首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In a 5-year-old Italian girl with severe congenital hemolytic anemia, red cell GPI deficiency was proven, and found to be due to a new variant, GPI Roma. The parents are first cousins and have been proven to be heterozygous for this variant.GPI Roma was slightly unstable to heat and exhibited a slightly increased Michaelis constant for fructose-6-phosphate. A single predominant fastmigrating GPI form existed in the patient's white blood cells, while the electrophoretic pattern in the red cells was composed, in addition to this fast band, of a major band migrating as normal GPI and of an additional slow band. It is shown that this phenomenon may be ascribed to postsynthetic events modifying the charge of the mutant enzyme.With the technical assistance of R. Kernemp  相似文献   

2.
The activities and kinetics of the enzymes G6PDH (glucose-6-phosphate dehydrogenase) and 6PGDH (6-phosphogluconate dehydrogenase) from the mesophilic cyanobacterium Synechococcus 6307 and the thermophilic cyanobacterium Synechococcus 6716 are studied in relation to temperature. In Synechococcus 6307 the apparent K m's are for G6PDH: 80M (substrate) and 20M (NADP+); for 6PGDH: 90M (substrate) and 25M (NADP+). In Synechococcus 6716 the apparent K m's are for G6PDH: 550M (substrate) and 30M (NADP+); for 6PGDH: 40M (substrate) and 10M (NADP+). None of the K m's is influenced by the growth temperature and only the K m's of G6PDH for G6P are influenced by the assay temperature in both organisms. The idea that, in general, thermophilic enzymes possess a lower affinity for their substrates and co-enzymes than mesophilic enzymes is challenged.Although ATP, ribulose-1,5-bisphosphate, NADPH and pH can all influence the activities of G6PDH and 6PGDH to a certain extent (without any difference between the mesophilic and the thermophilic strain), they cannot be responsible for the total deactivation of the enzyme activities observed in the light, thus blocking the pentose phosphate pathway.Abbreviations G6PDH glucose-6-phosphate, dehydrogenase - 6PGDH 6-phosphogluconate dehydrogenase - G6P glucose-6-phosphate - 6PG 6-phosphogluconate - RUDP ribulose-1,5-bisphosphate - Tricine N-Tris (hydroxymethyl)-methylglycine  相似文献   

3.
A -carotene oxygenase is described which occurs in the Cyanobacterium Microcystis. It cleaves -carotene and zeaxanthin specifically at the positions 7,8 and 7,8, while echinenone and myxoxanthophyll are not affected. The oxidative cleavage of -carotene leads to the formation of -cyclocitral and crocetindial and that of zeaxanthin to hydroxy--cyclocitral and crocetindial in nearly stoichiometric amounts. Oxidant is dioxygen as has been demonstrated by high incroporation (86%) of 18O2 into -cyclocitral. -Carotene oxygenase is membrane bound, sensitive to sulfhydryl reagents, antioxidants and chelating agents. Iron seems to be an essential part of the enzyme activity. Cofactors necessary for the reaction could not be detected.Abbreviations TLC thin layer-chromatography - PIPES piperazine-N,N-bis-(2-ethanesulfonate) Na - TES 2{[tris-(hydroxymethyl)-methyl]-amino} ethanesulfonic acid Dedicated to Professor G. Drews on occasion of his 60th birthday  相似文献   

4.
Summary A method for the demonstration of the activity of phosphoglucomutase in tissues is described. In the histochemical system the enzyme converts the substrate -D-glucose-1-phosphate to -D-glucose-6-phosphate. The resulting -D-glucose-6-phosphate is oxidized by exogenous glucose-6-phosphate dehydrogenase to D-glucono--lactone-6-phosphate, whereby the activity of endogenous NADPH-tetrazolium oxidoreductase reduces Nitro-BT to the slightly soluble diformazan. The problems involved in the histochemical demonstration of phosphoglucomutase are discussed.  相似文献   

5.
The activity of some enzymes of intermediary metabolism, including enzymes of glycolysis, the hexose monophosphate shunt, and polyol cryoprotectant synthesis, were measured in freeze-tolerant Eurosta solidaginis larvae over a winter season and upon entry into pupation. Flexible metabolic rearrangement was observed concurrently with acclimatization and development. Profiles of enzyme activities related to the metabolism of the cryoprotectant glycerol indicated that fall biosynthesis may occur from two possible pathways: 1. glyceraldehyde-phosphate glyceraldehyde glycerol, using glyceraldehyde phosphatase and NADPH-linked polyol dehydrogenase, or 2. dihydroxyacetonephosphate glycerol-3-phosphate glycerol, using glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase. Clearance of glycerol in the spring appeared to occur by a novel route through the action of polyol dehydrogenase and glyceraldehyde kinase. Profiles of enzyme activities associated with sorbitol metabolism suggested that this polyol cryoprotectant was synthesized from glucose-6-phosphate through the action of glucose-6-phosphatase and NADPH-linked polyol dehydrogenase. Removal of sorbitol in the spring appeared to occur through the action of sorbitol dehydrogenase and hexokinase. Glycogen phosphorylase activation ensured the required flow of carbon into the synthesis of both glycerol and sorbitol. Little change was seen in the activity of glycolytic or hexose monophosphate shunt enzymes over the winter. Increased activity of the -glycerophosphate shuttle in the spring, indicated by greatly increased glycerol-3-phosphate dehydrogenase activity, may be key to removal and oxidation of reducing equivalents generated from polyol cryoprotectan catabolism.Abbreviations 6PGDH 6-Phosphogluconate dehydrogenase - DHAP dihydroxy acetone phosphate - F6P fructose-6-phosphate - F6Pase fructose-6-phospha-tase - FBPase fructose-bisphosphatase - G3P glycerol-3-phosphate - G3Pase glycerol-3-phosphate phophatase - G3PDH glycerol-3-phosphate dehydrogenase - G6P glucose-6-phosphate - G6Pase glucose-6-phosphatase - G6PDH glucose-6-phosphate dehydrogenase - GAK glyceraldehyde kinase - GAP glyceraldehyde-3-phosphate - GAPase glyceraldehyde-3-phosphatase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - GDH glycerol dehydrogenase - GPase glycogen phosphorylase - HMS hexose monophosphate shunt - LDH lactate dehydrogenase - NADP-IDH NADP+-dependent isocitrate dehydrogenase - PDHald polyol dehydrogenase, glyceraldehyde activity - PDHgluc polyol dehydrogenase, glucose activity - PFK phosphofructokinase - PGI phosphoglucoisomerase - PGK phosphoglycerate kinase - PGM phosphoglucomutase - PK pyruvate kinase - PMSF phenylmethylsulfonylfluoride - SoDH sorbitol dehydrogenase - V max maximal enzyme activity - ww wet weight  相似文献   

6.
Purified ribulose-bisphosphate carboxylase (EC 4.1.1.39) was strongly and equally inhibited either by ADP or GDP and to a lesser extent by IDP. AMP or ATP exerted little effect on activity. Inhibition by the nucleotide diphosphates was competitive with respect to RuBP and non-competitive with respect to CO2 and Mg2+, respectively. Treatment of the enzyme with urea or guanidine-HCl resulted in rapid loss of activity that was not restored by dialysis even in the presence of Mg2+ and cysteine. Sodium dodecyl sulfate electrophoresis of 8.0 M urea treated enzyme revealed the presence of a fast-moving (small) sub-unit with molecular weight 14150 and a slower moving (large) sub-unit with molecular weight 68000. Examination of native enzyme by sodium dodecyl sulfate electrophoresis gave sub-units of 13700 and 55500 respectively. The amino acid content standardized to phenylalanine was essentially similar to that from other sources. Arrhenius plots showed a break at 29°C with an E a of 12.34 kcal per mole for the steeper part of the curve and a H of 11.43 kcal per mole while for the less steep region, the E a was 1.04 kcal per mole and the H 1.92 kcal per mole.Abbreviations ADP adenosine-5-diphosphate - AMP adenosine-5-monophosphate - ATP adenosine-5-triphosphate - CDP cytidine-5-diphosphate - CMP cytidine-5-monophosphate - CTP cytidine-5-triphosphate - FDP fructose-1,6-diphosphate - F6P fructose-6-phosphate - GDP guanosine-5-diphosphate - GMP guanosine-5-monophosphate - G6P glucose-6-phosphate - GTP guanosine-5-triphosphate - IDP inosine-5-diphosphate - IMP inosine-5-monophosphate - PEP phosphoenolpyruvate - 6PG 6-phosphogluconate - R1P ribose-1-phosphate - R5P ribose-5-phosphate - RuBP ribulose-1,5-bisphosphate - SDS sodium dodecyl sulfate - TDP thymidine-5-diphosphate - TMP thymidine-5-monophosphate - TTP thymidine-5-triphosphate - UDP uridine-5-diphosphate - UMP uridine-5-monophosphate - UTP uridine-5-triphosphate  相似文献   

7.
The effects of cold hypoxia were examined during a time-course at 2 °C on levels of glycolytic metabolites: glycogen, glucose, glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate, phosphoenolpyruvate, pyruvate, lactate and energetics (ATP, ADP, AMP) of livers from rats and columbian ground squirrels. Responses of adenylate pools reflected the energy imbalance created during cold hypoxia in both rat and ground squirrel liver within minutes of organ isolation. In rat, ATP levels and energy charge values for freshly isolated livers were 2.54 mol·g-1 and 0.70, respectively. Within 5 min of cold hypoxia, ATP levels had dropped well below control values and by 8 h storage, ATP, AMP, and energy charge values were 0.21 mol·g-1, 2.01 mol·g-1, and 0.17, respectively. In columbian ground squirrels the patterns of rapid ATP depletion and AMP accumulation were similar to those found in rat. In rat liver, enzymatic regulatory control of glycolysis appeared to be extremely sensitive to the decline in cellular energy levels. After 8 h cold hypoxia levels of fructose-6-phosphate decreased and fructose-1,6-bisphosphate increased, thus reflecting an activation of glycolysis at the regulatory step catalysed by phospho-fructokinase fructose-1,6-bisphosphatase. Despite an initial increase in flux through glycolysis over the first 2 min (lactate levels increased 3.7 mol·g-1), further flux through the pathway was not permitted even though glycolysis was activated at the phosphofructokinase/fructose-1,6-bisphosphatase locus at 8 h, since supplies of phosphorylated substrate glucose-1-phosphate or glucose-6-phosphate remained low throughout the duration of the 24-h period. Conversely, livers of Columbian ground squirrels exhibited no activation or inactivation of two key glycolytic regulatory loci, phosphofructokinase/fructose-1,6-bisphosphatase and pyruvate kinase/phosphoenolpyruvate carboxykinase and pyruvate carboxylase. Although previous studies have shown similar allosteric sensitivities to adenylates to rat liver phospho-fructokinase, there was no evidence of an activation of the pathway as a result of decreasing high energy adenylate, ATP or increasing AMP levels. The lack of any apparent regulatory control of glycosis during cold hypoxia may be related to hibernator-specific metabolic adaptations that are key to the survival of hypothermia during natural bouts of hibernation.Abbreviations DHAP dihydroxyacetonephosphate - EC energy charge - F1,6P2 fructose-1,6-bisphosphate - F2,6P2 fructose-2,6-bisphosphate - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphatase - G1P glucose-1-phosphate - G6P glucose-6-phosphate - GAP glyceraldehyde-3-phosphate - GAPDH glyceraldehyde-3-phosphate dehydrogenase - L/R lactobionate/raffinose-based solution - MR metabolic rate - PDH pyruvate dehydrogenase - PEP phosphoenolpyruvate - PEPCK & PC phosphoenolpyruvate carboxykinase and pyruvate carboxylase - PFK phosphofructokinase; PK, pyruvate kinase - Q 10 the effect of a 10 °C drop in temperature on reaction rates (generally, Q 10=2–3) - TA total adenylates - UW solution University of Wisconsin solution (L/R-based)  相似文献   

8.
Summary This work deals with the ability of phage 80 to provide defective mutants of with their missing functions. Functions Involved in Recombination. As shown by others, the Int mechanism of 80 cannot excise prophage . However, 80 efficiently excises recombinants from tandem dilysogens, using its Ter mechanism. Likewise, the nonspecific mechanism Red is interchangeable between 80 and . Maturation of DNA by 80. The Ter recombinants excised by 80 from tandem dilysogens are packaged into a 80 protein coat. This contrasts with the fact, already mentionned by Dove, that 80 is extremely inefficient for packaging phage superinfecting a -lysogen. The latter result is also found when the helper phage is a hybrid with the left arm of (80hy4 or 80hy41 — see Fig. 1). However, the maturation of the superinfecting is much more efficient if the 80hy used as a helper has the att-N region of (like 80hy1). Conversely a with the att-N region of 80 (hy6 — see Fig. 1) is packaged more efficiently by 80 or 80hy4 than by 80hy1. It is suggested that the maturation of chromosome superinfecting an immune cell requires a recombination with the helper phage. Vegetative Functions. Among the replicative functoons O and P, the latter only can be supplied by 80. That N mutants are efficiently helped by 80 does not tell that 80 provides the defective with an active N product; the chromosomes are simply packaged into a 80 coat. This shows that 80 is unable to switch on the late genes of . That neither 80 nor any of the 80hy tested can provide an active N product is shown in a more direct way by their complete failure to help N -r14; this phage carries a polar mutation which makes the expression of genes O and P entirely N-dependant. The maturation of a N - by 80 contrasts with the fact that mutants affected in late genes (A, F or H) are not efficiently helped by 80. This suggests that the products coded by these genes are not interchangeable between 80 and , and that packaging of DNA into 80 coats is possible but inhibited when late proteins are present in the cell. Activation of the Late Genes. Among the im 80 h + hybrids tested, only 80hy41 is able to switch on the late genes of a N defective mutant. This hybrid differs from the other hybrids studied here, by the fact that it has the Q-S-R region of (see Fig. 1). The results are consistant with the view that the product of Q gene is sufficient for activating the late genes of a DNA. N would thus control the expression of late genes only indirectly by controlling the expression of gene Q (Couturier & Dambly have independantly reached the same conclusion, 1970). Furthermore the failure of 80 and of the 80hy1 and 80hy4 to activate the late genes of would imply that these phages are unable to provide an Q product active on the chromosome Reciprocally, switches on the late genes of prophage 80hy41, but not of prophages 80hy1 and 80hy4. This suggests that the initiation of late genes expression takes place at a main specific site located in the Q-S-R region of the chromosome. The expression of the late genes would thus be sequential, and proceed through the left arm only when steaky ends cohere. Similar conclusions were reached independantly by Toussaint (1969) and by Herskowitz and Signer (1970).

Ce travail a été réalisé dans le cadre du contrat d'association Euratom-U. L. B. 007-61-10 ABIB et avec l'aide du Fonds de la Recherche Fondamentale Collective.  相似文献   

9.
Summary The molecular nature of lethal and semilethal mutations in the Pgd locus of D. melanogaster coding for 6-phosphogluconate dehydrogenase (6PGD) was studied. All the 11 mutations affect the structural gene of the Pgd locus: 3 semilethal mutations resulted in altered 6PGD molecules with decreased catalytic activities; the rest 8 lethals were null alleles characterized by mutant polypeptides capable of reacting with antisera against highly purified 6PGD.Null or low activity alleles for glucose-6-phosphate dehydrogenase induced by ethyl methanesulfonate were shown to be suppressors for the lethal mutations in the Pgd locus.A monocistronic type of organization of the Pgd locus is suggested taking into account the biochemical mechanism of suppression of the Pgd-lethals and their location in the structural gene coding for 6PGD.  相似文献   

10.
The reversible conversion between D-mannose 6-phosphate and D-fructose 6-phosphate catalyzed by yeast phosphomannoisomerase was studied by phase sensitive 2D 13C-1H EXSY NMR spectroscopy at 100.623 MHz, using 13C enriched substrates in the C2 position of the D-hexose 6-phosphates. The unique pair of isomerization cross-peaks observed in the 2D EXSY map correlates the 13C2 resonances of the -anomers of both D-[2-13C]-mannose-6-phosphate and D-[213C]-fructose 6-phosphate. This indicates that phosphomannoisomerase specifically catalyzes the reversible conversion between -D-mannose 6-phosphate and -D-fructose 6-phosphate. Since phosphoglucoisomerase was recently found to catalyze specifically the interconversion of -D-glucose 6-phosphate and -D-fructose 6-phosphate, the -anomer of the ketohexose ester could be directly channeled in a multi-enzyme system involving phosphoglucoisomerase, phosphomannoisomerase and phosphofructokinase.  相似文献   

11.
Summary Acid phosphatase, -glucosidase, -galactosidase, glucosaminidase, nonspecific esterase and leucine aminopeptidase were determined histochemically in Lima bean root tips. Highest enzyme activities were observed in terminally differentiating cells, such as xylem and root cap cells and also in the rhizodermis. Meristematic and parenchymatic cells contained the lowest hydrolase activity. The histochemical enzyme pattern of developing lateral roots resembled in all details that of the main root. tip. Regenerating root tissue contained increased levels of acid phosphatase, glucose-6-phosphate dehydrogenase, -glucosidase, naphthol--galactosidase and nonspecific esterase. Changes in the activity of indoxyl--galactosidase, -glucosaminidase, and leucine aminopeptidase were not observed during wound regeneration. Cell viability was monitored histochemically with succinic dehydrogenase, glucose-6-phosphate dehydrogenase, and cytochrome C oxidase.  相似文献   

12.
Axillary shoot proliferation was induced in vitro from shoot explants of greenhouse grown candellila (Euphorbia antisyphilitica Zucc). Optimum shoot proliferation was obtained by supplementing a modified Murashige and Skoog [7] medium with 0.13 M naphthalene-acetic acid and 4.44 M 6-benzylaminopurine. Rooting occurred on 100% of shoots transferred to a medium containing half strength salts supplemented with 0.49 M indole-3-butyric acid. Fully rooted plants were transferred to potting soil and established under greenhouse conditions without special acclimatization techniques.  相似文献   

13.
N. Schilling 《Planta》1982,154(1):87-93
The de novo synthesis of maltose in spinach (Spinacia oleracea L.) was shown to be catalyzed by a maltose synthase, which converts two molecules of -d-glucose-1-phosphate (-G1P) (Km 1.5 mmol l-1) to maltose and 2 orthophosphate (Pi). This enzyme was purified 203-fold by fractionated ammonium sulfate precipitation and by column chromatography on Sepharose 6B. The addition of -G1P (15 mmol l-1) to the isolation buffer is required to stabilize the enzyme activity during the extraction and purification procedure. Molecular weight determination by gel filtration yielded a value of 95,000. -Gluconolactone, ATP and Pi are competitive inhibitors toward the substrate -G1P. The maltose synthase catalyzes an exchange of the phosphate group of -G1P with [32P] orthophosphate; this transfer reaction suggests that the synthesis of maltose occurs via a glucose-enzyme in a double displacement reaction. The physiological role of this enzyme as a starch initiator system is discussed.Abbreviations Fru fructose - Glc glucose - -G1P -d-glucose-1-phosphate - -G1P -d-glucose-1-phosphate - G6P d-glucose-6-phosphate This enzyme is tentatively called maltose synthase in this publication  相似文献   

14.
Influenza A and Sendai viruses bind toneolacto-series gangliosides isolated from human granulocytes. Differences in receptor specificity of influenza viruses A/PR/8/34 (H1N1), A/X-31 (H3N2), and parainfluenza Sendai virus (HNF1, Z-strain) were determined by two direct solid phase binding assays: the overlay technique, which combines high-resolution in the separation of gangliosides on thin-layer chromatograms with direct binding; and the microwell adsorption assay as a convenient binding assay which is performed in microtitre wells to estimate the avidity of binding to an isolated ganglioside. Both methods were applied for comparative binding studies. Viruses were found to exhibit specificity for oligosaccharides and sialic acids as well as for chain length of the neutral carbohydrate backbone, whereas differing fatty acids (C24:1 and C16:0) in the ceramide portion had no impact on virus adsorption. Terminal sialyloligosaccharides Neu5Ac2-3Gal1-4Glc-R of GM3, and Neu5Ac2-3Gal1-4GlcNAc-R as well as Neu5Ac2-6Gal1-4GlcNAc-R ofneolacto-series gangliosides with nLcOse4Cer and nLcOse6Cer backbone, exhibited significant specific receptor activity towards the different viruses. To compare the data revealed from both test systems, values of virus binding were ascertained by a non-parametric statistical approach based on rank correlation. The rank correlation coefficientr s was calculated according to Spearman from each virus binding towards GM3, IV3Neu5Ac-nLcOse4Cer, IV6Neu5Ac-nLcOse4Cer and VI3Neu5Ac-nLcOse6SCer. The rank correlation coefficients 0.74, 0.95 and 0.92, which were determined for A/PR/8/34 (H1N1), A/X-31 (H3N2) and Sendai virus (HNF1, Z-strain), respectively, indicated that both assays generate highly correlated experimental data. Based on these results, analyses of virus binding on thin-layer chromatograms as well as in microwells were found equivalent tools for ganglioside receptor studies. Abbreviations: BSA, bovine serum albumin; GSL(s), glycosphingolipids; HPTLC, high performance thin-layer chromatography; PBS, phosphate buffered saline; Neu5Ac,N-acetylneuraminic acid [35];r s = rank correlation coefficient according to Spearman. The designation of the glycosphingolipids follows the IUPAC-IUB recommendations [36]. LacCer or lactosylceramide, Gal1-4Glc1-1Cer; lacto-N-neotetraosylceramide or nLcOse4Cer, Gal1-4GlcNAc1-3Gal1-4Glc1-1Cer; lacto-N-norhexaosylceramide or nLcOse6Cer, Gal1-4GlcNAc1-3Gal1-4GlcNAc1-3Gal1-4Glc1-1Cer; GM3 (according to Svennerholm [37]) or II3Neu5AcLacCer.  相似文献   

15.
Fructose-6-phosphate phosphoketolase was purified from type strains of two species of the genus Bifidobacterium: B. globosum and B. dentium. The first species has a preferred animal habitat, like feces of animals and rumen of cattle; the latter is harboured in human habitats, like feces and dental caries of man. Two electrophoretic types of phosphoketolase (F6PPK) were previously distinguished and called animal and human type according to the habitat of the bifid organism. The purified preparations of these two phosphoketolases displayed very different optimum pH range, metal activator and molecular weight; outstanding difference was found in the substrate specificity: the enzyme from B. globosum was able to split xylulose-5-P as well as fructose-6-P, whereas the phosphoketolase from B. dentium appeared to be specific for fructose-6-P.  相似文献   

16.
Neuronic or decision equations, first proposed as a mathematical model of neural activity, have shown, after their exact, compact solution was found, typical behaviours that make them natural tools for General Systems studies. It is shown here that their mathematical investigation is remarkably furthered by generalizing the triangular inequality to polygonal ones. These permit the immediate computation of the tensorial expansion of linearly separable boolean functions, and exhibit clearly the connection between their continuous and discontinuous aspects.  相似文献   

17.
Diiminosuccinonitrile (DISN), formed by the oxidation of diaminomaleonitrile (DAMN), has been investigated as a potential prebiotic phosphorylating agent. DISN effects the cyclization of 3-adenosine monophosphate to adenosine 2, 3-cyclic phosphate in up to 39% yield. The mechanism of this reaction was investigated. The DISN-mediated phosphorylation of uridine to uridine monophosphate does not proceed efficiently in aqueous solution. The reaction of DISN with uridine-5-phosphate and uridine results in the formation of 2,2-anhydronucleotides and 2,2-anhydronucleosides respectively, and other reaction products resulting from an initial reaction at the 2- and 3-hydroxyl groups. The clay mineral catalysis of the cyclization of adenosine-3-phosphate was investigated using homoionic montmorillonites.  相似文献   

18.
An antiviral factor (AVF) was separated by removing virus particles from extracts of tobacco mosaic virus (TMV) infected leaves using calcium phosphate gel and by column chromatography on DEAE cellulose. AVF was not found in the extracts from healthy plants. The AVF restricted the virus infectivity in vivo and significantly decreased the activity of key enzymes of metabolic pathways tending to the purine and pyrimidine nucleotides biosynthesis of viral- RNA (glucose-6-phosphate dehydrogenase, ribonucleases, phosphomonoesterase and phosphodiesterase). No inhibition of these enzymes was observed in vitro when the effect of different concentrations of AVF (0.25 – 250 µg cm–3) was examined.  相似文献   

19.
Andreas Renz  Mark Stitt 《Planta》1993,190(2):166-175
The substrate dependence and product inhibition of three different fructokinases and three different hexokinases from growing potato (Solanum tuberosum L.) tubers was investigated. The tubers contained three specific fructokinases (FK1, FK2, FK3) which had a high affinity for fructose K m=64, 90 and 100 (M) and effectively no activity with glucose or other hexose sugars. The affinity for ATP (K m=26, 25 and 240 M) was at least tenfold higher than for other nucleoside triphosphates. All three fructokinases showed product inhibition by high fructose (K i=5.7, 6.0 and 21 mM) and were also inhibited by ADP competitively to ATP. Sensitivity to ADP was increased in the presence of high fructose, or fructose-6-phosphate. In certain conditions, the K i (ADP) was about threefold below the K m (ATP). All three fructokinase were also inhibited by fructose-6-phosphate acting non-competitively to fructose (K i=1.3 mM for FK2). FK1 and FK2 showed very similar kinetic properties whereas FK3, which is only present at low activities in the tuber but high activities in the leaf, had a generally lower affinity for ATP, and lower sensitivity to inhibition by ADP and fructose. The tuber also contained three hexokinases (HK1, HK2, HK3) which had a high affinity for glucose (K m=41, 130 and 35 M) and mannose but a poor affinity for fructose (K m=11, 22 and 9 mM). All three hexokinases had a tenfold higher affinity for ATP (K m=90, 280 and 560 M) than for other nucleoside triphosphates. HK1 and HK2 were both inhibited by ADP (K i=40 and 108 M) acting competitively to ATP. HK1, but not HK2, was inhibited by glucose-6-phosphate, which acted non-competitively to glucose (K i=4.1 mM). HK1 and HK2 differed, in that HK1 had a narrower pH optimum, a higher affinity for its substrate, and showed inhibition by glucose-6-phosphate. The relevance of these properties for the regulation of hexose metabolism in vivo is discussed.Abbreviations FK fructokinase - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - HK hexokinase - NTP nucleoside triphosphate - Pi inorganic phosphate - UDPGlc uridine-5-diphosphoglucose This work was supported by the Deutsche Froschungsgemeinschaft (SFB 137). We are grateful to Professor E. Beck (Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, FRG) for providing laboratory facilities.  相似文献   

20.
Summary The hydrolysis of glucose-6-phospate in the digestive gland of the crab Carcinus maenas is carried out by an aspecific phosphatase. This enzyme possesses the following features: (1) insensitivity to acid treatment; (2) absence of inhibition when exposed to citrate at low pH; (3) similar affinity for G6P as the acid phosphatase for Na--glycerophosphate (K m 2.3 and 2.0 mM, respectively). Glucose-6-phosphate and Na--glycerophate hydrolysis reactions seem to be catalysed by the same enzyme, since both activities exhibit the same distribution in a subcellular fractionation of the gland. Furthermore, as these activities are principally recovered in the subcellular fraction enriched in calcospherites (or calcium phosphate granules), it is proposed that the aspecific G6P-phosphohydrolase could play a major role in the formation of these granules. The phosphorylation of glucose is made by two low K m hexokinases (230 and 64 M, respectively). As their level of activity shows significant changes over the moult cycle, these enzymes could be considered as having a regulatory role in the storage of glucose in the digestive gland.Abbreviations Acid Pase aspecific acid phosphatase - ATP adenosine triphosphate - DTT dithiothreitol - EDTA ethylenediaminetetra-acetate - G calcium phosphate granules fraction - G6P glucose-6-phosphate - G6Pase hepatic glucose-6-phosphatase - G6PDH glucose-6-phosphate dehydrogenase - K m Michaelis-Menten constant - MI mitochondria and intermediate postmitochondrial particles - N nuclei fraction - NADH nicotineamide adenine dinucleotide - P microsome fraction - Pi inorganic phosphate - PMSF phenylmethylsulphonylfluoride - STI soybean trypsin inhibitor - glyP Na--glycerophosphate - T1,2,3 transport protein 1,2,3 - TCA trichloroacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号