首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ribulose 1,5-bisphosphate carboxylase from Rhodospirillum rubrum requires CO2 and Mg2+ for activation of both CO2, both the carboxylase and oxygenase activities are stimulated by 6-phoshpo-D-gluconate, fructose 1,6-bisphosphate, 2-phosphoglycolate, 3-phosphoglycerate, NADPH, and fructose 6-phosphate. The carboxylase activity is not activated by ribose 5-phosphate. The substrate, ribulose bisphosphate, neither activates nor inhibits the CO2 and Mg2+ activation of this enzyme. Activation by CO2 and Mg2+ is rapid and results in increased susceptibility to active-site-directed protein modification reagents. Because the R. rubrum carboxylase-oxygenase is a dimer of large subunits and contains no small subunits, these results suggest that the effector binding sites of the higher plant enzyme may also be found on the large subunit.  相似文献   

2.
An improved method was devised to purify ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) with high specific activity (2.1 mumol of CO2 fixed/mg protein/min) from Euglena gracilis Z. The purified enzyme stored at -80 degrees C required treatment with dithiothreitol for full activity. The dithiothreitol-treated RuBisCO was activated by 12 mM NaHCO3 and 20 mM MgCl2, and the activated state was stable at least for 60 min in the presence of 4 mM ethylenediaminetetraacetate. The form of inorganic carbon fixed by the Euglena enzyme was CO2, as for the plant enzymes. The carboxylase reaction proceeded linearly with time for at least 8 min. The optimum pH for this reaction was 7.8 to 8.0. The carboxylase activity increased with increasing temperature up to 50 degrees C. The activation energy for the carboxylation reaction was 10.0 kcal/mol. The Michaelis constants of Euglena RuBisCO were 30.9 microM for CO2, 560 microM for O2, and 10.5 microM for ribulose 1,5-bisphosphate. Mathematical comparison between the photosynthesis rate predicted from these enzymatic properties and the observed rate suggested that there is no CO2-concentrating mechanism in E. gracilis.  相似文献   

3.
Further evidence for time-dependent interconversions between active and inactive states of ribulose 1,5-bisphosphate carboxylase is presented. It was found that ribulose bisphosphate oxygenase and ribulose bisphosphate carboxylase could be totally inactivated by excluding CO2 and Mg2+ during dialysis of the enzyme at 4 degrees C. When initially inactive enzyme was assayed, the rate of reaction continually increased with time, and the rate was inversely related to the ribulose bisphosphare concentration. The initial rate of fully activated enzyme showed normal Michaelis-Menten kinetics with respect to ribulose bisphosphate (Km = 10muM). Activation was shown to depend on both CO2 and Mg2+ concentrations, with equilibrium constants for activation of about 100muM and 1 mM respectively. In contrast with activation, catalysis appeared to be independent of Mg2+ concentration, but dependent on CO2 concentration, with a Km(CO2) of about 10muM. By studying activation and de-activation of ribulose bisphosphate carboxylase as a function of CO2 and Mg2+ concentrations, the values of the kinetic constants for these actions have been determined. We propose a model for activation and catalysis of ribulose bisphosphate carboxylase: (see book) where E represents free inactive enzyme; complex in parentheses, activated enzyme; R, ribulose bisphosphate; M, Mg2+; C, CO2; P, the product. We propose that ribulose bisphosphate can bind to both the active and inactive forms of the enzyme, and slow inter-conversion between the two states occurs.  相似文献   

4.
The recent isolation of a catalytically competent recombinant octameric core of the hexadecameric ribulose-1,5-bisphosphate carboxylase/oxygenase from the cyanobacterium Anacystis nidulans (Synechococcus) (B. Lee and F. R. Tabita, 1990, Biochemistry 29, 9352-9357) has provided a useful system for examining the properties of this enzyme in the absence of small subunits. Unlike most sources of hexadecameric ribulose bisphosphate carboxylase, the nonactivated Anacystis holoenzyme was not inhibited markedly by preincubation with ribulose 1,5-bisphosphate. This was also true for the Anacystis octameric core and a heterologous recombinant enzyme that comprised large subunits from Anacystis and small subunits from the bacterium Alcaligenes eutrophus, suggesting that substrate-mediated inactivation is not influenced by small subunits. In addition, the CO2/O2 specificity factor was not affected by the source of the small subunits incorporated into the structure of the hexadecameric protein, in agreement with previous in vitro heterologous reconstitution studies. The activated octameric Anacystis enzyme, however, was significantly more sensitive to inhibition by the phosphorylated effector 6-phosphogluconate than were the hexadecameric Alcaligenes and Anacystis enzymes and the heterologous Anacystis-Alcaligenes hybrid.  相似文献   

5.
An an initial stage in the study of proteins from thermophilic algae, the enzyme ribulose 1,5-bisphosphate carboxylase 2-phospho-D-glycerate carboxylyase (dimerizing, EC 4.1.1.39) was purified 11-fold from the thermophilic alga Cyandium caldarium, with a 24% recovery. This purified enzyme appeared homogeneous on polyacrylamide gels and could be dissociated into two subunit types of molecular weights 55,000 and 14,900. The optimal assay temperature was 42.5 degrees C, whilst enzyme purified from Chlorella spp. showed maximum activity at 35 degrees C. The thermostability of Cyanidium ribulose 1,5-bisphosphate carboxylase was considerably greater than that of the Chlorella enzyme, and the presence of Mg2+ and HCO-3 further enhanced this heat stability. A break in the Arrhenius plot occured at 20 degrees C for Chlorella ribulose 1,5-bisphosphate carboxylase and 36 degrees C for the enzyme from Cyanidium. It is suggested that the thermostability of Cyanidium ribulose 1,5-bisphosphate carboxylase is a result of an inherent stability of the enzyme molecule which permits efficient CO2 fixation at high temperatures but results in low activity in the mesophilic temperature range.  相似文献   

6.
D-Ribulose-1,5-bisphosphate (RuBP) carboxylase has been purified from glutamate-CO2-S2O3(2)-grown Thiobacillus intermedius by pelleting the enzyme from the high-speed supernatant and by intermediary crystallization followed by sedimentation into a discontinuous 0.2 to 0.8 M sucrose gradient. The enzyme was homogeneous by the criteria of electrophoresis on polyacrylamide gels of several acrylamide concentrations, sedimentation velocity and equilibrium measurements, and electron microscopic observations of negatively stained preparations. The molecular weights of the enzyme determined by sedimentation equilibrium and light-scattering measurements averaged 462,500 +/- 13,000. The enzyme consisted of closely similar or identical polypeptide chains of a molecular weight of 54,500 +/- 5,450 determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The S(0)20,w of the enzyme was 18.07S +/- 0.22. Electron microscopic examination suggested that the octomeric enzyme (inferred from the molecular measurements mentioned) had a cubical structure. The specific activity of the enzyme was 2.76 mumol of RuBP-dependent CO2 fixed/min per mg of protein (at pH 8 and 30 C), and the turnover number in terms of moles of CO2 fixed per mole of catalytic site per second was 2.6. The enzyme was stable for 3 months at -20 C and at least 4 weeks at 0 C. The apparent Km for CO2 was 0.75 mM, and Km values for RuBP and Mg2+ were 0.076 and 3.6 mM, respectively. Dialyzed enzyme could be fully reactivated by the addition of 20 mM Mg2+ and partially reactivated by 20 mM Co2+, but Cd2+, Mn2+, Ca2+, and Zn2+ had no effect. The compound 6-phosphogluconate was a linear competitive inhibitor with respect to RuBP when it had been preincubated with enzyme, Mg2+, and HCO3-.  相似文献   

7.
Toluene-permeabilized Rhodospirillum rubrum cells were used to study activation of and catalysis by the dual-function enzyme ribulose bisphosphate carboxylase/oxygenase. Incubation with CO2 provided as HCO3-, followed by rapid removal of CO2 at 2 degrees C and subsequent incubation at 30 degrees C before assay, enabled a determination of decay rates of the carboxylase and the oxygenase. Half-times at 30 degrees C with 20 mM-Mg2+ were 10.8 and 3.7 min respectively. Additionally, the concentrations of CO2 required for half-maximal activation were 56 and 72 microM for the oxygenase and the carboxylase respectively. After activation and CO2 removal, inactivation of ribulose bisphosphate oxygenase in the presence of 1 mM- or 20mM-Mn2+ was slower than that with the same concentrations of Co2+ or Mg2+. Only the addition of Mg2+ supported ribulose bisphosphate carboxylase activity, as Mn2+, Co2+ and Ni2+ had no effect. A pH increase after activation in the range 6.8-8.0 decreased the stability of the carboxylase but in the range 7.2-8.0 increased the stability of the oxygenase. With regard to catalysis. Km values for ribulose 1,5-bisphosphate4- were 1.5 and 67 microM for the oxygenase and the carboxylase respectively, and 125 microM for O2. Over a broad range of CO2 concentrations in the activation mixture, the pH optima were 7.8 and 8-9.2 for the carboxylase and the oxygenase respectively. The ratio of specific activities was constant (9:1 for the carboxylase/oxygenase) of ribulose bisphosphate carboxylase/oxygenase in toluene-treated Rsp. rubrum. Below concentrations of 10 microM-CO2 in the activation mixture, this ratio increased.  相似文献   

8.
Crystalline tobacco (Nicotiana tabacum L.) ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) was prepared using a procedure which protected the enzyme from hydrolysis by endogenous proteases. Leaves were extracted in a buffered medium containing casein, leupeptin, and high concentrations of MgSO4 and NaHCO3. After filtration through ion-exchange resin to remove contaminants, the enzyme was concentrated by precipitation with polyethylene glycol and crystal formation was induced by low-salt dialysis. The crystalline enzyme had a measured specific activity of 1.7 mumol CO2 mg protein-1 min-1, and about 93% of the enzyme could be activated with Mg2+ and CO2. Crystalline enzyme prepared in the absence of casein exhibited an activity which was only one-third of this rate and only about 70% of the enzyme could be activated with Mg2+ and CO2. Casein-extracted enzyme was resolved into distinct bands corresponding to the large (55,000) and small (14,000) subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The large subunit of enzyme prepared according to the latter procedure was found to be composed of five different polypeptides of slightly decreasing molecular weight. Only about one-third of the large subunits were of the 55,000 molecular weight type. No differences between the two preparations were observed in the Km (CO2) and apparent Km (ribulose bisphosphate).  相似文献   

9.
Glyoxylate is a slowly reversible inhibitor of the CO2/Mg2+-activated form of ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach leaves. Inactivation occurred with an apparent dissociation constant of 3.3 mM and a maximum pseudo-first-order rate constant of 7 X 10(-3) s-1. The rate constant for reactivation was 1.2 X 10(-2) s-1. Glyoxylate did not cause differential inhibition of ribulosebisphosphate carboxylase or oxygenase activities. 6-Phosphogluconate protected the enzyme from inactivation by glyoxylate. Glyoxylate was incorporated irreversibly into the large subunit of ribulosebisphosphate carboxylase after reduction with sodium borohydride. Activated enzyme incorporated 1.3 mol of glyoxylate per mole protomer, while enzyme treated with carboxyarabinitol 1,5-bisphosphate (CABP) to protect the active sites incorporated only 0.3 mol glyoxylate per mole protomer. The data suggest that glyoxylate forms a Schiff base with a lysyl residue in the region of the catalytic site. Glyoxylate stimulated the activity of the unactivated enzyme by about twofold. Pseudo-first-order inactivation also occurred with the unactivated enzyme after the initial stimulation by glyoxylate, although at a much slower rate than with the activated enzyme. Glyoxylate treatment of partially activated enzyme did not stimulate formation of the quaternary complex of enzyme X CO2 X Mg2+ X CABP.  相似文献   

10.
The activation properties of the form I and form II ribulose 1,5-bisphosphate carboxylases from Rhodopseudomonas sphaeroides were examined. Both enzymes have a requirement of Mg2+ for optimal activity. Mn2+, Ni2+, and Co2+ can also support activity of the form I enzyme, whereas only Mn2+ can substitute for Mg2+ with the form II enzyme. The effect of different preincubations on the carboxylase reaction was also examined. Both enzymes exhibited a lag when preincubated with other than Mg2+ and CO2 before assay, but the lag was much more pronounced and the rate of the reaction was slower with the form I enzyme under these conditions. Activation of the form I carboxylase By Mg2+ and CO2 occurred more rapidly than that of the form II enzyme. The results obtained with the two distinct forms of carboxylase from R. sphaeroides, as well as studies with the spinach and Rhodospirillum rubrum enzymes, thus indicate that the presence of the small subunit affects the rate of activation by Mg2+ and CO2 as well as the rate of reactivation of ribulose bisphosphate-inactivated enzyme.  相似文献   

11.
Lord JM  Brown RH 《Plant physiology》1975,55(2):360-364
Ribulose 1,5-diphosphate carboxylase has been purified from extracts of autotrophically grown Chlorella fusca by ammonium sulfate precipitation and centrifugation on a linear sucrose density gradient. The enzyme was homogeneous by the criterion of polyacrylamide gel electrophoresis. The molecular weight of the enzyme was 530,000, and it was composed of two types of subunit of molecular weight 53,000 and 14,000. Ribulose 1,5-diphosphate, CO(2), and Mg(2+) had Michaelis constant values of 15 mum, 0.3 mm, and 0.37 mm, respectively. At high bicarbonate concentration (17 mm and 50 mm), 6-phosphogluconate inhibited the enzyme, the inhibition being noncompetitive with respect to ribulose 1,5-diphosphate (Ki 0.065 mm), whereas at low bicarbonate concentration (1 mm), 6-phosphogluconate activated the enzyme. Oxygen was a competitive inhibitor with respect to CO(2), suggesting the enzyme also functions as an oxygenase. This was confirmed by direct assay, a 1: 1 stoichiometry between ribulose 1,5-diphosphate consumed and O(2) uptake being observed.  相似文献   

12.
Y T Ro  C Y Eom  T Song  J W Cho    Y M Kim 《Journal of bacteriology》1997,179(19):6041-6047
Acinetobacter sp. strain JC1 DSM 3803, a carboxydobacterium, grown on methanol was found to show dihydroxyacetone synthase, dihydroxyacetone kinase, and ribulose 1,5-bisphosphate carboxylase, but no hydroxypyruvate reductase and very low hexulose 6-phosphate synthase, activities. The dihydroxyacetone synthase was found to be expressed earlier than the ribulose 1,5-bisphosphate carboxylase. The dihydroxyacetone synthase was purified 19-fold in eight steps to homogeneity, with a yield of 9%. The final specific activity of the purified enzyme was 1.12 micromol of NADH oxidized per min per mg of protein. The molecular weight of the native enzyme was determined to be 140,000. Sodium dodecyl sulfate-gel electrophoresis revealed a subunit of molecular weight 73,000. The optimum temperature and pH were 30 degrees C and 7.0, respectively. The enzyme was inactivated very rapidly at 70 degrees C. The enzyme required Mg2+ and thiamine pyrophosphate for maximal activity. Xylulose 5-phosphate was found to be the best substrate when formaldehyde was used as a glycoaldehyde acceptor. Erythrose 4-phosphate, glycolaldehyde, and formaldehyde were found to act as excellent substrates when xylulose 5-phosphate was used as a glycoaldehyde donor. The Kms for formaldehyde and xylulose 5-phosphate were 1.86 mM and 33.3 microM, respectively. The enzyme produced dihydroxyacetone from formaldehyde and xylulose 5-phosphate. The enzyme was found to be expressed only in cells grown on methanol and shared no immunological properties with the yeast dihydroxyacetone synthase.  相似文献   

13.
The synthesis of ribulose 1,5-bisphosphate carboxylase/oxygenase in Rhodospirillum rubrum was greatly influenced by the conditions of culture. When grown photolithotrophically in an atmosphere containing low levels of CO2 (1.5 to 2%), enzyme synthesis was derepressed, with the result that the enzyme comprised up to 50% of the soluble protein of the cells as determined by immunological quantitation. This response was not observed when R. rubrum was grown photolithotrophically in an atmosphere of 5% CO2 in hydrogen. Similarly, the derepression of ribulose 1,5-bisphosphate carboxylase/oxygenase was observed in photoheterotrophically (butyrate)-grown cultures only after the HCO3- supply was nearly exhausted. The increase in enzyme activity observed in derepressed cultures was not paralleled by an increase in the in vivo CO2 fixation rate. Apparently, R. rubrum derepresses the synthesis of ribulose 1,5-bisphosphate carboxylase/oxygenase when exposed to low CO2 concentrations to scavenge the limited CO2 available to such cultures.  相似文献   

14.
D-Ribulose 1,5-diphosphate carboxylase has been purified from autotrophically grown cells of the facultative chemolithotrophic hydrogen bacterium Alcaligenes eutrophus. The enzyme was homogeneous by the criteria of polyacrylamide gel electrophoresis. The molecular weight of the enzyme was 505000 determined by gel filtration and sucrose density gradient centrifugation, and a sedimentation coefficient of 18.2 S was obtained. It was demonstrated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis that the enzyme consists of two types of subunits of molecular weight 52000 and 13000. Electron microscopy on the intact and the partially dissociated enzyme lead to the construction of a model for the quaternary structure of the enzyme which is composed of 8 large and 8 small subunits. The most probable symmetry of the enzyme molecule is 4:2:2. Michaelis constant (Km) values for ribulose 1,5-diphosphate, Mg2+, and CO2 were 0.59 mM, 0.33 mM, and 0.066 mM measured under air. Oxygen was a competitive inhibitor with respect to CO2 suggesting that the enzyme also exhibits an oxygenase activity. The oxygenolytic cleavage of ribulose 1,5-diphosphate was shown and a 1:1 stoichiometry between oxygen consumption and 3-phosphoglycerate formation observed.  相似文献   

15.
Pyruvate is a minor product of the reaction catalyzed by ribulosebisphosphate carboxylase/oxygenase from spinach leaves. Labeled pyruvate was detected, in addition to the major labeled product, 3-phosphoglycerate, when 14CO2 was the substrate. Pyruvate production was also measured spectrophotometrically in the presence of lactate dehydrogenase and NADH. The Km for CO2 of the pyruvate-producing activity was 12.5 microM, similar to the CO2 affinity of the 3-phosphoglycerate-producing activity. No pyruvate was detected by the coupled assay when ribulose 1,5-bisphosphate was replaced by 3-phosphoglycerate or when the carboxylase was inhibited by the reaction-intermediate analog, 2'-carboxyarabinitol 1,5-bisphosphate. Therefore, pyruvate was not being produced from 3-phosphoglycerate by contaminant enzymes. The ratio of pyruvate produced to ribulose bisphosphate consumed at 25 degrees C was 0.7%, and this ratio was not altered by varying pH or CO2 concentration or by substituting Mn2+ for Mg2+ as the catalytically essential metal. The ratio increased with increasing temperature. Ribulose-bisphosphate carboxylases from the cyanobacterium Synechococcus PCC 6301 and the bacterium Rhodospirillum rubrum also catalyzed pyruvate formation and to the same extent as the spinach enzyme. When the reaction was carried out in 2H2O, the spinach carboxylase increased the proportion of its product partitioned to pyruvate to 2.2%. These observations provide evidence that the C-2 carbanion form of 3-phosphoglycerate is an intermediate in the catalytic sequence of ribulose-bisphosphate carboxylase. Pyruvate is formed by beta elimination of a phosphate ion from a small portion of this intermediate.  相似文献   

16.
A Suzuki 《Biochimie》1987,69(6-7):723-734
Some structural, immunochemical and catalytic properties are examined for ribulose 1,5-bisphosphate carboxylase-oxygenase from various cellular organisms including bacteria, cyanobacteria, algae and higher plants. The native enzyme molecular masses and the subunit polypeptide compositions vary according to enzyme sources. The molecular masses of the large and small subunits from different cellular organisms, on the other hand, show a relatively high homology due to their well-conserved primary amino acid sequence, especially that of the large subunit. In higher plants, the native enzyme and the large subunit are recognized by the antibodies raised against either the native or large subunit, whereas the small subunit apparently cross-reacts only with the antibodies directed against itself. A wide diversity exists, however, in the serological response of the native enzyme and its subunits with antibodies directed against the native enzyme or its subunits from different cellular organisms. According to numerous kinetic studies, the carboxylase and oxygenase reactions of the enzyme with ribulose 1,5-bisphosphate and carbon dioxide or oxygen require activation by carbon dioxide and magnesium prior to catalysis with ribulose 1,5-bisphosphate and carbon dioxide or oxygen. The activation and catalysis are also under the regulation of other metal ions and a number of chloroplastic metabolites. Recent double-labeling experiments using radioactive ribulose 1,5-bisphosphate and 14CO2 have elucidated the carboxylase/oxygenase ratios of the enzymes from different organisms. Another approach, i.e., genetic experiments, has also been used to examine the modification of the carboxylase/oxygenase ratio.  相似文献   

17.
Ribulose 1,5-bisphosphate carboxylase/oxygenase purified from malate-grown Thiocapsa roseopersicina required Mg2+ for the activation of both carboxylase and oxygenase activities. Mg2+ was either not required or required at very low concentrations for catalysis by both enzyme activities. EDTA and dithiothreitol had no effect on ribulose 1,5-biphosphate oxygenase. The K0.5 values with respect to Mg2+ for activation of the carboxylase and oxygenase activities were 8.4 and 2 mm, respectively. Ribulose 1,5-biphosphate carboxylase and oxygenase activities revealed differential sensitivities to 6-phosphogluconate. This ligand at 1 mm inhibited the carboxylase activity 30%, whereas the oxygenase activity was inhibited by 69%.  相似文献   

18.
The Michaelis constants of soya-bean ribulose bisphosphate carboxylase for CO2 in the carboxylation reaction and for O2 in the oxygenation reaction depend on the nature of the bivalent cation present. In the presence of Mg2+ the Km for bicarbonate is 2.48 mM, and the Km for O2 is 37% (gas-phase concentration). With Mn2+ the values decrease to 0.85 mM and 1.7% respectively. For the carboxylation reaction Vmax. was 1.7 mumol/min per mg of protein with Mg2+ but only 0.29 mumol/min per mg of protein with Mn2+. For the oxygenation reaction, Vmax. values were 0.61 and 0.29 mumol/min per mg of protein respectively with Mg2+ and Mn2+.  相似文献   

19.
2-Bromoacetylaminopentitol 1,5-bisphosphate (BrAcNH-pentitol-P2) (an epimeric mixture of 2-bromoacetylamino-2-deoxy-D-ribitol bisphosphate and 2-bromoacetylamino-2-deoxy-D-arabinitol 1,5-bisphosphate) has been synthesized from D-ribulose 1,5-bisphosphate by reductive amination with sodium cyanoborohydride followed by bromoacetylation of the resultant amine with bromoacetyl bromide. Under conditions that favor full activation of the enzyme, ribulose bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum is completely inactivated by BrAcNH-pentitol-P2 in a pseudo-first order process. A rate saturation is observed with a minimal inactivation half-life of 38 min and Kinact for reagent of 0.38 mM. The competitive inhibitor 2-carboxyribitol 1,5-bisphosphate reduces the rate of inactivation, and kinetic analyses are consistent with the protection reflecting true competition of inhibitor and reagent for the same site. As shown with isotopically labeled reagent, complete inactivation is associated with covalent incorporation of 1.1 mol of reagent/mol of subunit. Based on reversibility of inactivation by thiolysis and based on analysis of labeled products in acid hydrolysates of the modified enzyme, a methionyl sulfonium salt is the reaction product. In the absence of CO2 and Mg2+ (ligands required for activation), the enzyme is resistant to BrAcNH-pentitol-P2, which suggests that the site-specific modification of a methionyl residue requires a fully functional catalytic center.  相似文献   

20.
Ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum was modified with pyridoxal 5'-phosphate and then reduced with sodium borohydride. Both carboxylase and oxygenase activities were lost when one molecule of pyridoxal 5'-phosphate was bound per enzyme dimer. Peptide maps of modified enzyme showed one N6-(phosphopyridoxal)lysine-containing peptide. This peptide was isolated by gel filtration and cation-exchange chromatography and its sequence determined as Ala-Leu-Gly-Arg-Pro-Glu-Val-Asp-(PLP-Lys)-Gly-Thr-Leu-Val-Ile-Lys. Since activation of the enzyme with Mg2+/CO2 enhances pyridoxal 5'-phosphate modification and subsequent inactivation and the substrate ribulose bisphosphate protects against modification, the modified lysyl group is most certainly at the catalytic site and not at the activation site of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号