首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The relationship between leaf palatability and litter decomposability is critical to understanding the effects of selective feeding by herbivores on decomposition processes, and several studies have reported that there is a positive relationship between them. 2. However, palatability is not always positively correlated with decomposability, because of species‐specific feeding adaptation of herbivores to host plants. Moreover, the effects of selective feeding by herbivores on soil decomposition processes should be understood in terms of the inputs of leaf litter and excrement. 3. The present study examined the relationships between leaf palatability and the decomposability of litter and frass, using Lymantria dispar Linnaeus and 15 temperate deciduous tree species. 4. Larvae of L. dispar exhibited a clear feeding preference, and subsequently the excreted frass mass differed among tree species. Litter and frass decomposability also differed among tree species, and frass was more rapidly decomposed than litter. There were no positive or negative correlations between palatability and decomposability of litter and frass. 5. These results indicate that L. dispar larvae may accelerate the decomposition process in temperate deciduous forests through selective feeding on plants with relatively low litter decomposability and the production of frass with higher decomposability than the litter.  相似文献   

2.
Although there is a growing body of evidence that herbivorous insects have a significant impact on decomposition and soil nutrient dynamics through frass excretion, how mixtures of leaf litter and insect frass influence such ecosystem processes remains poorly understood. We examined the effects of mixing of leaf litter and insect frass on decomposition and soil nutrient availability, using a study system consisting of a willow, Salix gilgiana Seemen, and a herbivorous insect, Parasa consocia Walker. The chemical characteristics of insect frass differed from those of leaf litter. In particular, frass had a 42-fold higher level of ammonium–nitrogen (NH4 +–N) than litter. Incubation experiments showed that the frass was decomposed and immobilized with respect to N more rapidly than the litter. Furthermore, litter and frass mixtures showed non-additive enhancement of decomposition and reduction of NH4 +–N, depending on the litter–frass mixing ratio. These indicate that, while insect frass generally accelerated decomposition, the effect of frass on soil nutrient availability was dependent largely on the relative amounts of litter and frass.  相似文献   

3.
Herbivores induce plants to undergo diverse processes that minimize costs to the plant, such as producing defences to deter herbivory or reallocating limited resources to inaccessible portions of the plant. Yet most plant tissue is consumed by decomposers, not herbivores, and these defensive processes aimed to deter herbivores may alter plant tissue even after detachment from the plant. All consumers value nutrients, but plants also require these nutrients for primary functions and defensive processes. We experimentally simulated herbivory with and without nutrient additions on red alder (Alnus rubra), which supplies the majority of leaf litter for many rivers in western North America. Simulated herbivory induced a defence response with cascading effects: terrestrial herbivores and aquatic decomposers fed less on leaves from stressed trees. This effect was context dependent: leaves from fertilized-only trees decomposed most rapidly while leaves from fertilized trees receiving the herbivory treatment decomposed least, suggesting plants funnelled a nutritionally valuable resource into enhanced defence. One component of the defence response was a decrease in leaf nitrogen leading to elevated carbon : nitrogen. Aquatic decomposers prefer leaves naturally low in C : N and this altered nutrient profile largely explains the lower rate of aquatic decomposition. Furthermore, terrestrial soil decomposers were unaffected by either treatment but did show a preference for local and nitrogen-rich leaves. Our study illustrates the ecological implications of terrestrial herbivory and these findings demonstrate that the effects of selection caused by terrestrial herbivory in one ecosystem can indirectly shape the structure of other ecosystems through ecological fluxes across boundaries.  相似文献   

4.
Studies on the effects of plant diversity on insect herbivory have produced conflicting results. Plant diversity has been reported to cause positive and negative responses of herbivores. Explanations for these conflicting responses include not only various population-level processes but also changes in plant quality that lead to changes in herbivore performance. In a tree diversity experiment, we investigated the effects of tree diversity on insect herbivory on oak in general and whether the effects of tree diversity on herbivore damage are reflected by the performance (leaf consumption, growth) of the generalist herbivore Lymantria dispar. Our study showed that the feeding damage caused by naturally occurring herbivores on oak trees decreased with increasing diversity of tree stands. The performance of L. dispar on oak leaves was not affected by tree diversity, neither in field nor laboratory experiments. Our results can be explained by the various processes behind the hypothesis of associational resistance.  相似文献   

5.
M. Uriarte 《Oecologia》2000,122(4):521-528
Consumers can mediate the composition of plant communities and alter ecosystem processes. Although herbivores usually increase N availability in the short term, they might decrease it in the long term. I investigated the long-term effect of insect herbivores on leaf tissue quality and soil N availability in goldenrod (Solidago altissima) fields using two approaches: (1) I compared plots from which herbivores had been excluded for 17 years with adjacent plots that had experienced normal levels of herbivory, and (2) I examined a chronosequence of nine goldenrod fields representing three successional stages: early, middle, and late. These parallel approaches showed that, in the long term, herbivores decrease the quality of leaf litter and soil N availability in goldenrod fields. These long-term effects appear to compensate for various short-term effects that increase N availability in the soil (e.g., added frass, increased light penetration). Furthermore, herbivores decrease leaf litter quality and N availability by reducing the quality of leaf tissue within the same species. This pattern may result from insect herbivores preferentially grazing on plants with a high N content thereby increasing the amount of recalcitrant litter over the course of succession. Received: 4 May 1999 / Accepted: 24 September 1999  相似文献   

6.
7.
Defoliation‐induced changes in plant foliage are ubiquitous, though factors mediating induction and the extent of their influence on ecosystem processes such as leaf litter decomposition are poorly understood. Soil nitrogen (N) availability, which can be affected by insect herbivore frass (feces), influences phytochemical induction. We conducted experiments to test the hypotheses that insect frass deposition would (1) reduce phytochemical induction following herbivory and (2) increase the decomposition and nutrient release of the subsequent leaf litter. During the 2002 growing season, 80 Quercus rubra saplings were subjected to a factorial experiment with herbivore and frass manipulations. Leaf samples were collected throughout the growing season to measure the effects of frass deposition on phytochemical induction. In live foliage, herbivore damage increased tannin concentrations early, reduced foliar N concentrations throughout the growing season, and lowered lignin concentrations in the late season. Frass deposition apparently reduced leaf lignin concentrations, but otherwise did not influence leaf chemistry. Following natural senescence, litter samples from the treatment groups were decomposed in replicated litterbags for 18 months at the Coweeta Hydrologic Laboratory, NC. In the dead litter samples, initial tannin concentrations were lower in the herbivore damage group and higher in the frass addition group relative to their respective controls. Tannin and N release rates in the first nine months of decomposition were also affected by both damage and frass. However, decomposition rates did not differ among treatment groups. Thus, nutrient dynamics important for some ecosystem processes may be independent from the physical loss of litter mass. Overall, while lingering effects of damage and even frass deposition can therefore carry over and affect ecosystem processes during decomposition, their effects appear short lived relative to abiotic forces that tend to homogenize the decomposition process.  相似文献   

8.
凋落物分解主场效应及其土壤生物驱动   总被引:1,自引:0,他引:1  
凋落物分解主场效应是指凋落物具有在其生长的栖息地比在别的生境分解更快的特征,土壤生物的特化作用被认为是主场效应的产生机理.主场效应是除基质质量和物理化学环境外控制凋落物分解的重要因子,可影响模拟精度的8%.凋落物分解主场效应驱动机制的深入研究对促进分解模型中纳入生物因子,提高区域尺度模拟精度具有重要作用.虽然时间和基质质量可导致主场效应强度变化,但不能全面解释主场效应强度差异特别是负效应的产生.通过分析凋落物分解过程中土壤生物的作用机理,指出凋落物分解主场效应的土壤生物驱动可能包括土壤微生物的调节性适应,土壤动物的后期插入以及物理化学环境的间接影响.为深入了解主场效应土壤生物驱动机制,更好地模拟凋落物分解过程,提出延长凋落物分解交互移置实验时间,拓展实验空间,结合室内模拟分析和构建分解模型等方法与途径.  相似文献   

9.
Increasing infestation by insect herbivores and pathogenic fungi in response to climate change will inevitably impact the amount and quality of leaf litter inputs into the soil. However, little is known on the interactive effect of infestation severity and climate change on litter decomposition, and no such study has been published for deciduous forests in Central Europe. We assessed changes in initial chemical quality of beech (Fagus sylvatica L.) and maple litter (Acer platanoides L.) in response to infestation by the gall midge Mikiola fagi Hart. and the pathogenic fungus Sawadaea tulasnei Fuckel, respectively, and investigated interactive effects of infestation severity, changes in temperature and soil moisture on carbon mineralization in a short-term laboratory study. We found that infestation by the gall midge M. fagi and the pathogenic fungus S. tulasnei significantly changed the chemical quality of beech and maple litter. Changes in element concentrations were generally positive and more pronounced, and if negative less pronounced for maple than beech litter most likely due to high quality fungal tissue remaining on litter after abscission. More importantly, alterations in litter chemical quality did not translate to distinct patterns of carbon mineralization at ambient conditions, but even low amounts of infested litter accelerated carbon mineralization at moderately increased soil moisture and in particular at higher temperature. Our results indicate that insect herbivores and fungal pathogens can markedly alter initial litter chemical quality, but that afterlife effects on carbon mineralization depend on soil moisture and temperature, suggesting that increased infestation severity under projected climate change potentially increases soil carbon release in deciduous forests in Central Europe.  相似文献   

10.
Gall-inducing insects are highly specialized herbivores that modify the phenotype of their host plants. Beyond the direct manipulation of plant morphology and physiology in the immediate environment of the gall, there is also evidence of plant-mediated effects of gall-inducing insects on other species of the assemblages and ecosystem processes associated with the host plant. We analysed the impact of gall infestation by the aphid Pemphigus spirothecae on chemical leaf traits of clonal Lombardy poplars (Populus nigra var. italica) and the subsequent effects on intensity of herbivory and decomposition of leaves across five sites. We measured the herbivory of two feeding guilds: leaf-chewing insects that feed on the blade (e.g. caterpillars and sawfly larvae) and skeletonising insects that feed on the mesophyll of the leaves (e.g. larvae of beetles). Galled leaves had higher phenol (35%) and lower nitrogen and cholorophyll contents (35% respectively 37%) than non-galled leaves, and these differences were stronger in August than in June. Total herbivory intensity was 27% higher on galled than on non-galled leaves; damage by leaf chewers was on average 61% higher on gall infested leaves, whereas damage by skeletonising insects was on average 39% higher on non-galled leaves. After nine months the decomposition rate of galled leaf litter was 15% lower than that of non-galled leaf litter presumably because of the lower nitrogen content of the galled leaf litter. This indicated after-life effects of gall infestation on the decomposers. We found no evidence for galling x environment interactions.  相似文献   

11.
Plant traits are known to control litter decomposition rates through afterlife effects on litter quality. Land-use practices that modify plant traits, e.g. livestock grazing and soil fertilization, also have cascading effects on litter decomposition. However, almost all studies of these afterlife effects ignored the role of soil detritivores in the decomposition processes. We explored how the feeding activities of a macroarthropod modify microbial activity in leaf litter. Dead leaves from two grassland species, Bromopsis erecta and Potentilla verna, were collected in fertilized or unfertilized grazed plots and fertilized or unfertilized ungrazed plots. We determined how intraspecific variation in litter quality in response to sheep grazing and soil fertilization (i) influences the consumption and assimilation of leaf litter by the millipede Glomeris marginata, and (ii) affects the activity of microbial decomposers, assessed by substrate-induced respiration (SIR), in leaf litter before consumption and in faecal pellets and litter remains processed by Glomeris under all treatments. In the absence of millipedes, microbial activity was significantly higher in leaf litter from fertilized plots. Glomeris consumed larger amounts of leaf litter from fertilized grazed plots, owing to increased consumption of the otherwise poorly palatable Bromopsis, and produced larger amounts of faecal pellets when fed on this food. However, irrespective of the food consumed, SIR in faecal pellets was found to be similar in all treatments. Moreover, SIR in litter remains unconsumed at the end of the experiment was reduced to low and similar levels in all treatments. Overall, homogenization of microbial activity by Glomeris suppressed differences in SIR between leaf litter from fertilized and unfertilized plots, in both Bromopsis and Potentilla. Our results suggest that studies that assess afterlife effects of plant traits on decomposition using methods that exclude soil macrofauna may prove inadequate in ecosystems with abundant populations of detritivores.  相似文献   

12.
Plant genetic variation and herbivores can both influence ecosystem functioning by affecting the quantity and quality of leaf litter. Few studies have, however, investigated the effects of herbivore load on litter decomposition at plant genotype level. We reduced insect herbivory using an insecticide on one half of field-grown Betula Pendula saplings of 17 genotypes, representing random intrapopulation genetic variation, and allowed insects to naturally colonize the other half. We hypothesized that due to induced herbivore defence, saplings under natural herbivory produce litter of higher concentrations of secondary metabolites (terpenes and soluble phenolics) and have slower litter decomposition rate than saplings under reduced herbivory. We found that leaf damage was 89 and 53% lower in the insecticide treated saplings in the summer and autumn surveys, respectively, which led to 73% higher litter production. Litter decomposition rate was also affected by herbivore load, but the effect varied from positive to negative among genotypes and added up to an insignificant net effect at the population level. In contrast to our hypothesis, concentrations of terpenes and soluble phenolics were higher under reduced than natural herbivory. Those genotypes, whose leaves were most injured by herbivores, produced litter of lowest mass loss, but unlike we expected, the concentrations of terpenes and soluble phenolics were not linked to either leaf damage or litter decomposition. Our results show that (1) the genetic and herbivore effects on B. pendula litter decomposition are not mediated through variation in terpene or soluble phenolic concentrations and suggest that (2) the presumably higher insect herbivore pressure in the future warmer climate will not, at the ecological time scale, affect the mean decomposition rate in genetically diverse B. pendula populations. However, (3) due to the significant genetic variation in the response of decomposition to herbivory, evolutionary changes in mean decomposition rate are possible.  相似文献   

13.
Frost CJ  Hunter MD 《Oecologia》2007,151(1):42-53
Herbivores directly and indirectly affect ecosystem functioning in forests. Feces deposition is a direct effect that supplies ephemeral N pulses to soils. Herbivore-mediated changes in plant N allocation and uptake are indirect effects that can also influence soil N availability. These effects may interact if defoliation influences the ability of plants to recover fecal N, and this may affect subsequent generations of herbivores. We added 15N-enriched insect feces (frass) to a series of replicated red oak, Quercus rubra, mesocosms that had been damaged experimentally and then followed the frass N over the course of 2 years. In the first season, some frass N was mineralized in the soil and leached in organic form from the mesocosms within 1 week of deposition. Within 1 month, frass N had been acquired by the oaks and enriched the foliage; late-season herbivores assimilated the frass N within the same growing season. In the second season, herbivore damage from the previous year lowered total leaf N contents and 15N recovered in the foliage. A subsequent cohort of early-season herbivores fed on this foliage consequently derived less of their N from the previous year’s frass, and feral leaf rollers colonized fewer of these saplings. The 0- to 5-cm soil fraction was the largest N sink measured, and 42% of the frass N was recovered in the soil. The results demonstrate that: (1) some frass N can be recycled rapidly into foliage and assimilated by successive cohorts of herbivore within the same season; (2) damage can affect N allocation in the following year’s foliage, influencing N availability to and host selection by herbivores; and (3) leaching losses occur soon after deposition but are buffered by soil pools, which are the largest sinks for frass N.  相似文献   

14.
  1. We investigated how compositional differences in riparian leaf litter derived from burned and undisturbed forests influenced leaf breakdown and macroinvertebrate communities using experimental mixed-species leaf packs in boreal headwater streams. Leaf pack mixtures simulating leaf litter from dominant riparian woody-stem species in burned and undisturbed riparian zones were incubated in two references and two fire-disturbed streams for 5 weeks prior to measuring temperature-corrected breakdown rates and macroinvertebrate community composition, richness, and functional metrics associated with decomposers such as shredder abundance and % shredders.
  2. Leaf litter breakdown rates were higher and had greater variability in streams bordered by reference riparian forests than in streams where riparian forests had been burned during a wildfire. Streams bordered by fire disturbance showed significant effects of litter mixture on decomposition rates, observed as significantly higher decomposition rates of a fire-simulated leaf mixture compared to all other mixtures.
  3. Variation among sites was higher than variation among litter mixtures, especially for macroinvertebrate community composition. In general, fire-simulated leaf mixtures had greater shredder abundances and proportions, but lower overall macroinvertebrate abundance; however, the shredder abundance trend was not consistent across all leaf mixtures at each stream.
  4. These results show that disturbance-driven riparian forest condition and resulting composition of leaf subsidies to streams can influence aquatic invertebrate community composition and their function as decomposers. Therefore, if one of the primary goals of modern forest management is to emulate natural disturbance patterns, boreal forest managers should adapt silvicultural practices to promote leaf litter input that would arise post-fire, thereby supporting stream invertebrate communities and their function.
  相似文献   

15.
  • 1 Insect frass has significant impacts on decomposition and soil nitrogen dynamics. Although the frass contains various forms of nitrogen that may differently influence nitrogen dynamics in the decomposition process, how the nitrogen form in the insect frass is influenced by host plant quality remains poorly understood.
  • 2 The present study examined the effects of application of fertilizer on leaf quality of Brassica rapa L. var. perviridis Bailey (Brassicaceae), and on the consumption, frass excretion and frass quality of its insect pest Mamestra brassicae (L.) (Lepidoptera: Noctuidae), with a particular focus on the dynamics of inorganic nitrogen.
  • 3 Brassica rapa increased total nitrogen concentration, and accumulated inorganic nitrogen [i.e. leaf nitrate‐nitrogen (NO3?‐N) and ammonium‐nitrogen (NH4+‐N)] in the leaves in response to the application of fertilizer.
  • 4 Although leaf consumption and frass excreted by M. brassicae was not affected by fertilizer treatment, frass quality was influenced by host plant quality as altered by fertilizer applications. Frass contained high concentrations of total nitrogen, NO3?‐N, and NH4+‐N under high fertilizer treatment. In particular, the larvae excreted much more NH4+‐N than ingested. The relationship between host plant quality and insect frass quality, as well as the potential implications for decomposition and nutrient dynamics, are discussed.
  相似文献   

16.
M. A. S. Graça  J. M. Poquet 《Oecologia》2014,174(3):1021-1032
We tested the hypothesis that water stress and soil nutrient availability drive leaf-litter quality for decomposers and detritivores by relating chemical and physical leaf-litter properties and decomposability of Alnus glutinosa and Quercus robur, sampled together with edaphic parameters, across wide European climatic gradients. By regressing principal components analysis of leaf traits [N, P, condensed tannins, lignin, specific leaf area (SLA)] against environmental and soil parameters, we found that: (1) In Q. robur the condensed tannin and lignin contents increased and SLA decreased with precipitation, annual range of temperature, and soil N content, whereas leaf P increased with soil P and temperature; (2) In A. glutinosa leaves N, P, and SLA decreased and condensed tannins increased with temperature, annual range of temperature, and decreasing soil P. On the other hand, leaf P and condensed tannins increased and SLA decreased with minimum annual precipitation and towards sites with low temperature. We selected contrasting leaves in terms of quality to test decomposition and invertebrate consumption. There were intraspecific differences in microbial decomposition rates (field, Q. robur) and consumption by shredders (laboratory, A. glutinosa). We conclude that decomposition rates across ecosystems could be partially governed by climate and soil properties, affecting litter quality and therefore decomposers and detritivores. Under scenarios of global warming and increased nutrients, these results suggest we can expect species-specific changes in leaf-litter properties most likely resulting in slow decomposition with increased variance in temperatures and accelerated decomposition with P increase.  相似文献   

17.
1. In brown food webs of the forest floor, necromass (e.g. insect carcasses and frass) falling from the canopy feeds both microbes and ants, with the former decomposing the homes of the latter. In a tropical litter ant community, we added necromass to 1 m2 plots, testing if it added as a net food (increasing ant colony growth and recruitment) or destroyer of habitat (by decomposing leaf litter). 2. Maximum, but not mean, colony growth rates were higher on +food plots. However, neither average colony size, nor density was higher on +food plots. In contrast, +food plots saw diminished availability of leaf litter and higher microbial decomposition of cellulose, a main component of the organic substrate that comprises litter habitat. 3. Furthermore, necromass acted as a limiting resource to the ant community only when nest sites were supplemented on +food plots in a second experiment. Many of these +food +nest plots were colonised by the weedy species Wasmannia auropunctata. 4. Combined, these results support the more food–less habitat hypothesis and highlight the importance of embedding studies of litter ant ecology within broader decomposer food web dynamics.  相似文献   

18.
Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders). We examined how aquatic insect emergence changed seasonally with litter from two foundation riparian trees, whose litter often dominates riparian streams of the southwestern United States: Fremont (Populus fremontii) and narrowleaf (Populus angustifolia) cottonwood. P. fremontii litter is fast-decomposing and lower in defensive phytochemicals (i.e., condensed tannins, lignin) relative to P. angustifolia. We experimentally manipulated leaf litter from these two species by placing them in leaf enclosures with emergence traps attached in order to determine how leaf type influenced insect emergence. Contrary to our initial predictions, we found that packs with slow-decomposing leaves tended to support more emergent insects relative to packs with fast-decomposing leaves. Three findings emerged. Firstly, abundance (number of emerging insects m?2 day?1) was 25 % higher on narrowleaf compared to Fremont leaves for the spring but did not differ in the fall, demonstrating that leaf quality from two dominant trees of the same genus yielded different emergence patterns and that these patterns changed seasonally. Secondly, functional feeding groups of emerging insects differed between treatments and seasons. Specifically, in the spring collector-gatherer abundance and biomass were higher on narrowleaf leaves, whereas collector-filterer abundance and biomass were higher on Fremont leaves. Shredder abundance and biomass were higher on narrowleaf leaves in the fall. Thirdly, diversity (Shannon’s H′) was higher on Fremont leaves in the spring, but no differences were found in the fall, showing that fast-decomposing leaves can support a more diverse, complex emergent insect assemblage during certain times of the year. Collectively, these results challenge the notion that leaf quality is a simple function of decomposition, suggesting instead that aquatic insects benefit differentially from different leaf types, such that some use slow-decomposing litter for habitat and its temporal longevity and others utilize fast-decomposing litter with more immediate nutrient release.  相似文献   

19.
Decomposition is a key process driving carbon and nutrient cycling in ecosystems worldwide. The home field advantage effect (HFA) has been found to accelerate decomposition rates when litter originates from “home” when compared to other (“away”) sites. It is still poorly known how HFA plays out in tropical, riparian forests, particularly in forests under restoration. We carried out three independent reciprocal litter transplant experiments to test how litter quality, soil nutrient concentrations, and successional stage (age) influenced HFA in tropical riparian forests. These experimental areas formed a wide gradient of soil and litter nutrients, which we used to evaluate the more general hypothesis that HFA varies with dissimilarity in soil nutrients and litter quality. We found that HFA increased with soil nutrient dissimilarity, suggesting that litter translocation uncouples relationships between decomposers and litter characteristics; and with litter N:P, indicating P limitation in this system. We also found negative HFA effects at a site under restoration that presented low decomposer ability, suggesting that forest restoration does not necessarily recover decomposer communities and nutrient cycling. Within each of the independent experiments, the occurrence of HFA effects was limited and their magnitude was not related to forest age, nor soil and litter quality. Our results imply that HFA effects in tropical ecosystems are influenced by litter nutrient limitation and soil nutrient dissimilarity between home and away sites, but to further disentangle major HFA drivers in tropical areas, a gradient of dissimilarity between litter and soil properties must be implemented in future experimental designs.  相似文献   

20.
Symbiotic N2-fixing tree species can accelerate ecosystem N dynamics through decomposition feedbacks via both direct and indirect pathways. Direct pathways include the production of readily decomposed leaf litter and increased N supply to decomposers, whereas indirect pathways include increased tissue N and altered detrital dynamics of non-fixing vegetation. To evaluate the relative importance of direct and indirect pathways, we compared 3-year decomposition and N dynamics of N2-fixing red alder leaf litter (2.34% N) to both low-N (0.68% N) and high-N (1.21% N) litter of non-fixing Douglas-fir, and decomposed each litter source in four forests dominated by either red alder or Douglas-fir. We also used experimental N fertilization of decomposition plots to assess elevated N availability as a potential mechanism of N2-fixer effects on litter mass loss and N dynamics. Direct effects of N2-fixing red alder on decomposition occurred primarily as faster N release from red alder than Douglas-fir litter. Direct increases in N supply to decomposers via experimental N fertilization did not stimulate decomposition of either species litter. Fixed N indirectly influenced detrital dynamics by increasing Douglas-fir tissue and litter N concentrations, which accelerated litter N release without accelerating mass loss. By increasing soil N, tissue N, and the rate of N release from litter of non-fixers, we conclude that N2-fixing vegetation can indirectly foster plant–soil feedbacks that contribute to the persistence of elevated N availability in terrestrial ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号