首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
MAT alpha haploids with mutations in the STE13 or KEX2 gene, and MATa haploids with mutations in the STE6 or STE14 gene, do not mate with wild-type cells of the opposite mating type. We found that such mutants were able to mate with partners that carry mutations (sst1 and sst2) that cause cells to be supersensitive to yeast mating pheromone action. Mating ability of MAT alpha ste13 and MAT alpha kex2 mutants could also be restored by adding normal MAT alpha cells to mating mixtures or by adding just the appropriate purified pheromone (alpha-factor). Therefore, the mating deficiencies caused by the ste13 and kex2 lesions, and by inference, the ste6 and ste14 mutations, appear to result only from secretion of an insufficient amount of pheromone or a nonfunctional pheromone.  相似文献   

3.
4.
Genes required for mating by a and alpha cells of Saccharomyces cerevisiae (STE, "sterile," genes) encode products such as peptide pheromones, pheromone receptors, and proteins responsible for pheromone processing. a-specific STE genes are those required for mating by a cells but not by alpha cells. To identify new a-specific STE genes, we have employed a novel strategy that enabled us to determine if a ste mutant defective in mating as a is also defective in mating as alpha without the need to do crosses. This technique involved a strain (K12-14b) of genotype mata1 HML alpha HMR alpha sir3ts, which mates as a at 25 degrees and as alpha at 34 degrees. We screened over 40,000 mutagenized colonies derived from K12-14b and obtained 28 a-specific ste mutants. These strains contained mutations in three known a-specific genes--STE2, STE6 and STE14--and in a new gene, STE16. ste16 mutants are defective in the production of the pheromone, a-factor, and exhibit slow growth. Based on the distribution of a-specific ste mutants described here, we infer that we have identified most if not all nonessential genes that can give rise to a-specific mating defects.  相似文献   

5.
Neurospora crassa is a self-sterile filamentous fungus with two mating types, mat A and mat a. Its mating involves chemotropic polarized growth of female-specific hyphae (trichogynes) toward male cells of the opposite mating type in a process involving pheromones and receptors. mat A cells express the ccg-4 pheromone and the pre-1 receptor, while mat a strains produce mRNA for the pheromone mfa-1 and the pre-2 receptor; MFA-1 and CCG-4 are the predicted ligands for PRE-1 and PRE-2, respectively. In this study, we generated Deltaccg-4 and Deltamfa-1 mutants and engineered a mat a strain to coexpress ccg-4 and its receptor, pre-2. As males, Deltaccg-4 mat A and Deltamfa-1 mat a mutants were unable to attract mat a and mat A trichogynes, respectively, and consequently failed to initiate fruiting body (perithecial) development or produce meiotic spores (ascospores). In contrast, Deltaccg-4 mat a and Deltamfa-1 mat A mutants exhibited normal chemotropic attraction and male fertility. Deltaccg-4 Deltamfa-1 double mutants displayed defective chemotropism and male sterility in both mating types. Heterologous expression of ccg-4 enabled mat a males to attract mat a trichogynes, although subsequent perithecial differentiation did not occur. Expression of ccg-4 and pre-2 in the same strain triggered self-stimulation, resulting in formation of barren perithecia with no ascospores. Our results indicate that CCG-4 and MFA-1 are required for mating-type-specific male fertility and that pheromones (and receptors) are initial determinants for sexual identity during mate recognition. Furthermore, a self-attraction signal can be transmitted within a strain that expresses a pheromone and its cognate receptor.  相似文献   

6.
Temperature-sensitive mutations that produce insensitivity to division arrest by alpha-factor, a mating pheromone, were isolated in an MATa strain of Saccharomyces cerevisiae and shown by complementation studies to difine eight genes. All of these mutations (designated ste) produce sterility at the restrictive temperature in MATa cells, and mutations in seven of the genes produce sterility in MAT alpha cells. In no case was the sterility associated with these mutations coorectible by including wild-type cells of the same mating type in the mating test nor did nay of the mutants inhibit mating of the wild-type cells; the defect appears to be intrinsic to the cell for mutations in each of the genes. Apparently, none of the mutants is defective exclusively in division arrest by alpha-factor, as the sterility of none is suppressed by a temperature-sensitive cdc 28 mutation (the latter imposes division arrest at the correct cell cycle stage for mating). The mutants were examined for features that are inducible in MATa cells by alpha-factor (agglutinin synthesis as well as division arrest) and for the characteristics that constitutively distinguish MATa from MAT alpha cells (a-factor production, alpha-factor destruction). ste2 Mutants are defective specifically in the two inducible properties, whereas ste4, 5, 7, 8, 9, 11, and 12 mutants are defective, to varying degrees, in constitutive as well as inducible aspects. Mutations in ste8 and 9 assume a polar budding pattern unlike either MATa or MAT alpha cells but characteristic of MATa/alpha cells. This study defines seven genes that function in two cell types (MATa and alpha) to control the differentiation of cell type and one gene, ste2, that functions exclusively in MATa cells to mediate responsiveness to polypeptide hormone.  相似文献   

7.
8.
The yeast Saccharomyces cerevisiae exhibits two mating types, a and alpha. Efficient mating of a and alpha cells requires the action of peptide pheromones secreted by each cell type. For example, a cells secrete a-factor, which alters the physiology of alpha cells, thereby preparing those cells for mating. To investigate the mechanism by which the pheromones act on the target cells, we have examined the effect of a-factor on expression of the STE3 gene, a gene which is required for mating by alpha cells and which is expressed only in alpha cells. We have monitored STE3 expression by two assays: RNA production from the chromosomal STE3 locus and beta-galactosidase activity produced from a plasmid-borne STE3-lacZ gene fusion. By both assays we show that a-factor induces a rapid increase in STE3 expression. Induction of STE3 RNA occurs even if protein synthesis is blocked by cycloheximide. Using temperature-sensitive cell division cycle mutants, we have also shown that induction occurs in cells arrested at several discrete positions in the cell cycle. These results demonstrate (1) that induction of STE3 expression by a-factor is a primary response to the pheromone, and (2) that alpha cells are capable of responding to a-factor regardless of their position in the cell cycle.  相似文献   

9.
10.
11.
12.
Saccharomyces cerevisiae mating pheromones function by binding to cell surface receptors and activating signal transduction processes which regulate gene expression. In this report, we have analyzed the minimum sequence requirements for conferring both a and alpha mating pheromone inducibilities onto a heterologous promoter. Here we show that the repetitive pheromone response element (PRE) which binds to STE12 protein is sufficient to confer pheromone responsiveness only when present in multiple copies. Moreover, by itself, it is preferentially responsive to alpha factor in a cells. In contrast, a single copy of the PQ box of the STE3 upstream activation sequence (UAS) is sufficient to confer a-factor responsiveness in alpha cells. The PQ box binds both MCM1 and MAT alpha 1 in a cooperative manner, and neither the P nor Q site alone is sufficient to confer a-factor responsiveness. In a cells, however, even multiple copies of the PQ box fail to confer alpha-factor responsiveness. Therefore, the PRE and the PQ box are functionally distinct pheromone-responsive elements with opposite cell type specificities. Moreover, these results indicate that the MCM1 protein functions in a signal transduction pathway in a manner analogous to that of its mammalian homolog, the serum response factor, which regulates the expression of the c-fos proto-oncogene in mammals.  相似文献   

13.
Induction of STE2 expression using the GAL1 promoter both in a wild-type MATalpha strain and in a MATalpha ste3 strain caused transient cell-cycle arrest and changes in morphology ('shmoo'-like phenotype) in a manner similar to alpha cells responding to alpha-factor. In addition, STE2 expressed in a MATalp[ha ste3 mutant allowed the cell to conjugate with alpha cells but at an efficiency lower than that of wil-type alpha cells. This result indicates that signal(s) generated by alpha-factor in alpha cells can be substituted by signal(s) generated by the interaction of alpha-factor with the expressed STE2 product. When STE2 or STE3 was expressed in a matalpha1 strain (insensitive to both alpha- and a-factors), the cell became sensitive to alpha- or a-factor, respectively, and resulted in morphological changes. These results suggest that STE2 and STE3 are the sole determinants for alpha-factor and a-factor sensitivity, respectively, in this strain. On the other hand, expression of STE2 in an a/alpha diploid cell did not affect the alpha-factor insensitive phenotype. Haploid-specific components may be necessary to transduce the alpha-factor signal. These results are consistent with the idea that STE2 encodes an alpha-factor receptor and STE3 encodes an a-factor receptor, and suggest that both alpha- and a-factors may generate an exchangeable signal(s) within haploid cells.  相似文献   

14.
Down regulation of the alpha-factor pheromone receptor in S. cerevisiae   总被引:35,自引:0,他引:35  
D D Jenness  P Spatrick 《Cell》1986,46(3):345-353
The peptide pheromone, alpha-factor, was found to elicit down regulation of receptor sites on yeast a cell targets. Cellular uptake of alpha-factor accompanied the loss of receptor sites. Receptor-deficient a cells bearing a deletion of the STE2 gene were unable to internalize alpha-factor. Cultures were found to reaccumulate receptor sites following the initial period of down regulation; reaccumulation was dependent upon protein synthesis. Pheromone-resistant mutants, ste4-3 and ste5-3, retained the ability to down regulate receptors but failed to show reaccumulation. Our results suggest that alpha-factor-receptor complexes enter the cell by receptor-mediated endocytosis and that receptors are continuously lost and resynthesized in the presence of alpha-factor. We found no reduction of alpha-factor binding capacity in a cell cultures that had adapted to alpha-factor.  相似文献   

15.
The mushroom-producing fungus Schizophyllum commune has thousands of mating types defined, in part, by numerous lipopeptide pheromones and their G protein-linked receptors. Compatible combinations of pheromones and receptors encoded by different mating types regulate a pathway of sexual development leading to mushroom formation and meiosis. A complex set of pheromone-receptor interactions maximizes the likelihood of outbreeding; for example, a single pheromone can activate more than one receptor and a single receptor can be activated by more than one pheromone. The current study demonstrates that the sex pheromones and receptors of Schizophyllum, when expressed in Saccharomyces cerevisiae, can substitute for endogenous pheromone and receptor and induce the yeast pheromone response pathway through the yeast G protein. Secretion of active Schizophyllum pheromone requires some, but not all, of the biosynthetic machinery used by the yeast lipopeptide pheromone a-factor. The specificity of interaction among pheromone-receptor pairs in Schizophyllum was reproduced in yeast, thus providing a powerful system for exploring molecular aspects of pheromone-receptor interactions for a class of seven-transmembrane-domain receptors common to a wide range of organisms.  相似文献   

16.
H. A. Fujimura 《Genetics》1990,124(2):275-282
Mating pheromones, a- and alpha-factors, arrest the division of cells of opposite mating types, alpha and a cells, respectively. I have isolated a sterile mutant of Saccharomyces cerevisiae that is defective in division arrest in response to alpha-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18 and dac1). Although dac2 cells had no phenotype in the absence of pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene (previously shown to encode a protein with similarity to the alpha subunit of mammalian G proteins). In addition, dac2 cells formed prezygotes with wild-type cells of opposite mating types, although they could not undergo cell fusion. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation.  相似文献   

17.
The Saccharomyces cerevisiae G protein alpha subunit Gpa1p is involved in the response of both MATa and MAT alpha cells to pheromone. We mutagenized the GPA1 C terminus to characterize the receptor-interacting domain and to investigate the specificity of the interactions with the a- and alpha-factor receptors. The results are discussed with respect to a structural model of the Gpa1p C terminus that was based on the crystal structure of bovine transducin. Some mutants showed phenotypes different than the pheromone response and mating defects expected for mutations that affect receptor interactions, and therefore the mutations may affect other aspects of Gpa1p function. Most of the mutations that resulted in pheromone response and mating defects had similar effects in MATa and MAT alpha cells, suggesting that they affect the interactions with both receptors. Overexpression of the pheromone receptors increased the mating of some of the mutants tested but not the wild-type strain, consistent with defects in mutant Gpa1p-receptor interactions. The regions identified by the mating-defective mutants correlated well with the regions of mammalian G(alpha) subunits implicated in receptor interactions. The strongest mating type-specific effects were seen for mutations to proline and a mutation of a glycine residue predicted to form a C-terminal beta turn. The analogous beta turn in mammalian G(alpha) subunits undergoes a conformational change upon receptor interaction. We propose that the conformation of this region of Gpa1p differs during the interactions with the a- and alpha-factor receptors and that these mating type-specific mutations preclude the orientation necessary for interaction with one of the two receptors.  相似文献   

18.
The Saccharomyces cerevisiae pheromone a-factor is produced by a cells and interacts with alpha cells to cause cell cycle arrest and other physiological responses associated with mating. Two a-factor structural genes, MFA1 and MFA2, have been previously cloned with synthetic probes based on the a-factor amino acid sequence (A. Brake, C. Brenner, R. Najarian, P. Laybourn, and J. Merryweather, cited in M.-J. Gething [ed.], Protein transport and secretion, 1985). We have examined the function of these genes in a-factor production and mating by construction and analysis of chromosomal null mutations. mfa1 and mfa2 single mutants each exhibited approximately half the wild-type level of a-factor activity and were proficient in mating, whereas the mfa1 mfa2 double mutant produced no a-factor and was unable to mate. These results demonstrate that both genes are functional, that each gene makes an equivalent contribution to the a-factor activity and mating capacity of a cells, and that a-factor plays an essential role in mating. Strikingly, exogenous a-factor did not alleviate the mating defect of the double mutant, suggesting that an a cell must be producing a-factor to be an effective mating partner.  相似文献   

19.
Hsueh YP  Shen WC 《Eukaryotic cell》2005,4(1):147-155
Fungal pheromones function during the initial recognition stage of the mating process. One type of peptide pheromone identified in ascomycetes and basidiomycetes terminates in a conserved CAAX motif and requires extensive posttranslational modifications to become mature and active. A well-studied representative is the a-factor of Saccharomyces cerevisiae. Unlike the typical secretory pathway utilized by most peptides, an alternative mechanism involving the ATP-binding cassette transporter Ste6 is used for the export of mature a-factor. Cryptococcus neoformans, a bipolar human pathogenic basidiomycete, produces CAAX motif-containing lipopeptide pheromones in both MATa and MATalpha cells. Virulence studies with a congenic pair of C. neoformans serotype D strains have shown that MATalpha cells are more virulent than MATa cells. Characterization of the MATalpha pheromones indicated that an autocrine signaling loop may contribute to the differentiation and virulence of MATalpha cells. To further address the role of pheromones in the signaling loop, we identified a STE6 homolog in the C. neoformans genome and determined its function by gene disruption. The ste6 mutants in either mating-type background showed partially impaired mating functions, and mating was completely abolished in a bilateral mutant cross. Surprisingly, the MATalpha ste6 mutant does not exhibit a defect in monokaryotic fruiting, suggesting that the activation of the autocrine signaling loop by the pheromone is via a Ste6-independent mechanism. MFalpha pheromone itself is essential for this process and could induce the signaling response intracellularly in MATalpha cells. Our data demonstrate that Ste6 is evolutionarily conserved for mating and is not required for monokaryotic fruiting in C. neoformans.  相似文献   

20.
The Kluyveromyces lactis genes for sexual pheromones have been analyzed. The alpha-factor gene encodes a predicted polypeptide of 187 amino acid residues containing four tridecapeptide repeats (WSWITLRPGQPIF). A nucleotide blast search of the entire K. lactis genome sequence allowed the identification of the nonannotated putative a-pheromone gene that encodes a predicted protein of 33 residues containing one copy of the dodecapeptide a-factor (WIIPGFVWVPQC). The role of the K. lactis structural genes KlMFalpha1 and KlMFA1 in mating has been investigated by the construction of disruption mutations that totally eliminate gene functions. Mutants of both alleles showed sex-dependent sterility, indicating that these are single-copy genes and essential for mating. MATalpha, Klsst2 mutants, which, by analogy to Saccharomyces cerevisiae, are defective in Galpha-GTPase activity, showed increased sensitivity to synthetic alpha-factor and increased capacity to mate. Additionally, Klbar1 mutants (putatively defective in alpha-pheromone proteolysis) showed delay in mating but sensitivity to alpha-pheromone. From these results, it can be deduced that the K. lactis MATa cell produces the homolog of the S. cerevisiaealpha-pheromone, whereas the MATalpha cell produces the a-pheromone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号