首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational and linkage analysis demonstrated the presence of genetic heterogeneity in which the SLC3A1 gene is responsible for type I cystinuria but not for type II or type III. In this study, we report the identification of the cystinuria type III locus on the long arm of chromosome 19 (19q13.1), obtained after a genomewide search. Pairwise linkage analysis in a series of type III or type II families previously excluded from linkage to the cystinuria type I locus (SLC3A1 gene) revealed a significant maximum LOD score (zeta max) of 13.11 at a maximum recombination fraction (theta max) of .00, with marker D19S225. Multipoint linkage analysis performed with the use of additional markers from the region placed the cystinuria type III locus between D19S414 and D19S220. Preliminary data on type II families also seem to place the disease locus for this rare type of cystinuria at 19q13.1 (significant zeta max = 3.11 at theta max of .00, with marker D19S225).  相似文献   

2.
Cystinuria is a genetic disease manifested by the development of kidney stones. In some patients, the disease is caused by mutations in the SLC3A1 gene located on chromosome 2p. In others, the disease is caused by a gene that maps to chromosome 19q, but has not yet been cloned. Cystinuria is very common among Jews of Libyan ancestry living in Israel. Previously we have shown that the disease-causing gene in Libyan Jews maps to an 8-cM interval on chromosome 19q between the markers D19S409 and D19S208. Several markers from chromosome 19q showed strong linkage disequilibrium, and a specific haplotype was found in more than half of the carrier chromosomes. In this study we have analyzed Libyan Jewish cystinuria families with eight markers from within the interval containing the gene. Seven of these markers showed significant linkage disequilibrium. A common haplotype was found in 16 of the 17 carrier chromosomes. Analysis of historical recombinants placed the gene in a 1.8-Mb interval between the markers D19S430 and D19S874. Two segments of the historical carrier chromosome used to calculate the mutation's age revealed that the disease-causing mutation was introduced into this population 7-16 generations ago.  相似文献   

3.
Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes have been described. The gene responsible for type I, SLC3A1, encodes the amino acid transporter rBAT. This gene is not responsible for types II or III. Recently the type III locus (CSNU3) was mapped by two groups to overlapping 6-Mb regions on chromosome 19q. In the present study, we restrict the critical region for non-type I cystinuria to 2.4 Mb by recombination analysis in Italian, German, and Spanish families. For this purpose, we have used the microsatellite markers described in the region plus new microsatellites that we have developed. Our results locate the non-type I cystinuria gene in an interval flanked by the markers C13 and D19S587, which are about 2.8 cM apart.  相似文献   

4.
Cystinuria is an inherited renal and intestinal disease characterized by defective amino acid reabsorption and cystine urolithiasis. Different forms of the disease, designated type I and non-type I in cystinuric humans, can be distinguished clinically and biochemically, and have been associated with mutations in the SLC3A1 (rBAT) and SLC7A9 genes, respectively. Type I cystinuria is the most common form and is inherited as an autosomal recessive trait in humans. Cystinuria has been recognized in more than 60 breeds of dogs and a severe form, resembling type I cystinuria, has been characterized in the Newfoundland breed. Here we report the cloning and sequencing of the canine SLC3A1 cDNA and gene, and the identification of a nonsense mutation in exon 2 of the gene in cystinuric Newfoundland dogs. A mutation-specific test was developed for the diagnosis and control of cystinuria in Newfoundland dogs. In cystinuric dogs of six other breeds, either heterozygosity at the SLC3A1 locus or lack of mutations in the coding region of the SLC3A1 gene were observed, indicating that cystinuria is genetically heterogeneous in dogs, as it is in humans. The canine homologue of human type I cystinuria provides the opportunity to use a large animal model to investigate molecular approaches for the treatment of cystinuria and other renal tubular diseases.  相似文献   

5.
Cystinuria is a hereditary disorder of amino acid transport and is manifested by the development of kidney stones. In some patients the disease is caused by mutations in the SLC3A1 gene, which is located on the short arm of chromosome 2 and encodes a renal/intestinal transporter for cystine and the dibasic amino acids. In Israel cystinuria is especially common among Jews of Libyan origin. After excluding SLC3A1 as the disease-causing gene in Libyan Jewish patients, we performed a genomewide search that shows that the Libyan Jewish cystinuria gene maps to the long arm of chromosome 19. Significant linkage was obtained for seven chromosome 19 markers. A maximal LOD score of 9.22 was obtained with the marker D19S882. Multipoint data and recombination analysis placed the gene in an 8-cM interval between the markers D19S409 and D19S208. Significant linkage disequilibrium was observed for alleles of four markers, and a specific haplotype comprising the markers D19S225, D19S208, D19S220, and D19S422 was found in 11 of 17 carrier chromosomes, versus 1 of 58 Libyan Jewish noncarrier chromosomes.  相似文献   

6.
Cystinuria is a genetic disorder in the domestic dog that leads to recurrent urolith formation. The genetic basis of the disorder is best characterized in humans and is caused by mutations in one of the amino acid transporter genes SLC3A1 or SLC7A9, which results in hyperexcretion of cystine and the dibasic amino acids in the urine and subsequent precipitation of cystine due to its low solubility in urine. In this study we describe the cloning of the canine SLC7A9 cDNA and present a thorough mutation analysis of the coding SLC3A1 and SLC7A9 regions in cystinuric dogs of different breeds. Mutation analysis of the two cystinuria disease genes revealed one SLC7A9 mutation (A217T) and two SLC3A1 mutations (I192V and S698G) in French and English Bulldogs that affect nonconserved amino acid residues, arguing against functional impact on the proteins. The absence of deleterious mutations linked to cystinuria in the remainder of our panel of cystinuric dogs is surprising because SLC3A1 or SLC7A9 mutations explain approximately 70% of all human cystinuria cases studied. The present study, along with previous investigations of canine and human cystinuria, implies that regulatory parts of the SLC3A1 and SLC7A9 genes as well as other unknown genes may harbor mutations causing cystinuria.  相似文献   

7.
Cystinuria is an autosomal recessive disorder characterized by increased urinary excretion of cystine and dibasic amino acids, which cause recurrent stone formation in affected individuals. Three subtypes of cystinuria have been described (type I, II, and III): type I is caused by mutations in the SLC3A1 gene, whereas nontype I (II and III) has been associated with SLC7A9 mutations. Of the 53 patients reported in our previous work, patients that showed SLC7A9 mutations in single-strand conformation polymorphism (SSCP) screening and/or either lacked or showed heterozygosity for SLC3A1 mutations were included in the present study. The entire coding region and the exon/intron boundaries of the SLC7A9 gene were analyzed by means of both SSCP and DNA sequencing in 16 patients, all but one of which were clinically diagnosed as homozygous cystinurics. Three novel SLC7A9 mutations were identified in the patient group: two missense mutations (P261L and V330M), and one single base-pair deletion (1009 delA). We also detected the previously reported A182T and nine novel polymorphisms in the patients. Mutations V330M and 1009delA occurred on different alleles in one individual, and we suggest that these mutations cause cystinuria in this patient. One patient that was homozygously mutated in the SLC3A1 gene carried the third novel mutation (P261L). We conclude that SLC3A1 is still the major disease gene among Swedish cystinuria patients, with only a minor contribution of SLC7A9 mutations as the genetic basis of cystinuria. The absence of SLC3A1 and SLC7A9 mutations in a substantial proportion of the patients implies that mutations in parts of the genes that were not analyzed may be present, as well as large deletions that escape detection by the methods used. However, our results raise the question of whether other, as yet unknown genes, may also be involved in cystinuria.  相似文献   

8.
Cystinuria (OMIM 220100) is an inborn congenital disorder characterised by a defective cystine metabolism resulting in the formation of cystine stones. Among the heterogeneous group of kidney stone diseases, cystinuria is the only disorder which is exclusively caused by gene mutations. So far, two genes responsible for cystinuria have been identified: SLC3A1 (chromosome 2p21) encodes the heavy subunit rBAT of a renal b0,+ transporter while SLC7A9 (chromosome 19q12) encodes its interacting light subunit b0,+AT. Mutations in SLC3A1 are generally associated with an autosomal-recessive mode of inheritance whereas SLC7A9 variants result in a broad clinical variability even within the same family. The detection rate for mutations in these genes is larger than 85%, but it is influenced by the ethnic origin of a patient and the pathophysiological significance of the mutations. In addition to isolated cystinuria, patients suffering from the hypotonia-cystinuria syndrome have been reported carrying deletions including at least the SLC3A1 and the PREPL genes in 2p21. By extensive molecular screening studies in large cohort of patients a broad spectrum of mutations could be identified, several of these variants were functionally analysed and thereby allowed insights in the pathology of the disease as well as in the renal trafficking of cystine and the dibasic amino acids. In our review we will summarize the current knowledge on the physiological and the genetic basis of cystinuria as an inborn cause of kidney stones, and the application of this knowledge in genetic testing strategies.  相似文献   

9.
Mutations of the glycoprotein rBAT cause cystinuria type I, an autosomal recessive failure of dibasic amino acid transport (b(0,+) type) across luminal membranes of intestine and kidney cells. Here we identify the permease-like protein b(0,+)AT as the catalytic subunit that associates by a disulfide bond with rBAT to form a hetero-oligomeric b(0,+) amino acid transporter complex. We demonstrate its b(0,+)-type amino acid transport kinetics using a heterodimeric fusion construct and show its luminal brush border localization in kidney proximal tubule. These biochemical, transport, and localization characteristics as well as the chromosomal localization on 19q support the notion that the b(0,+)AT protein is the product of the gene defective in non-type I cystinuria.  相似文献   

10.
Mutations in the SLC3A1 and SLC7A9 genes cause cystinuria (OMIM 220100), an autosomal recessive disorder of amino acid transport and reabsorption in the proximal renal tubule and in the epithelial cells of the gastrointestinal tract. In an attempt to characterize the molecular defect in the SLC3A1 and SLC7A9 genes, we analyzed a cohort of 85 unrelated subjects clinically diagnosed as affected by cystinuria on the basis of stone formation, prevalently of Italian and Greek origin. Analysis of all coding region and exon-intron junctions of the SLC3A1 and SLC7A9 genes by using direct sequencing method allowed us to identify 62 different mutations in 83 out of 85 patients accounting for 90.5% of all affected chromosomes. Twenty-four out of 62 are novel mutations, 9 in SLC3A1 and 15 in SLC7A9. In conclusion, this report expands the spectrum of SLC3A1 and SLC7A9 mutations and confirms the heterogeneity of this disorder.  相似文献   

11.
Cystinuria represents 3% of nephrolithiasis in humans with an overall prevalence of 1 in 7,000 neonates. Two genes have been reported to account for the genetic basis of cystinuria, the SLC3A1 and the SLC7A9. Recently, the possible involvement of the SLC7A10 gene in the genetic basis of the disorder was also reported. In the present study, we found a total of 15 mutations in 20 Greek cystinuric patients. Eight mutations are novel, 4 in the SLC3A1: F266S, T351I, R456C, and N516D, and 4 in the SLC7A9: 479-1G>C, Y232C, D233E, and 1399+1G>T. Furthermore, 2 polymorphisms were identified in the SLC3A1 gene and 16 polymorphic variants were also found in the SLC7A9 gene of which the 235+18C>A, 604+10G>A, and 604+24T>C are novel. Finally, no mutation was found in the SLC7A10 gene in all patients. Only, the novel 634+8C>G and the previously reported 913-11C+T polymorphisms were identified in the SLC7A10 gene. In conclusion, a spectrum of SLC3A1 and SLC7A9 mutations are responsible for the genetic basis of cystinuria in Greek patients.  相似文献   

12.
The molecular bases of cystinuria and lysinuric protein intolerance   总被引:1,自引:0,他引:1  
Cystinuria and lysinuric protein intolerance are inherited aminoacidurias caused by defective amino-acid transport activities linked to a family of heteromeric amino-acid transporters (HATs). HATs comprise two subunits: co-expression of subunits 4F2hc and y(+)LAT-1 induces the efflux of dibasic amino acids from cells, whereas co-expression of subunits rBAT and b(o,+)AT induces the renal reabsorption and intestinal absorption of cystine and dibasic amino acids at the brush border of epithelial cells. Recently, the role of b(o,+)AT (SLC7A9) in cystinuria (non Type I) and the role of y(+)LAT-1 (SLC7A7) in lysinuric protein intolerance have been demonstrated.  相似文献   

13.
A cluster of Krüppel type zinc finger genes of the KRAB subclass has recently been localized on human chromosome 19p12-p13.1. We now report that ZNF117 (HPF9), a closely related zinc finger gene of this KRAB subfamily, has been assigned to a distinct locus in the human genome: chromosome band 7q11.2.  相似文献   

14.
CYP2C9 is a major P450 2C enzyme, which hydroxylates about 16% of drugs that are in current clinical use and contributes to the metabolism of a number of clinically important substrate drugs such as warfarin. Ethnic differences in the genetic variation of CYP2C9 have been reported, and might be related to the frequencies of adverse reactions to drugs metabolized by CYP2C9 in different ethnic groups. In the present study, ethnic differences in the CYP2C9*2 and CYP2C9*3 allele distribution in Japanese and Israeli populations were evaluated using a newly developed oligonucleotide based DNA array (OligoArray(R)). The population studied consisted of 147 Japanese and 388 Israeli donors (100 Ashkenazi Jews, 99 Yemenite Jews, 100 Moroccan Jews and 89 Libyan Jews). The CYP2C9*2 [Arg144Cys (416 C>T), exon 3] and CYP2C9*3 [Ile359Leu (1061 A>C), exon 7] genotypes were determined using an OligoArray(R). The accuracy of genotyping by the OligoArray(R) was verified by the fluorescent dye-terminator cycle sequencing method. A Hardy-Weinberg test indicated equilibrium (chi(2)<3.84 is Hardy-Weinberg) in all populations. The CYP2C9*2 genotype (CC/CT+TT) was absent in Japanese (1/0) (OR 0.02), and its frequency was significant in Libyan Jews (0.697/0.303) (OR 2.13; 95% CI 1.07-4.24) compared with Ashkenazi Jews (0.83/0.17), Yemenite Jews (0.899/0.101), and Moroccan Jews (0.81/0.19). The frequencies of CYP2C9*3 genotype (AA/AC+CC) was significantly lower in Japanese (0.986/0.014) (OR 0.08), and was higher in Libyan Jews (0.652/0.348) (OR 3.03; 95% CI 1.5-6.1) and Moroccan Jews (0.77/0.23) (OR 1.69; 95% CI 0.62-3.48) compared with those in Ashkenazi Jews (0.85/0.15) and Yemenite Jews (0.849/0.151). Thus, the CYP2C9*2 (Arg144Cys) and CYP2C9*3 (Ile359Leu) variants were rare in the Japanese population, and showed different frequencies in the four Jewish ethnic groups examined.  相似文献   

15.
The inherited prion diseases are neurodegenerative disorders which are not only genetic but also transmissible. More than a dozen mutations in the prion protein gene that result in nonconservative amino acid substitutions segregate with the inherited prion diseases including familial Creutzfeldt-Jakob disease (CJD). In Israel, the incidence of CJD is about 1 case/10(4) Libyan Jews. A Lys200 substitution segregates with CJD and is reported here to be genetically linked to CJD with a lod score of > 4.8. Some healthy elderly Lys200 carriers > age 65 years were identified, suggesting the possibility of incomplete penetrance. In contrast, no linkage was found between the development of familial CJD and a polymorphism encoding either Met129 or Val129. All Libyan Jewish CJD patients with the Lys200 mutation encode a Met129 on the mutant allele. Homozygosity for Met129 did not correlate with age at disease onset or the duration of illness. The frequency of the Met129 allele was higher in the affected pedigrees than in a control population of Libyan Jews. The frequency of the Met129 and Val129 alleles in the control Libyan population was similar to that found in the general Caucasian population. The identification of three Libyan Jews homozygous for the Lys200 mutation suggests frequent intrafamilial marriages, a custom documented by genealogical investigations.  相似文献   

16.
Mutations in the SLC3A1 Transporter Gene in Cystinuria   总被引:3,自引:2,他引:1       下载免费PDF全文
Cystinuria is an autosomal recessive disease characterized by the development of kidney stones. Guided by the identification of the SLC3A1 amino acid–transport gene on chromosome 2, we recently established genetic linkage of cystinuria to chromosome 2p in 17 families, without evidence for locus heterogeneity. Other authors have independently identified missense mutations in SLC3A1 in cystinuria patients. In this report we describe four additional cystinuria-associated mutations in this gene: a frameshift, a deletion, a transversion inducing a critical amino acid change, and a nonsense mutation. The latter stop codon was found in all of eight Ashkenazi Jewish carrier chromosomes examined. This report brings the number of disease-associated mutations in this gene to 10. We also assess the frequency of these mutations in our 17 cystinuria families.  相似文献   

17.
Cystinuria is an aminoaciduria caused by mutations in the genes that encode the two subunits of the amino acid transport system b0,+, responsible for the renal reabsorption of cystine and dibasic amino acids. The clinical symptoms of cystinuria relate to nephrolithiasis, due to the precipitation of cystine in urine. Mutations in SLC3A1, which codes for the heavy subunit rBAT, cause cystinuria type A, whereas mutations in SLC7A9, which encodes the light subunit b0,+AT, cause cystinuria type B. By crossing Slc3a1 -/- with Slc7a9 -/- mice we generated a type AB cystinuria mouse model to test digenic inheritance of cystinuria. The 9 genotypes obtained have been analyzed at early (2- and 5-months) and late stage (8-months) of the disease. Monitoring the lithiasic phenotype by X-ray, urine amino acid content analysis and protein expression studies have shown that double heterozygous mice (Slc7a9 +/- Slc3a1 +/-) present lower expression of system b0,+ and higher hyperexcretion of cystine than single heterozygotes (Slc7a9 +/- Slc3a1 +/+ and Slc7a9 +/+ Slc3a1 +/-) and give rise to lithiasis in 4% of the mice, demonstrating that cystinuria has a digenic inheritance in this mouse model. Moreover in this study it has been demonstrated a genotype/phenotype correlation in type AB cystinuria mouse model providing new insights for further molecular and genetic studies of cystinuria patients.  相似文献   

18.
Cystinuria is an autosomal recessive disease caused by the mutation of either SLC3A1 gene encoding for rBAT (type A cystinuria) or SLC7A9 gene encoding for b0,+AT (type B cystinuria). Here, we evidenced in a commonly used congenic 129S2/SvPasCrl mouse substrain a dramatically high frequency of kidney stones that were similar to those of patients with cystinuria. Most of 129S2/SvPasCrl exhibited pathognomonic cystine crystals in urine and an aminoaciduria profile similar to that of patients with cystinuria. In addition, we observed a heterogeneous inflammatory infiltrate and cystine tubular casts in the kidney of cystinuric mice. As compared to another classical mouse strain, C57BL/6J mice, 129S2/SvPasCrl mice had an increased mortality associated with bilateral obstructive hydronephrosis. In 129S2/SvPasCrl mice, the heavy subunit rBAT of the tetrameric transporter of dibasic amino acids was absent in proximal tubules and we identified a single pathogenic mutation in a highly conserved region of the Slc3a1 gene. This novel mouse model mimicking human disease would allow us further pathophysiological studies and may be useful to analyse the crystal/tissue interactions in cystinuria.  相似文献   

19.
Cystinuria is an inherited metabolic disease characterized by an abnormal urinary excretion of cystine and dibasic amino acids. Formation of renal calculi, recurrent infections and renal failure are the main complications of this disease. The SLC3A1 gene, which codes for a dibasic amino acid transporter protein, is involved in the pathogenesis of cystinuria. We investigated the possible association between molecular variants (M467T, E483X, T216 M and 114 C-->A) within the SLC3A1 gene and some phenotypical traits in a Spanish area. The study population consisted of 45 cystinuria patients, 42 cystinuria relatives and 81 healthy control subjects. Only the M467T mutation was found in chromosomes of cystinuria patients and relatives. However, the 114 C-->A polymorphism was detected in cystinuria patients, in relatives and in control subjects but with different prevalences. Moreover, a statistically significant association between this polymorphism and urinary amino acid levels was found in cystinuria patients (P<0.05). Subjects with the C/C genotype showed significantly higher urinary levels of cystine, arginine and their sum as compared with carriers of the A allele (P<0.05). When multiple linear regression analysis was performed in cystinuria patients, the 114 C-->A polymorphism remained significantly associated (P=0.047) with cystine levels even after controlling for age, gender and the M467T mutation. Furthermore, we also found a statistically significant interaction term (P=0.028) between M467T and 114 C-->A in determining urinary cystine levels. According to our results, the 114 C-->A polymorphism might be a marker of a functional variant in the SLC3A1 gene or in other genes related to urinary amino acid excretion in cystinuria patients.  相似文献   

20.
Malignant hyperthermia susceptibility is a lethal autosomal dominant disorder of skeletal muscle metabolism that is triggered by all potent inhalation anesthetic gases. Recent linkage studies suggest a genetic locus for this disorder on 19q13.1. We have previously reported three unrelated families diagnosed with MHS that are unlinked to markers surrounding this locus on 19q13.1. In this report we extend these observations and present linkage studies on 16 MHS families. Four families (25%) were found linked to the region 19q12-q13.2 (Zmax = 2.96 with the ryanodine receptor at theta = 0.0). Five families (31%) were found closely linked to the anonymous marker NME1 (previously designated NM23) on chromosome 17q11.2-q24 (Zmax = 3.26 at theta = 0.0). Two families (13%) were clearly unlinked to either of these chromosomal regions. In five additional families, data were insufficient to determine their linkage status (they were potentially linked to two or more sites). The results of our heterogeneity analyses are consistent with the hypothesis that MHS can be caused in humans by any one of at least three distinct genetic loci. Furthermore, we provide preliminary linkage data suggesting the localization of a gene in human MHS to 17q11.2-q24 (MHS2), with a gene frequency of this putative locus approximately equal to that of the MHS1 locus on 19q.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号