首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Leaf diffusion resistance, illuminance, and transpiration   总被引:9,自引:3,他引:6  
Stepwise increases in fluorescent illuminance, imposed as a single variable in a controlled environment, induced progressive stomatal opening in 8 plant species, as evidenced by a consistent decrease in leaf diffusion resistance (RL), ranging from 15 to 70 sec cm−1 in darkness to about 1 sec cm−1 at approximately 40 kilolux. The minimum RL values were the same for the upper and the lower epidermis, provided that stomatal density was adequate. Saturation illuminance was not achieved in any species; extrapolation indicates that 50 kilolux would bring about full stomatal opening (RL ≤ 0.1 sec cm−1).

In 4 species, reasonable agreement was obtained in a controlled environment between transpiration as measured by weight loss and that calculated from determination of (a) the difference in water vapor density from leaf to air, (b) the boundary layer resistance, and (c) the leaf diffusion resistance. This result confirms the physical validity of the resistance measurement procedure.

  相似文献   

2.
Phosphorus deficiency was induced in sugar beet plants (Beta vulgaris L. var. F5855441), cultured hydroponically under standardized environmental conditions, by removal of phosphorus from the nutrient supply at the ten leaf stage 28 days after germination. CO2 and water vapor exchange rates of individual attached leaves were determined at intervals after P cutoff. Leaves grown with an adequate nutrient supply attained net rates of photosynthetic CO2 fixation of 125 ng CO2 cm−2 sec−1 at saturating irradiance, 25 C, and an ambient CO2 concentration of about 250 μl l−1. After P cutoff, leaf phosphorus concentrations decreased as did net rates of photosynthetic CO2 uptake, photorespiratory evolution of CO2 into CO2-free air, and dark respiration, so that 30 days after cutoff these rates were about one-third of the control rates. The decrease in photosynthetic rates during the first 15 days after cutoff was associated with increased mesophyll resistance (rm) which increased from 2.4 to 4.9 sec cm−1, while from 15 to 30 days there was an increase in leaf (mainly stomatal) diffusion resistance (rl′) from 0.3 to 0.9 sec cm−1, as well as further increases in rm to 8.5 sec cm−1. Leaf diffusion resistance (rl′) was increased greatly by low P at low but not at high irradiance, rl′ for plants at low P reaching values as high as 9 sec cm−1.  相似文献   

3.
Nocturnal CO2 uptake by a Crassulacean acid metabolism succulent, Agave deserti Engelm. (Agavaceae), was measured so that the resistance properties of the mesophyll chlorenchyma cells and their CO2 concentrations could be determined. Two equivalents of acidity were produced at night per mole of CO2 taken up. The nocturnal CO2 uptake became light-saturated at 3.5 mEinsteins cm−2 of photosynthetically active radiation (400-700 nm) incident during the preceding day; at least 46 Einsteins were required per mole of CO2 fixed. Variations in the daytime leaf temperature between 20 and 37 C had little effect on nocturnal CO2 uptake. After the first few hours in the dark, the leaf liquid phase CO2 resistance (rliqCO2) and the CO2 concentration in the chlorenchyma cells (ciCO2) both increased, the latter usually reaching the ambient external CO2 level at the end of the dark period. Increasing the leaf surface temperature above 15 C at night markedly increased the stomatal resistance, rliqCO2, and ciCO2.

The minimum rliqCO2 at night was about 1.6 seconds cm−1. Based on the ratio of chlorenchyma surface area to total leaf surface area of 82, this rliqCO2 corresponded to a minimum cellular resistance of approximately 130 seconds cm−1, comparable to values for mesophyll cells of C3 plants. The contribution of the carboxylation reaction and/or other biochemical steps to rliqCO2 may increase appreciably as the nighttime temperature shifts a few degrees from the optimum or after a few hours in the dark, both of which caused large increases in rliqCO2. This necessitates a large internal leaf area for CO2 diffusion into the chlorenchyma to support moderate nocturnal CO2 uptake rates by these succulent leaves.

  相似文献   

4.
Leaf resistance for water vapor (total diffusion resistance minus boundary layer resistance), transpiration, and leaf temperature were measured in attached leaves of greenhouse-grown Xanthium strumarium L. plants that had been pretreated for 72 hours with high (40 C day, 35 C night), or low (10 C day, 5 C night) air temperatures. Measurements were made in a wind tunnel at light intensity of 1.15 cal cm−2 min−1, air temperatures between 5 and 45 C, and wind speed of 65 cm sec−1. Leaf resistances in low temperature pretreated plants were higher (8 to 27 sec cm−1) than in controls or high temperature pretreated plants (0.5 to 3 sec cm−1) at leaf temperatures between 5 and 25 C. Thus, the pretreatment influenced stomatal aperture.  相似文献   

5.
Terry N  Ulrich A 《Plant physiology》1974,54(3):379-381
The effects of Mg deficiency on the photosynthesis and respiration of sugar beets (Beta vulgaris L. cv. F58-554H1) were studied by withholding Mg from the culture solution and by following changes in CO2 and water vapor exchange of attached leaves. Leaf blade Mg concentration decreased from about 1200 to less than 200 meq kg−1 dry matter without change in the rate of photosynthetic CO2 uptake per unit leaf area, while from 200 to 50 meq kg−1 the rate decreased to one-third. Rates of photorespiratory evolution of CO2 into CO2-free air responded to Mg like those of photosynthetic CO2 uptake, the rates decreasing to one-half, below 200 meq kg−1. Respiratory CO2 evolution in the dark increased almost 2-fold in low Mg leaves. Magnesium deficiency had less effect on leaf (mainly stomatal) diffusion resistance (r1) than on mesophyll resistance (rm); in Mg-deficient plants rm increased from 2.9 to 7.1 sec cm−1, whereas r1 became significantly greater than the control value only in the most severe instances of Mg deficiency.  相似文献   

6.
The effects of water stress on growth and water relations of loblolly and white pine seedlings were studied during series of drying cycles. As mean soil water potential decreased, growth of roots, needles, and buds decreased. Growth of roots during successive severe drying cycles was not uniform, however. A study of needle and root extension showed that of the total growth of roots for 3 7-day drying cycles, only 6% occurred during the third cycle, while needle extension was uniform for the 3 cycles. The difference in response of needles and roots to drying cycles may be attributed primarily to the effect of water stress on the growing region. When subjected to a severe stress, roots matured toward the tip and became dormant, resulting in less growth during subsequent drying cycles. The intercalary growing region of needles, however, was not altered seriously enough by the stress to cause a difference in amount of growth during each drying cycle.

Transpiration of loblolly pine was lower in the second drying cycle than in the first. Needle water potential after rewatering was as high as that of control plants watered daily; root resistance was apparently not important in restricting transpiration during a second drying cycle. Needle diffusion resistance of loblolly pine, measured with a low-resistance diffusion porometer, was slightly higher during the second drying cycle than during the first. In addition, many primary needles were killed during the first period of stress. These factors contributed to the reduction of transpiration during the second drying cycle. Diffusion resistance of Coleus increased and transpiration ceased during the first drying cycle while water potential remained relatively high. After rewatering, both leaf resistance and transpiration returned to the control level, presumably because the stress during the first period of drying was not severe. The diffusion resistances observed for well-watered plants were 30 to 50 sec·cm−1 for loblolly pine, 3 to 5 sec·cm−1 for Coleus, and 4 to 6 sec·cm−1 for tomato. These values agree closely with those reported by other workers.

  相似文献   

7.
Carbon isotope discrimination (Δ) was analyzed in leaf starch and soluble sugars, which represent most of the recently fixed carbon. Plants of three C3 species (Populus nigra L. × P. deltoides Marsh., Gossypium hirsutum L. and Phaseolus vulgaris L.) were kept in the dark for 24 hours to decrease contents of starch and sugar in leaves. Then gas exchange measurements were made with constant conditions for 8 hours, and subsequently starch and soluble sugars were extracted for analysis of carbon isotope composition. The ratio of intercellular, pi, and atmospheric, pa, partial pressures of CO2, was calculated from gas exchange measurements, integrated over time and weighted by assimilation rate, for comparison with the carbon isotope ratios in soluble sugars and starch. Carbon isotope discrimination in soluble sugars correlated strongly (r = 0.93) with pi/pa in all species, as did Δ in leaf starch (r = 0.84). Starch was found to contain significantly more 13C than soluble sugar, and possible explanations are discussed. The strong correlation found between Δ and pi/pa suggests that carbon isotope analysis in leaf starch and soluble sugars may be used for monitoring, indirectly, the average of pi/pa weighted by CO2 assimilation rate, over a day. Because pi/pa has a negative correlation with transpiration efficiency (mol CO2/mol H2O) of isolated plants, Δ in starch and sugars may be used to predict differences in this efficiency. This new method may be useful in ecophysiological studies and in selection for improved transpiration efficiency in breeding programs for C3 species.  相似文献   

8.
Genotypic variation in carboxylation of tomatoes   总被引:8,自引:6,他引:2       下载免费PDF全文
The gas exchange characteristics of 24 genotypes of Lycopersicon esculentum Mill. and one of L. minutum were measured with an infrared gas analyzer and dew point hygrometer in an open system. Net carbon exchange (NCE) and transpiration rate were measured at 50, 100, 150, and 300 μ1 1−1 CO2, and a regression of NCE versus internal lead [CO2] estimates was calculated. The slope of the regression curve at the CO2 compensation point was used as the measure of carboxylation efficiency (CE). Significant genotypic differences for CE were obtained. Differences in CE did not appear to be due to differences in diffusive resistance defined as the sum of the boundary layer resistance (ra) and the stomatal plus cuticular resistance (r1). There was no correlation (r = -0.07) between (ra + r1) and CE. Within groups with nonsignificantly different means for (ra + r1) there were genotypes with extremes for CE.  相似文献   

9.
CO2 absorption (PAT) and transpiration (E) rates, and leaf diffusion resistance (ri) were individually studied in all leaves of tobacco plants (Nicotiana tabacum L. cv. Wisconsin 38) before flowering. Differences between old, middle age and young leaves were in all characteristics studied and found statistically significant. In all three leaf age groups E was closely correlated to ri. No similar correlation was discovered between PN and ri. The highest ratiosP N /E in young and middle age leaves indicate that the increase of the internal resistance to photosynthesis with leaf age was more rapid than that of ri.  相似文献   

10.
Nobel PS 《Plant physiology》1976,58(4):576-582
The water relations and photosynthesis of Agave deserti Engelm., a plant exhibiting Crassulacean acid metabolism, were measured in the Colorado desert. Although no natural stomatal opening of A. deserti occurred in the summer of 1975, it could be induced by watering. The resistance for water vapor diffusion from a leaf (RWV) became less than 20 sec cm−1 when the soil water potential at 10 cm became greater than −3 bars, as would occur after a 7-mm rainfall. As a consequence of its shallow root system (mean depth of 8 cm), A. deserti responded rapidly to the infrequent rains, and the succulent nature of its leaves allowed stomatal opening to continue for up to 8 days after the soil became drier than the plant. When the leaf temperature at night was increased from 5 to 20 C, RWV increased 5-fold, emphasizing the importance of cool nighttime temperatures for gas exchange by this plant. Although most CO2 uptake occurred at night, a secondary light-dependent rise in CO2 influx generally occurred after dawn. The transpiration ratio (mass of water transpired/mass of CO2 fixed) had extremely low values of 18 for a winter day, and approximately 25 for an entire year.  相似文献   

11.
Individual leaves of potato (Solanum tuberosum L. W729R), a C3 plant, were subjected to various irradiances (400-700 nm), CO2 levels, and temperatures in a controlled-environment chamber. As irradiance increased, stomatal and mesophyll resistance exerted a strong and some-what paralleled regulation of photosynthesis as both showed a similar decrease reaching a minimum at about 85 neinsteins·cm−2·sec−1 (about ½ of full sunlight). Also, there was a proportional hyperbolic increase in transpiration and photosynthesis with increasing irradiance up to 85 neinsteins·cm−2·sec−1. These results contrast with many C3 plants that have a near full opening of stomata at much less light than is required for saturation of photosynthesis.  相似文献   

12.
Phyllosphere of Cotton as a Habitat for Diazotrophic Microorganisms   总被引:2,自引:1,他引:1       下载免费PDF全文
Positive nitrogenase activities ranging from 0.18 to 0.78 nmol of C2H4 cm−2 h−1 were detected on the leaf surfaces of different varieties of cotton (Gossypium hirsutum L. and G. herbaceum L.) plants. Beijerinckia sp. was observed to be the predominant nitrogen-fixing microorganism in the phyllosphere of these varieties. A higher level of phyllosphere nitrogen-fixing activity was recorded in the variety Varalaxmi despite a low C/N ratio in the leaf leachates. Leaf surfaces of the above variety possessed the largest number of hairy outgrowths (trichomes) which entrapped a majority of microbes. Immersion of plant roots in nutrient medium containing 32Pi led to the accumulation of label in the trichome-borne microorganisms, thereby indicating a possible transfer of nutrients from leaf to microbes via trichomes. Extrapolation of acetylene reduction values suggested that 1.6 to 3.2 kg of N ha−1 might be contributed by diazotrophs in the phyllosphere of the variety Varalaxmi during the entire growth period.  相似文献   

13.
The relationship between leaf resistance to water vapour diffusion and each of the factors leaf water potential, light intensity and leaf temperature was determined for leaves on seedling apple trees (Malus sylvestris Mill. cv. Granny Smith) in the laboratory. Leaf cuticular resistance was also determined and transpiration was measured on attached leaves for a range of conditions. Leaf resistance was shown to be independent of water potential until potential fell below — 19 bars after which leaf resistance increased rapidly. Exposure of leaves to CO2-free air extended the range for which resistance was independent of water potential to — 30 bars. The light requirement for minimum leaf resistance was 10 to 20 W m?2 and at light intensities exceeding these, leaf resistance was unaffected by light intensity. Optimum leaf temperature for minimum diffusion resistance was 23 ± 2°C. The rate of change measured in leaf resistance in leaves given a sudden change in leaf temperature increased as the magnitude of the temperature change increased. For a sudden change of 1°C in leaf temperature, diffusion resistance changed at a rate of 0.01 s cm?1 min?1 whilst for a 9°C leaf temperature change, diffusion resistance changed at a rate of 0.1 s cm?1 min?1. Cuticular resistance of these leaves was 125 s cm?1 which is very high compared with resistances for open stomata of 1.5 to 4 s cm?1 and 30 to 35 s cm?1 for stomata closed in the dark. Transpiration was measured in attached apple leaves enclosed in a leaf chamber and exposed to a range of conditions of leaf temperature and ambient water vapour density. Peak transpiration of approximately 5 × 10?6 g cm?2 s?1 occurred at a vapour density gradient from the leaf to the air of 12 to 14 g m?3 after which transpiration declined due presumably to increased stomatal resistance. Leaves in CO2-free air attained a peak transpiration of 11 × 10?6 g cm?2 s?1 due to lower values of leaf resistance in CO2 free air. Transpiration then declined in these leaves due to development of an internal leaf resistance (of up to 2 s cm?1). The internal resistance was masked in leaves at normal CO2 concentrations by the increase in stomatal resistance.  相似文献   

14.
Efflux time courses of endogenous cytosolic proteins were obtained from rabbit psoas muscle fibers skinned in oil and transferred to physiological salt solution. Proteins were separated by gel electrophoresis and compared to load-matched standards for quantitative analysis. A radial diffusion model incorporating the dissociation and dissipation of supramolecular complexes accounts for an initial lag and subsequent efflux of glycolytic and glycogenolytic enzymes. The model includes terms representing protein crowding, myofilament lattice hindrance, and binding to the cytomatrix. Optimization algorithms returned estimates of the apparent diffusion coefficients, D(r,t), that were very low at the onset of diffusion (∼10−10 cm2 s−1) but increased with time as cytosolic protein density, which was initially high, decreased. D(r,t) at later times ranged from 2.11 × 10−7 cm2 s−1 (parvalbumin) to 0.20 × 10−7 cm2 s−1 (phosphofructose kinase), values that are 3.6- to 12.3-fold lower than those predicted in bulk water. The low initial values are consistent with the presence of complexes in situ; the higher later values are consistent with molecular sieving and transient binding of dissociated proteins. Channeling of metabolic intermediates via enzyme complexes may enhance production of adenosine triphosphate at rates beyond that possible with randomly and/or sparsely distributed enzymes, thereby matching supply with demand.  相似文献   

15.
Terry N 《Plant physiology》1976,57(4):477-479
Effects of sulfur on photosynthesis in sugar beets (Beta vulgaris L. cv. F58-554H1) were studied by inducing sulfur deficiency and determining changes in the photosynthesis of whole attached leaves and of isolated chloroplasts. The rates of photosynthetic CO2 uptake by intact leaves, photoreduction of ferricyanide, cyclic and noncyclic photophosphorylation of isolated chloroplasts, and the rate of CO2 assimilation by ribulose diphosphate carboxylase, decreased with decrease in total leaf sulfur from 2500 to about 500 μg g−1 dry weight. Sulfur deficiency reduced photosynthesis through an effect on chlorophyll content, which decreased linearly with leaf sulfur, and by decreasing the rate of photosynthesis per unit chlorophyll. There was only a small effect of sulfur deficiency on stomatal diffusion resistance to CO2 until leaf sulfur decreased below 1000 μg g−1 when stomatal resistance became a more significant proportion of the total diffusion resistance to CO2. Light respiration rates were positively correlated with photosynthesis rates and dark respiration was unchanged as leaf sulfur concentrations declined.  相似文献   

16.
Turner NC 《Plant physiology》1974,53(3):360-365
Diurnal changes in the vertical profiles of irradiance incident upon the adaxial leaf surface (I), leaf resistance (r1), leaf water potential (ψ), osmotic potential (π), and turgor potential (P) were followed concurrently in crops of maize (Zea mays L. cv. Pa602A), sorghum (Sorghum bicolor [L.] Moench cv. RS 610), and tobacco (Nicotiana tabacum L. cv. Havanna Seed 211) on several days in 1968 to 1970 when soil water potentials were low. The r1, measured with a ventilated diffusion porometer, of the leaves in the upper canopy decreased temporarily after sunrise [~0530 hours Eastern Standard Time] as I increased, but then r1 increased again between 0700 and 0830 hr Eastern Standard Time as the ψ, measured with a pressure chamber, decreased rapidly from the values of −7, −4 and −6 bars at sunrise to minimal values of −18, −22 and −15 bars near midday in the maize, sorghum, and tobacco, respectively. The π, measured with a vapor pressure osmometer, also decreased after sunrise, but not to the same degree as the decrease in ψ, so that a P of zero was reached in some leaves between 0730 and 0800 hours. The lower (more negative) π of leaves in the upper canopy than those in the lower canopy gave the upper leaves a higher P at a given ψ than the lower leaves in all three species; leaves at intermediate heights had an intermediate P. This difference between leaves at the three heights in the canopy was maintained at all values of ψ. The r1 remained unchanged over a wide range of P and then increased markedly at a P of 2 bars in maize, −1 bar in sorghum, and near zero P in tobacco: r1 also remained constant until ψ decreased to −17, −20, and −13 bars in leaves at intermediate heights in maize, sorghum, and tobacco, respectively. In all three species r1 of leaves in the upper canopy increased at more negative values of ψ than those at the base of the canopy, and in tobacco, leaves in the upper canopy wilted at more negative values of ψ than those in the lower canopy.  相似文献   

17.
We previously showed that shrinking a barnacle muscle fiber (BMF) in a hypertonic solution (1,600 mosM/kg) stimulates an amiloride-sensitive Na-H exchanger. This activation is mediated by a G protein and requires intracellular Cl. The purpose of the present study was to determine (a) whether Cl plays a role in the activation of Na-H exchange under normotonic conditions (975 mosM/kg), (b) the dose dependence of [Cl]i for activation of the exchanger under both normo- and hypertonic conditions, and (c) the relative order of the Cl- and G-protein-dependent steps. We acid loaded BMFs by internally dialyzing them with a pH-6.5 dialysis fluid containing no Na+ and 0–194 mM Cl. The artificial seawater bathing the BMF initially contained no Na+. After dialysis was halted, adding 50 mM Na+ to the artificial seawater caused an amiloride-sensitive pHi increase under both normo- and hypertonic conditions. The computed Na-H exchange flux (J Na-H) increased with increasing [Cl]i under both normo- and hypertonic conditions, with similar apparent K m values (∼120 mM). However, the maximal J Na-H increased by nearly 90% under hypertonic conditions. Thus, activation of Na-H exchange at low pHi requires Cl under both normo- and hypertonic conditions, but at any given [Cl]i, J Na-H is greater under hyper- than normotonic conditions. We conclude that an increase in [Cl]i is not the primary shrinkage signal, but may act as an auxiliary shrinkage signal. To determine whether the Cl-dependent step is after the G-protein-dependent step, we predialyzed BMFs to a Cl-free state, and then attempted to stimulate Na-H exchange by activating a G protein. We found that, even in the absence of Cl, dialyzing with GTPγS or AlF3, or injecting cholera toxin, stimulates Na-H exchange. Because Na-H exchange activity was absent in control Cl-depleted fibers, the Cl-dependent step is at or before the G protein in the shrinkage signal-transduction pathway. The stimulation by AlF3 indicates that the G protein is a heterotrimeric G protein.  相似文献   

18.
Photosynthetic CO2 assimilation, transpiration, ribulose-1,5-bisphosphate carboxylase (RuBPCase), and soluble protein were reduced in leaves of water-deficit (stress) `Valencia' orange (Citrus sinensis [L.] Osbeck). Maximum photosynthetic CO2 assimilation and transpiration, which occurred before midday for both control and stressed plants, was 58 and 40%, respectively, for the stress (−2.0 megapascals leaf water potential) as compared to the control (−0.6 megapascals leaf water potential). As water deficit became more severe in the afternoon, with water potential of −3.1 megapascals for the stressed leaves vs. −1.1 megapascals for control leaves, stressed-leaf transpiration declined and photosynthetic CO2 assimilation rapidly dropped to zero. Water deficit decreased both activation and total activity of RuBPCase. Activation of the enzyme was about 62% (of fully activated enzyme in vitro) for the stress, compared to 80% for the control. Water deficit reduced RuBPCase initial activity by 40% and HCO3/Mg2+-saturated activity by 22%. However, RuBPCase for both stressed and control leaves were similar in Kcat (25 moles CO2 per mole enzyme per second) and Km for CO2 (18.9 micromolar). Concentrations of RuBPCase and soluble protein of stressed leaves averaged 80 and 85%, respectively, of control leaves. Thus, reductions in activation and concentration of RuBPCase in Valencia orange leaves contributed to reductions in enzyme activities during water-deficit periods. Declines in leaf photosynthesis, soluble protein, and RuBPCase activation and concentration due to water deficit were, however, recoverable at 5 days after rewatering.  相似文献   

19.
Diurnal changes in the vertical profiles of irradiance incident upon the adaxial leaf surface (I), stomatal resistance (rs), leaf water potential (ψ), osmotic potential (π), and turgor potential (P) were followed concurrently in crops of maize (Zea mays L. var. Pa 602A), sorghum (Sorghum bicolor [L.] Moench var. RS610), and tobacco (Nicotiana tabacum L. var. Havanna Seed 211) on several days in 1968 to 1970 when soil water potentials were high. In all three crops the rs, measured with a ventilated diffusion porometer, the ψ, measured with the pressure chamber, the π, measured with a vapor pressure osmometer, and the calculated P, decreased from sunrise to reach minimum values near midday and then increased again in the afternoon. The diurnal range of all the variables was greater for leaves in the upper canopy than for those in the lower canopy. P was observed to decrease with decreasing ψ, but never became zero. Sorghum had a higher P at a ψ of, say −10 bars, than did maize, and maize had a higher P than tobacco at the same ψ. Moreover, at the same ψ the upper leaves in all canopies had a higher P than the lower leaves. When compared at high irradiances, rs did not increase as ψ declined to −13, −15, and −10 bars or as P declined to 0.3, 3.5, and 1.2 bars in maize, sorghum, and tobacco, respectively. The relation between rs and I in the upper, nonsenescent leaves of all three crops fits a hyperbolic curve, but the response varied with species and leaf senescence. The adaxial and abaxial epidermises had the same response of rs to I in maize and sorghum, whereas in tobacco the adaxial epidermis had a higher rs than the abaxial epidermis at all values of I. At equal values of I, tobacco had the lowest leaf resistance (rl) and maize had the highest rl. Senescent maize leaves had nonfunctional stomata, whereas the lowermost sorghum leaves had higher stomatal resistances on average than the other leaves.  相似文献   

20.
Summary The influence of variations in the boundary air layer thickness on transpirtion due to changes in leaf dimension or wind speed was evaluated at a given stomatal resistance (r s) for various combinations of air temperature (T a) and total absorbed solar energy expressed as a fraction of full sunlight (S ffs). Predicted transpiration was found to either increase or decrease for increases in leaf size depending on specific combinations of T a, S ffs, and r s. Major reductions in simulated transpiration with increasing leaf size occurred for shaded, highly reflective, or specially oriented leaves (S ffs=0.1) at relatively high T a when r s was below a critical value of near 500 s m-1. Increases in S ffs and decreases in T a lowered this critical resistance to below 50 s m-1 for S ffs=0.7 and T a=20°C. In contrast, when r s was above this critical value, an increase in leaf dimension (or less wind) resulted in increases in transpiration, especially at high T a and S ffs. For several combinations of T a, S ffs, and r s, transpiration was minimal for a specific leaf size. These theoretical results were compared to field measurements on common desert, alpine, and subalpine plants to evaluate the possible interactions of leaf and environmental parameters that may serve to reduce transpiration in xeric habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号