletion may encode only the C-terminus of this protein. Consistent with this finding is the presence of a strong RNA polymerase-binding site on pJB8 to the right of the 0.25 kb EcoRI that could correspond to a promoter near the N-terminus of the glnA gene.  相似文献   

17.
The SalI fragment of chromosomal DNA of Bacillus subtilis carrying the gene for lysine biosynthesis and the regulatory operator region (ribO) from the riboflavin gene was cloned into Escherichia coli cells. This fragment was shown to contain the gene coding for lysine synthesizing enzyme. Localization of this gene in Bac. subtili was determined. New plasmids pLRS33 and pLRB4 were constructed using pBR322; they carry a fragment homologous to pLP102 plasmid containing the operon for riboflavin biosynthesis.  相似文献   

18.
19.
The Eco RI fragment of hepatitis B virus (HBV) DNA isolated from human blood plasma Dane particles were inserted into plasmid pUC8 Eco RI site and transformed into E. coli JM103 host. Two recombinants pTWL1 and pTWL2 were found to carry 3.2 kbp fragment and proved to have HBV genome by Southern hybridization method. The 1.4 kbp Bam HI fragment which carried the hepatitis B viral surface antigen (HBsAg) gene, obtained via Bam HI digestion of Dane particles DNA which was made fully double stranded by endogenous DNA polymerase reaction, was also inserted into plasmid pUC8 Bam HI site. Four recombinant clones, pTWS1, pTWS2, pTWS3, and pTWS4 were found. Only one of the clones pTWS1 carried the HBsAg gene in a correct orientation with respect to the lac promoter sequence. The physical mapping of HBV DNA was performed with several restriction endonucleases. Our results indicated that the HBV DNA insert contains unique XbaI and HpaI cleavage sites and lacks the cleavage sites for the HindIII, SmaI, KpnI, SalI, and SstI endonucleases. The locations of Bam HI, BglII, and HincII endonucleases cleavage sites within the cloned HBV DNA of the pTWL1 plasmid were similar to that HBV DNA of adw and adw2 subtypes.  相似文献   

20.
In Agrobacterium tumefaciens, the stability of Ti plasmids differs depending on the strain. So far, little is known about genes that cause the difference in stability. The repABC operon is responsible for replication and incompatibility of Ti plasmids. We constructed recombinant plasmids carrying the repABC operon and different portions of pTi-SAKURA. Cells having the recombinant plasmids that harbored a 2.6-kbp NheI fragment of pTi-SAKURA were found to be transformed via conjugation 100-fold less frequently with a small incompatible repABC plasmid than cells having the recombinant plasmids lacking the 2.6-kbp NheI fragment. Since the phenomenon occurred only when the resident and incoming plasmids belonged to the same incompatibility group, it was suggested that the 2.6-kbp NheI fragment bears the potential enhancing incompatibility. The fragment contained an operon consisting of two open reading frames, tiorf24 and tiorf25. tiorf24 is an orphan gene, whereas tiorf25 is a homologue of a group of plasmid stability genes. Removal of the 2.6-kbp fragment from the resident pTi-SAKURA increased the resident plasmid ejection ratio by the incoming repABC plasmid, whereas addition of the fragment to pTiC58 decreased the ejection ratio, and the loss ratio during growth at 37 degrees C. These data suggest that tiorf24 and tiorf25 are responsible for the stability of pTi-SAKURA, and reduce, in the host bacterium, the frequency of ejection of the resident plasmid, presumably through an incompatibility mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号