首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
3.
Retrotransposon and retroviral RNA delivery to particle assembly sites is essential for their replication. mRNA and Gag from the Ty1 retrotransposon colocalize in cytoplasmic foci, which are required for transposition and may be the sites for virus‐like particle (VLP) assembly. To determine which Ty1 components are required to form mRNA/Gag foci, localization studies were performed in a Ty1‐less strain expressing galactose‐inducible Ty1 plasmids (pGTy1) containing mutations in GAG or POL. Ty1 mRNA/Gag foci remained unaltered in mutants defective in Ty1 protease (PR) or deleted for POL. However, Ty1 mRNA containing a frameshift mutation (Ty1fs) that prevents the synthesis of all proteins accumulated in the nucleus. Ty1fs RNA showed a decrease in stability that was mediated by the cytoplasmic exosome, nonsense‐mediated decay (NMD) and the processing body. Localization of Ty1fs RNA remained unchanged in an nmd2Δ mutant. When Gag and Ty1fs mRNA were expressed independently, Gag provided in trans increased Ty1fs RNA level and restored localization of Ty1fs RNA in cytoplasmic foci. Endogenously expressed Gag also localized to the nuclear periphery independent of RNA export. These results suggest that Gag is required for Ty1 mRNA stability, efficient nuclear export and localization into cytoplasmic foci.  相似文献   

4.
5.
Although most Ty1 elements in Saccharomyces cerevisiae are competent for retrotransposition, host defense genes can inhibit different steps of the Ty1 life cycle. Here, we demonstrate that Rad27, a structure-specific nuclease that plays an important role in DNA replication and genome stability, inhibits Ty1 at a post-translational level. We have examined the effects of various rad27 mutations on Ty1 element retrotransposition and cDNA recombination, termed Ty1 mobility. The point mutations rad27-G67S, rad27-G240D, and rad27-E158D that cause defects in certain enzymatic activities in vitro result in variable increases in Ty1 mobility, ranging from 4- to 22-fold. The C-terminal frameshift mutation rad27-324 confers the maximum increase in Ty1 mobility (198-fold), unincorporated cDNA, and insertion at preferred target sites. The null mutation differs from the other rad27 alleles by increasing the frequency of multimeric Ty1 insertions and cDNA recombination with a genomic element. The rad27 mutants do not markedly alter the levels of Ty1 RNA or the TyA1-gag protein. However, there is an increase in the stability of unincorporated Ty1 cDNA in rad27-324 and the null mutant. Our results suggest that Rad27 inhibits Ty1 mobility by destabilizing unincorporated Ty1 cDNA and preventing the formation of Ty1 multimers.  相似文献   

6.
7.
Expression of the budding yeast retrotransposon Ty3 results in production of viruslike particles (VLPs) and retrotransposition. The Ty3 major structural protein, Gag3, similar to retrovirus Gag, is processed into capsid, spacer, and nucleocapsid (NC) during VLP maturation. The 57-amino-acid Ty3 NC protein has 17 basic amino acids and contains one copy of the CX2CX4HX4C zinc-binding motif found in retrovirus NC proteins. Ty3 RNA, protein, and VLPs accumulate in clusters associated with RNA processing bodies (P bodies). This study investigated the role of the NC domain in Ty3-P body clustering and VLP assembly. Fifteen Ty3 NC Ala substitution and deletion mutants were examined using transposition, immunoblot, RNA protection, cDNA synthesis, and multimerization assays. Localization of Ty3 proteins and VLPs was characterized microscopically. Substitutions of each of the conserved residues of the zinc-binding motif resulted in the loss of Ty3 RNA packaging. Substitution of the first two of four conserved residues in this motif caused the loss of Ty3 RNA and protein clustering with P bodies and disrupted particle formation. NC was shown to be a mediator of formation of Ty3 RNA foci and association of Ty3 RNA and protein with P bodies. Mutations that disrupted these NC functions resulted in various degrees of Gag3 nuclear localization and a spectrum of different particle states. Our findings are consistent with the model that Ty3 assembly is associated with P-body components. We hypothesize that the NC domain acts as a molecular switch to control Gag3 conformational states that affect both assembly and localization.  相似文献   

8.
We have examined the influence of RNA upon the interaction of Gag-Pol with Gag during human immunodeficiency virus type 1 (HIV-1) assembly. COS7 cells were transfected with protease-negative HIV-1 proviral DNA, and Gag/Gag-Pol complexes were detected by coimmunoprecipitation with anti-integrase. In COS7 cells, Gag/Gag-Pol is found almost entirely in pelletable, membrane-bound complexes. Exposure of cells to 1% Triton X-100 releases Gag/Gag-Pol from bulk membrane, but the complexes remain pelletable. The role of RNA in facilitating the interaction between Gag and Gag-Pol was examined in these bulk membrane-free, pelletable complexes. The specific presence of viral genomic RNA is not required to maintain the Gag/Gag-Pol interaction, but some type of RNA is, since exposure to RNase destabilized the Gag/Gag-Pol complex. When present only in Gag, the nucleocapsid mutation R7R10K11S, which inhibits Gag binding to RNA, inhibits the formation of both Gag and Gag/Gag-Pol complexes. When present only in Gag-Pol, this mutation has no effect upon complex formation. This result indicates that Gag-Pol may not interact directly with RNA but rather requires RNA-facilitated Gag multimerization for its interaction with Gag.  相似文献   

9.
10.
The Saccharomyces cerevisiae DBR1 gene encodes a 2'-5' phosphodiesterase that debranches intron RNA lariats following splicing. Yeast dbr1 mutants accumulate intron lariats and are also defective for mobility of the retrotransposons Ty1 and Ty3. We used a mutagenic PCR method to generate a collection of dbr1 mutant alleles to explore the relationship between the roles of DBR1 in transposition and debranching. Eight mutants defective for Ty1 transposition contained single amino acid changes in Dbr1p. Two mutations, G84A and N85D, are in a conserved phosphoesterase motif that is believed to be part of the active site of the enzyme, supporting a connection between enzymatic activity and Ty1 transposition. Two other mutations, Y68F and Y68D, occur at a potential phosphorylation site, and we have shown that Dbr1p is phosphorylated on tyrosine. We have developed an RNase protection assay to quantitate intron RNA accumulation in cells. The assay uses RNA probes that hybridize to ACT1 intron RNA. Protection patterns confirm that sequences from the 5' end of the intron to the lariat branch point accumulate in dbr1 mutants in a branched (lariat) conformation. RNase protection assays indicate that all of the newly generated dbr1 mutant alleles are also deficient for debranching, further supporting a role for 2'-5' phosphodiesterase activity in Ty1 transposition. A Ty1 element lacking most of its internal sequences transposes independently of DBR1. The existence of Dbr1p-dependent Ty1 sequences raises the possibility that Dbr1p acts on Ty1 RNA.  相似文献   

11.
12.
13.
Retrotransposition of the budding yeast long terminal repeat retrotransposon Ty3 is activated during mating. In this study, proteins that associate with Ty3 Gag3 capsid protein during virus-like particle (VLP) assembly were identified by mass spectrometry and screened for roles in mating-stimulated retrotransposition. Components of RNA processing bodies including DEAD box helicases Dhh1/DDX6 and Ded1/DDX3, Sm-like protein Lsm1, decapping protein Dcp2, and 5’ to 3’ exonuclease Xrn1 were among the proteins identified. These proteins associated with Ty3 proteins and RNA, and were required for formation of Ty3 VLP retrosome assembly factories and for retrotransposition. Specifically, Dhh1/DDX6 was required for normal levels of Ty3 genomic RNA, and Lsm1 and Xrn1 were required for association of Ty3 protein and RNA into retrosomes. This role for components of RNA processing bodies in promoting VLP assembly and retrotransposition during mating in a yeast that lacks RNA interference, contrasts with roles proposed for orthologous components in animal germ cell ribonucleoprotein granules in turnover and epigenetic suppression of retrotransposon RNAs.  相似文献   

14.
Expression of the two isoforms p55 and p40 of HIV-1 Gag proteins relies on distinct translation initiation mechanisms, a cap-dependent initiation and two internal ribosome entry sites (IRESs). The regulation of these processes is complex and remains poorly understood. This study was focused on the influence of the 5'-UTR and on the requirement for the eukaryotic initiation factor (eIF)4F complex components. By using an in?vitro system, we showed substantial involvement of the 5'-UTR in the control of p55 expression. This highly structured 5'-UTR requires the eIF4F complex, especially RNA helicase eIF4A, which mediates initiation at the authentic AUG codon. In addition, the 5'-UTR regulates expression in an RNA concentration-dependent manner, with a high concentration of RNA triggering specific reduction of full-length Gag p55 production. HIV-1 genomic RNA also has the ability to use a strong IRES element located in the gag coding region. We show that this mechanism is particularly efficient, and that activity of this IRES is only poorly dependent on RNA helicase eIF4A when the viral 5'-UTR is removed. HIV-1 genomic mRNA exhibits in?vitro translational features that allow the expression of Gag p55 protein by different mechanisms that involve different requirements for eIF4E, eIF4G, and eIF4A. This suggests that HIV-1 could adapt to its mode of translation according to the availability of the initiation factors in the infected cell.  相似文献   

15.
16.
17.
18.
19.
The yeast retrotransposon Ty1 encodes a 7-nucleotide RNA sequence that directs a programmed, +1 ribosomal frameshifting event required for Gag-Pol translation and retrotransposition. We report mutations that block frameshifting, which can be suppressed in cis by "transplanting" the frameshift signal to a position upstream of its native location. These "frameshift transplant" mutants transpose with only a modest decrease in efficiency, suggesting that the location of the frameshift signal in a functional Ty1 element may vary. The genomic architecture of Ty1 is such that Gag, Ty1 PR (PR), and the Gag-derived p4 peptide share a common sequence. The functional independence of the movement of the frameshift signal to a new location within the Ty1 element is used to unambiguously attribute the effect of mutations deleterious to transposition in this region of overlapping coding sequences to effects on the Ty1 (PR). This work defines the amino terminus of the Ty1 PR and introduces a new technique for studying viral genome organization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号