首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clostridium difficile spores play a pivotal role in the transmission of infectious diarrhoea, but in order to cause disease spores must complete germination and return to vegetative cell growth. While the mechanisms of spore germination are well understood in Bacillus, knowledge of C. difficile germination remains limited. Previous studies have shown that bile salts and amino acids play an important role in regulating the germination response of C. difficile spores. Taurocholate, in combination with glycine, can stimulate germination, whereas chenodeoxycholate has been shown to inhibit spore germination in a C. difficile clinical isolate. Our recent studies of C. difficile sporulation characteristics have since pointed to substantial diversity among different clinical isolates. Consequently, in this study we investigated how the germination characteristics of different C. difficile isolates vary in response to bile salts. By analysing 29 isolates, including 16 belonging to the BI/NAP1/027 type, we show that considerable diversity exists in both the rate and extent of C. difficile germination in response to rich medium containing both taurocholate and glycine. Strikingly, we also show that although a potent inhibitor of germination for some isolates, chenodeoxycholate does not inhibit the germination, or outgrowth, of all C. difficile strains. Finally, we provide evidence that components of rich media may induce the germination of C. difficile spores, even in the absence of taurocholate. Taken together, these data suggest that the mechanisms of C. difficile spore germination in response to bile salts are complex and require further study. Furthermore, we stress the importance of studying multiple isolates in the future when analysing the nutrients or chemicals that either stimulate or inhibit C. difficile spore germination.  相似文献   

2.
Clostridium sordellii and Clostridium difficile are closely related anaerobic Gram-positive, spore-forming human pathogens. C. sordellii and C. difficile form spores that are believed to be the infectious form of these bacteria. These spores return to toxin-producing vegetative cells upon binding to small molecule germinants. The endogenous compounds that regulate clostridial spore germination are not fully understood. While C. sordellii spores require three structurally distinct amino acids to germinate, the occurrence of postpregnancy C. sordellii infections suggests that steroidal sex hormones might regulate its capacity to germinate. On the other hand, C. difficile spores require taurocholate (a bile salt) and glycine (an amino acid) to germinate. Bile salts and steroid hormones are biosynthesized from cholesterol, suggesting that the common sterane structure can affect the germination of both C. sordellii and C. difficile spores. Therefore, we tested the effect of sterane compounds on C. sordellii and C. difficile spore germination. Our results show that both steroid hormones and bile salts are able to increase C. sordellii spore germination rates. In contrast, a subset of steroid hormones acted as competitive inhibitors of C. difficile spore germination. Thus, even though C. sordellii and C. difficile are phylogenetically related, the two species' spores respond differently to steroidal compounds.  相似文献   

3.
Germination of Clostridium difficile spores is the first required step in establishing C. difficile-associated disease (CDAD). Taurocholate (a bile salt) and glycine (an amino acid) have been shown to be important germinants of C. difficile spores. In the present study, we tested a series of glycine and taurocholate analogs for the ability to induce or inhibit C. difficile spore germination. Testing of glycine analogs revealed that both the carboxy and amino groups are important epitopes for recognition and that the glycine binding site can accommodate compounds with more widely separated termini. The C. difficile germination machinery also recognizes other hydrophobic amino acids. In general, linear alkyl side chains are better activators of spore germination than their branched analogs. However, L-phenylalanine and L-arginine are also good germinants and are probably recognized by distinct binding sites. Testing of taurocholate analogs revealed that the 12-hydroxyl group of taurocholate is necessary, but not sufficient, to activate spore germination. In contrast, the 6- and 7-hydroxyl groups are required for inhibition of C. difficile spore germination. Similarly, C. difficile spores are able to detect taurocholate analogs with shorter, but not longer, alkyl amino sulfonic acid side chains. Furthermore, the sulfonic acid group can be partially substituted with other acidic groups. Finally, a taurocholate analog with an m-aminobenzenesulfonic acid side chain is a strong inhibitor of C. difficile spore germination. In conclusion, C. difficile spores recognize both amino acids and taurocholate through multiple interactions that are required to bind the germinants and/or activate the germination machinery.  相似文献   

4.
Spores of pathogenic Clostridium perfringens and Clostridium difficile must germinate in the food vehicle and/or host's intestinal tract to cause disease. In this work, we examined the germination response of spores of C. perfringens and C. difficile upon incubation with cultured human epithelial cell lines (Caco-2, HeLa and HT-29). C. perfringens spores of various sources were able to germinate to different extents; while spores of a non-food-borne isolate germinated very well, spores of food-borne and animal isolates germinated poorly in human epithelial cells. In contrast, no detectable spore germination (i.e., loss of spore heat resistance) was observed upon incubation of C. difficile spores with epithelial cells; instead, there was a significant (p?相似文献   

5.
Clostridium difficile, a spore-forming bacterium, causes antibiotic-associated diarrhea. In order to produce toxins and cause disease, C. difficile spores must germinate and grow out as vegetative cells in the host. Although a few compounds capable of germinating C. difficile spores in vitro have been identified, the in vivo signal(s) to which the spores respond were not previously known. Examination of intestinal and cecal extracts from untreated and antibiotic-treated mice revealed that extracts from the antibiotic-treated mice can stimulate colony formation from spores to greater levels. Treatment of these extracts with cholestyramine, a bile salt binding resin, severely decreased the ability of the extracts to stimulate colony formation from spores. This result, along with the facts that the germination factor is small, heat-stable, and water-soluble, support the idea that bile salts stimulate germination of C. difficile spores in vivo. All extracts able to stimulate high level of colony formation from spores had a higher proportion of primary to secondary bile salts than extracts that could not. In addition, cecal flora from antibiotic-treated mice was less able to modify the germinant taurocholate relative to flora from untreated mice, indicating that the population of bile salt modifying bacteria differed between the two groups. Taken together, these data suggest that an in vivo-produced compound, likely bile salts, stimulates colony formation from C. difficile spores and that levels of this compound are influenced by the commensal gastrointestinal flora.  相似文献   

6.
A modified taurocholate-cefoxitin-cycloserine-fructose agar medium, pH 5.5, on which vegetative cells alone could grow, was newly devised for separate isolation of Clostridium difficile vegetative cells and spores from feces. The ratio of C. difficile-positive feces from healthy newborn infants younger than 10 days of the age was 30.8%, and 93.3% of feces from healthy infants older than 20 days were positive for C. difficile. C. difficile spores alone were detected in twenty-one samples (75%) of C. difficile-positive Twenty-eight specimens. Only 10.7% (3/28) C. difficile vegetative cells alone were detected. C. difficile spores alone were detected in one of nine healthy adults. These collective results offer potential explanations for high frequent isolations of C. difficile from newborn infants without occurrence of pseudomembranous colitis.  相似文献   

7.
艰难类梭菌(Clostridioides difficile)是一种革兰氏阳性、可产毒素的专性厌氧菌,是引起抗生素相关性腹泻的主要致病菌。芽胞是造成艰难类梭菌传播和感染复发的重要因素,其形成和萌发在感染的发展过程中起到重要作用。近年来,越来越多的艰难类梭菌芽胞形成和萌发的具体机制被阐明。本文就近年来艰难类梭菌芽胞形成和萌发的相关分子调控机制的研究进展进行综述,以期为开发针对芽胞的有效治疗手段提供思路。  相似文献   

8.
Clostridium difficile spores can survive extended heating at 71°C (160°F), a minimum temperature commonly recommended for adequate cooking of meats. To determine the extent to which higher temperatures would be more effective at killing C. difficile, we quantified (D values) the effect of moist heat at 85°C (145°F, for 0 to 30 min) on C. difficile spores and compared it to the effects at 71 and 63°C. Fresh (1-week-old) and aged (≥20-week-old) C. difficile spores from food and food animals were tested in multiple experiments. Heating at 85°C markedly reduced spore recovery in all experiments (5 to 6 log(10) within 15 min of heating; P < 0.001), regardless of spore age. In ground beef, the inhibitory effect of 85°C was also reproducible (P < 0.001), but heating at 96°C reduced 6 log(10) within 1 to 2 min. Mechanistically, optical density and enumeration experiments indicated that 85°C inhibits cell division but not germination, but the inhibitory effect was reversible in some spores. Heating at 63°C reduced counts for fresh spores (1 log(10), 30 min; P < 0.04) but increased counts of 20-week-old spores by 30% (15 min; P < 0.02), indicating that sublethal heat treatment reactivates superdormant spores. Superdormancy is an increasingly recognized characteristic in Bacillus spp., and it is likely to occur in C. difficile as spores age. The potential for reactivation of (super)dormant spores with sublethal temperatures may be a food safety concern, but it also has potential diagnostic value. Ensuring that food is heated to >85°C would be a simple and important intervention to reduce the risk of inadvertent ingestion of C. difficile spores.  相似文献   

9.
To cause disease, Clostridium difficile spores must germinate in the host gastrointestinal tract. Germination is initiated upon exposure to glycine and certain bile acids, e.g., taurocholate. Chenodeoxycholate, another bile acid, inhibits taurocholate-mediated germination. By applying Michaelis-Menten kinetic analysis to C. difficile spore germination, we found that chenodeoxycholate is a competitive inhibitor of taurocholate-mediated germination and appears to interact with the spores with greater apparent affinity than does taurocholate. We also report that several analogs of chenodeoxycholate are even more effective inhibitors. Some of these compounds resist 7α-dehydroxylation by Clostridium scindens, a core member of the normal human colonic microbiota, suggesting that they are more stable than chenodeoxycholate in the colonic environment.Clostridium difficile is a Gram-positive, spore-forming, anaerobic bacterium that is pathogenic for both humans and animals (33, 44). Infections caused by C. difficile range from mild diarrhea to more life-threatening conditions, such as pseudomembranous colitis (33). In the classic case, prior antibiotic treatment that disrupts the normally protective colonic flora makes patients susceptible to C. difficile infection (CDI) (35, 53). Other antibiotics, such as vancomycin and metronidazole, are the most commonly used treatments for CDI (54). However, because these antibiotics also disrupt the colonic flora, 10 to 40% of patients whose symptoms have been ameliorated suffer from relapsing CDI (15, 24). The annual treatment-associated cost for CDI in the United States is estimated to be between $750 million and $3.2 billion (8, 9, 16, 31). Moreover, the number of fatal cases of CDI has been increasing rapidly (14, 39). Thus, there is an urgent need to find alternative therapies for CDI.C. difficile infection likely is initiated by infection with the spore form of C. difficile (12). C. difficile elicits disease through the actions of two secreted toxins, TcdA and TcdB (48). TcdB was recently shown to be critical for pathogenesis in an animal model of disease (18). Since the toxins are produced by vegetative cells, not by spores (17), germination and outgrowth are prerequisites for pathogenesis.Spore germination is triggered by the interaction of small molecules, called germinants, with receptors within the spore inner membrane. These germinants vary by bacterial species and can include ions, amino acids, sugars, nucleotides, surfactants, or combinations thereof (43). The recognition of germinants triggers irreversible germination, leading to Ca2+-dipicolinic acid release, the uptake of water, the degradation of the cortex, and, eventually, the outgrowth of the vegetative bacterium (43). The germination receptors that C. difficile uses to sense the environment have not been identified. Based on homology searches, C. difficile germination receptors must be very different from known germination receptors (42), but they appear to be proteinaceous (13).Taurocholate, a primary bile acid, has been used for approximately 30 years by researchers and clinical microbiologists to increase colony formation by C. difficile spores from patient and environmental samples (3, 49, 51, 52). This suggested that C. difficile spores interact with bile acids along the gastrointestinal (GI) tract and that spores use a host-derived signal to initiate germination.The liver synthesizes the two major primary bile acids, cholate and chenodeoxycholate (40). These compounds are modified by conjugation with either taurine (to give taurocholate or taurochenodeoxycholate) or glycine (producing glycocholate or glycochenodeoxycholate). Upon secretion into the digestive tract, bile aids in the absorption of fat and cholesterol; much of the secreted bile is actively absorbed and recycled back to the liver for reutilization (40). Though efficient, enterohepatic recirculation is not complete; bile enters the cecum of the large intestine at a concentration of approximately 2 mM (30).In the cecum, bile is modified by the normal, benign colonic flora. First, bile salt hydrolases found on the surfaces of many bacterial species remove the conjugated amino acid, producing the deconjugated primary bile acids cholate and chenodeoxycholate (40). These deconjugated primary bile acids are further metabolized by only a few species of intestinal bacteria, including Clostridium scindens. C. scindens actively transports unconjugated primary bile acids into the cytoplasm, where they are 7α-dehydroxylated, converting cholate to deoxycholate and chenodeoxycholate to lithocholate (21, 40). The disruption of the colonic flora by antibiotic treatment abolishes 7α-dehydroxylation activity (41).Building upon the work on Wilson and others (51, 52), we demonstrated that taurocholate and glycine, acting together, trigger the loss of the birefringence of C. difficile spores (45). All cholate derivatives (taurocholate, glycocholate, cholate, and deoxycholate) stimulate the germination of C. difficile spores (45). Recently it was shown that taurocholate binding is prerequisite to glycine binding (37). At physiologically relevant concentrations, chenodeoxycholate inhibits taurocholate-mediated germination (46) and also inhibits C. difficile vegetative growth, as does deoxycholate (45). In fact, C. difficile spores use the relative concentrations of the various bile acids as cues for germination within the host (10).Since chenodeoxycholate is absorbed by the colonic epithelium and metabolized to lithocholate by the colonic flora (25, 40), the use of chenodeoxycholate as a therapy against C. difficile disease might be hindered by its absorption and conversion to lithocholate.Here, we further characterize the interaction of C. difficile spores with various bile acids and demonstrate that chenodeoxycholate is a competitive inhibitor of taurocholate-mediated germination. Further, we identify chemical analogs of chenodeoxycholate that are more potent inhibitors of germination and that resist 7α-dehydroxylation by the colonic flora, potentially increasing their stability and effectiveness as inhibitors of C. difficile spore germination in the colonic environment.  相似文献   

10.
Burns DA  Heap JT  Minton NP 《Anaerobe》2010,16(6):618-622
Clostridium difficile causes diarrhoeal diseases ranging from asymptomatic carriage to a fulminant, relapsing, and potentially fatal colitis. Endospore production plays a vital role in transmission of infection, and in order to cause disease these spores must then germinate and return to vegetative cell growth. Type BI/NAP1/027 strains of C. difficile have recently become highly represented among clinical isolates and are associated with increased disease severity. It has also been suggested that these 'epidemic' types generally sporulate more prolifically than 'non-epidemic' strains, although the few existing reports are inconclusive and encompass only a small number of isolates. In order to better understand any differences in sporulation rates between epidemic and non-epidemic C. difficile types, we analysed these characteristics using 14 C. difficile clinical isolates of a variety of types. Sporulation rates varied greatly between individual BI/NAP1/027 isolates, but this variation did not appear to be type-associated. Furthermore, a number of BI/NAP1/027 spores appeared to form colonies with a lower frequency than specific non-BI/NAP1/027 strains. The data suggest that (i) careful experimental design is required in order to accurately quantify sporulation; and (ii) current evidence cannot link differences in sporulation rates with the disease severity of the BI/NAP1/027 type.  相似文献   

11.
Spore germination and vegetative growth of Clostridium botulinum type E strain VH at 2 to 50 degrees C were studied. At all of these temperatures, germination began immediately after the addition of the spores to the germination medium. Microscopic observations during germination revealed three types of spores: phase bright (ungerminated), phase variable (partially germinated), and phase dark (fully germinated). At all temperatures except 50 degrees C, there was a pronounced lag between the initial appearance of phase-variable spores and their eventual conversion to phase-dark spores. The number of partially germinated spores increased steadily, reaching 40 to 60% by 18 to 21 h of incubation. During this time, phase-dark, fully germinated spores developed slowly and did not exceed 28% in any of the samples. At 18 to 26 h of incubation, the rate of full germination increased abruptly four-fold. There was extensive and relatively rapid germination at 2 degrees C, the lowest temperature tested, yielding about 60% phase-variable spores by 18 h, which became phase-dark by 26 h of incubation. The optimum temperature for partial and full germination was consistently 9 degrees C. Germination at 50 degrees C was exceptionally rapid and was completed within 1 to 2 h, although 40% remained phase bright. Vegetative cells showed detectable growth at 6 to 41 degrees C, with a distinct optimum at 32.5 degrees C. No growth occurred at 50 degrees C, and only marginal growth was observed at 6 to 14 degrees C. The psychrophilic nature of the germination process coupled with the cold tolerance of vegetative growth appears to give C. botulinum type E an advantage in cold climates as well as in cold-stored foods.  相似文献   

12.
Out of 111 Clostridium difficile strains, 108 produced spores in numbers of more than 10(5)/ml and the remaining three did not produce any spores in brain heart infusion medium. The germination frequency in the medium without lysozyme varied widely from strain to strain, ranging from less than 10(-8) to 10(0), and in 77 of the 108 strains the germination frequency was 10(-5) or less. The spores, when treated with sodium thioglycollate and then inoculated into the medium containing lysozyme, germinated in all of the 108 strains at a frequency of 10(-0.5) or more. The spores of two strains germinated at a frequency of more than 10(-0.5) in all methods. Spores of C. difficile strains were fairly highly heat-resistant; D100C values ranged from 2.5 to 33.5 min.  相似文献   

13.
Dormant bacterial spores are extraordinarily resistant to environmental insults and are vectors of various illnesses. However, spores cannot cause disease unless they germinate and become vegetative cells. The molecular details of initiation of germination are not understood, but proteins essential in early stages of germination, such as nutrient germinant receptors (GRs) and GerD, are located in the spore inner membrane. In this study, we examine how these germination proteins are organized in dormant Bacillus subtilis spores by expressing fluorescent protein fusions that were at least partially functional and observing spores by fluorescence microscopy. We show that GRs and GerD colocalize primarily to a single cluster in dormant spores, reminiscent of the organization of chemoreceptor signalling complexes in Escherichia coli. GRs require all their subunits as well as GerD for clustering, and also require diacylglycerol addition to GerD and GRs' C protein subunits. However, different GRs cluster independently of each other, and GerD forms clusters in the absence of all the GRs. We predict that the clusters represent a functional germination unit or 'germinosome' in the spore inner membrane that is necessary for rapid and cooperative response to nutrients, as conditions known to block nutrient germination also disrupt the protein clusters.  相似文献   

14.
Spore-forming bacteria are a special problem for the food industry as some of them are able to survive preservation processes. Bacillus spp. spores can remain in a dormant, stress resistant state for a long period of time. Vegetative cells are formed by germination of spores followed by a more extended outgrowth phase. Spore germination and outgrowth progression are often very heterogeneous and therefore, predictions of microbial stability of food products are exceedingly difficult. Mechanistic details of the cause of this heterogeneity are necessary. In order to examine spore heterogeneity we made a novel closed air-containing chamber for live imaging. This chamber was used to analyze Bacillus subtilis spore germination, outgrowth, as well as subsequent vegetative growth. Typically, we examined around 90 starting spores/cells for ≥4 hours per experiment. Image analysis with the purposely built program “SporeTracker” allows for automated data processing from germination to outgrowth and vegetative doubling. In order to check the efficiency of the chamber, growth and division of B. subtilis vegetative cells were monitored. The observed generation times of vegetative cells were comparable to those obtained in well-aerated shake flask cultures. The influence of a heat stress of 85°C for 10 min on germination, outgrowth, and subsequent vegetative growth was investigated in detail. Compared to control samples fewer spores germinated (41.1% less) and fewer grew out (48.4% less) after the treatment. The heat treatment had a significant influence on the average time to the start of germination (increased) and the distribution and average of the duration of germination itself (increased). However, the distribution and the mean outgrowth time and the generation time of vegetative cells, emerging from untreated and thermally injured spores, were similar.  相似文献   

15.
The repair of deoxyribonucleic acid (DNA) in germinating spores was studied in comparison with that in vegetative cells. Radiation-induced single-strand breaks in the DNA of spores and of vegetative cells of Bacillus subtilis were rejoined during postirradiation incubation. The molecular weight of single-stranded DNA was restored to the level of nonirradiated cells. The rate of the rejoining of DNA strand breaks in irradiated spores was essentially equal to that in irradiated vegetative cells. The rejoining in spores germinating in nutrient medium occurred in the absence of detectable DNA synthesis. In this state, normal DNA synthesis was not initiated. Very little DNA degradation occurred during the rejoining process. On the other hand, in vegetative cells the rejoining process was accompanied by a relatively large amount of DNA synthesis and DNA degradation in nutrient medium. The rejoining occurred in phosphate buffer in vegetative cells but not in spores in which germination was not induced. Chloramphenicol did not interfere with the rejoining process in either germinating spores or vegetative cells, indicating that the rejoining takes place in the absence of de novo synthesis of repair enzyme. In the radiation-sensitive strain uvs-80, the capacity for rejoining radiation-induced strand breaks was reduced both in spores and in vegetative cells, suggesting that the rejoining mechanism of germinating spores is not specific to the germination process.  相似文献   

16.
The effects of moisture and oxygen concentration on germination of Bacillus cereus and B. subtilis var. niger spores were investigated in a simulated Martian environment. Less moisture was required for germination than for vegetative growth of both organisms. A daily freeze-thaw cycle lowered moisture requirements for spore germination and vegetative growth of both organisms, as compared with a constant 35 C environment. Oxygen had a synergistic effect by lowing the moisture requirements for vegetative growth, and possibly germination, of both organisms. Oxygen was not required for spore germination of either organism, but was required for vegetative growth of B. subtilis and for sporulation of both organisms.  相似文献   

17.
Spores of Bacillus megaterium were examined for glutamic acid decarboxylase (GAD). Although dormant spores showed no GAD activity, spores given sonic treatment and heat-activated spores had high activities when assayed for this enzyme. Several parameters of GAD in heat-activated spores were examined. The effects of KCN, NaN(3), 2,4-dinitrophenol, and KF on GAD activity were examined. Only KCN was an effective inhibitor of GAD activity in heated spores and was also shown to be the only effective inhibitor of GAD activity in vegetative bacteria. Similar patterns of inhibition were obtained with GAD activity and with spore germination, KCN being the only effective inhibitor of both, although at different concentrations. Spore GAD activity in heat-activated spores showed a loss with storage at 4 C; on the other hand, storage at 25 C was not accompanied by a loss, but, to the contrary, showed an increase in GAD activity of about 30%. A comparison of GAD activity at different times during germination, growth, and sporulation showed it to be highest in freshly germinated spores. Although vegetative cells contained GAD activity, the level in log-phase cells was approximately one-half the level obtained with freshly germinated spores. Heat-activated mutant spores with a requirement of gamma-aminobutyric acid for germination gave no GAD activity. GAD activity appeared in mutant spores after germination and increased to levels comparable to parent spores after 9 min of germination.  相似文献   

18.
芽孢杆菌孢子萌发机理的研究进展   总被引:1,自引:0,他引:1  
芽孢杆菌休眠孢子的萌发是孢子恢复到营养生长的第一个决定性步骤。孢子被营养性萌发剂和各种非营养信号诱导而萌发恢复到营养细胞状态。芽孢萌发后就丧失了对外界胁迫的抵抗力。该文主要从芽孢萌发信号传导、营养萌发受体、萌发中的离子通道、皮层溶解酶的功能、非营养诱导萌发和萌发途径等方面阐述芽孢杆菌孢子萌发机理的进展,并对其前景作了简要评述。  相似文献   

19.
20.
Spores from four Frankia strains were isolated and purified to homogeneity. The purified spores were biochemically and physiologically characterized and compared to vegetative cells. Frankia spores exhibited low levels of endogenous respiration that were at least ten-fold lower than the endogenous respiration rate of vegetative cells. The macromolecular content of purified spores and vegetative cells differed. One striking difference among the Frankia spores was their total DNA content. From DAPI staining experiments, only 9% of strain ACN1AG spore population contained DNA. With strains DC12 and EuI1c, 92% and 67% of their spore population contained DNA. The efficiency of spore germination was correlated to the percentage of the spore population containing DNA. These results suggest that the majority of strain ACN1AG spores were immature or nonviable. The presence of a solidifying agent inhibited the initial stages of spore germination, but had no effect once the process had been initiated. The optimal incubation temperature for spore germination was 25°C and 30°C for strains DC12 and EuI1c, respectively. A mild heat shock increased the efficiency of spore germination, while root extracts also stimulated spore germination. These results suggest that strains DC12 and EuI1c may be suitable strains for further germination and genetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号