首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytosol fractions prepared from the uterine mucosa of egg-laying Japanese Quail were analysed for binding of the metabolites of cholecalciferol. When the uterus was incubated at 37 degrees C with various radioactive metabolites of cholecalciferol, the nuclear fraction incorporated only 1 alpha,25-dihydroxy[3H]cholecalciferol. When the uterus was incubated at 0 degree C with 1 alpha,25-dihydroxy[3H]cholecalciferol, most of the radioactivity was found in the cytosol. Translocation of 1 alpha,25-dihydroxy[3H]cholecalciferol from the cytosol to the nucleus was temperature-dependent. The addition of 100-fold excess amounts of unlabelled 1 alpha-25-dihydroxycholecalciferol significantly diminished the nuclear binding of 1 alpha,25-dihydroxy[3H]cholecalciferol. The cytosol fraction contained a 3.5 S macromolecule that specifically binds 1 alpha,25-dihydroxy[3H]cholecalciferol. The dissociation constant was 0.39 nM and the maximal binding was 55 fmol/mg of protein. These results strongly suggest that the uterus in egg-laying birds is a target organ or 1 alpha,25-dihydroxycholecalciferol.  相似文献   

2.
The mechanism by which 1 alpha,25-dihydroxycholecalciferol (1alpha,25-(OH)2D3), the biologically active metabolite of cholecalciferol (vitamin D3), stimulates intestinal calcium absorption has been shown to involve an interaction of the steroid with a specific cytosol-chromatin receptor system in this target organ. Thus, 1alpha,12(OH)2D3 binds to a specific cytoplasmic receptor protein and then, following a temperature-dependent step, becomes associated with a finite number of chromatin acceptor sites prior to the initiation of the physiological response. In this respect, 1alpha,25(OH) 2D3 is similar to a number of other steroid hormones. In this investigation, studies were performed to help define the essential structural features required for interaction of 1alpha,25-(OH)2D3 with its intestinal receptor system, and presumably, for biological activity. To this end, competition studies utilizing a series of closely related structural analogs of cholecalciferol were carried out by means of a competitive binding assay highly specific for 1alpha,25(OH)2D3. The competitive binding assay employed in this study is dependent upon the ability to duplicate, in vitro, the conditions which permit the saturable binding of 1alpha,25-(OH)2[3H]D3 to chick intestinal chromatin, in vivo. Optimal conditions for this assay were achieved by the incubation of a reconstituted intestinal receptor system consisting of separately isolated cytosol and Triton X-100 chromatin fractions at 25 degrees for 45 min with 2.0 X 10-8 M 1alpha,25-(OH)2[3H]D3. Maximal binding of about 21 to 24 pmol of radioactive steroid bound per chick intestinal chromatin occurred under these conditions. The ability of the various analogs to compete with the radioactive hormone was assessed by virtue of a decrease in the amount of radioactive steroid bound to the chromatin in the presence of increasing concentrations of nonradioactive analog.  相似文献   

3.
1. The intranuclear distribution of cholecalciferol and its metabolites was studied in the intestine of rachitic chicks. 2. At high doses of cholecalciferol the nuclei contain the vitamin and its 25-hydroxy metabolite, but over 80% of this is localized on the nuclear membranes. The hormone, 1,25-dihydroxycholecalciferol, is found within the cell nuclei irrespective of the intake of cholecalciferol, but significant amounts could not be found with chromatin isolated free of nuclear membranes. 3. 1,25-Dihydroxycholecalciferol is associated in the nucleus with an acidic protein. Since one of the actions of 1,25-dihydroxycholecalciferol is to control the synthesis of mRNA for calcium-binding protein it was to be expected that the hormone would be bound to chromatin, as with the other steroid hormones. It is suggested that the hormone-receptor complex exists as part of an equilibrium mixture of the complex bound to the DNA and in a free form. 4. A protein extract of nuclei was obtained, which when incubated at 4 degrees C for 1h took up the 1,25-dihydroxycholecalciferol. The nature of this binding was studied. 5. There appear to be two nuclear proteins able to bind the hormone one of which is the intestinal nuclear receptor. The binding sites on this protein are saturable with the hormone, have an association constant of 2x10(9)m(-1) and show a high chemical specificity for the 1,25-dihydroxycholecalciferol. The number of nuclear binding sites for the hormone provided by this receptor is similar to the maximum intestinal hormone concentration so far observed. Its sedimentation coefficient is 3.5S, and is very close to that observed for the nuclear protein to which is attached the 1,25-dihydroxycholecalciferol formed in vivo from vitamin D. 6. The cytoplasmic protein has an association constant of 1x10(9)m(-1)and a sedimentation coefficient of 3.0S, but its relation with the nuclear receptor is not yet clear.  相似文献   

4.
We studied the cytoplasmic and nuclear binding of 25-hydroxychole-calciferol and 1alpha,25-dihydroxycholecalciferol inside porcine parathyroid glands. Both sterols bind to cytoplasmic components, but a specific nuclear uptake was demonstrated only for 1alpha,25-dihydroxycholecalciferol. These findings support the hypothesis that mammalian parathyroid glands are a target organ for some cholecalciferol metabolites.  相似文献   

5.
Human promyelocytic leukaemia cells (HL-60) can be induced to differentiate into mature granulocytes in vitro by 1 alpha,25-dihydroxycholecalciferol [1 alpha,25(OH)2D3], the active form of cholecalciferol. The differentiation-associated properties, such as phagocytosis and C3 rosette formation, were induced by as little as 0.12 nM-1 alpha,25(OH)2D3, and, at 12 nM, about half of the cells exhibited differentiation on day 3 of incubation. Concomitantly the viable cell number was decreased to less than half of the control. Among various derivatives of cholecalciferol examined, 1 alpha,25(OH)2D3 and 1 alpha,24R-dihydroxycholecalciferol were the most potent in inducing differentiation, followed successively by 1 alpha,24S-dihydroxycholecalciferol, 1 alpha-hydroxycholecalciferol, 25-hydroxycholecalciferol and 24R,25-dihydroxycholecalciferol. A cytosol protein specifically bound to 1 alpha,25 (OH)2D3 was found in HL-60 cells. Its physical properties closely resembled those found in such target tissues as intestine and parathyroid glands. 1 alpha,25(OH)2D3 bound to the cytosol receptor was transferred quantitatively to the chromatin fraction. The specificity of various derivatives of cholecalciferol in inducing differentiation was well correlated with that of their association with the cytosol receptor. These results are compatible with the hypothesis that the active form of cholecalciferol induces differentiation of human myeloid leukaemia cells by a mechanism similar to that proposed for the classical concept of steroid hormone action.  相似文献   

6.
Cytosol fractions prepared from rachitic chick kidney and pancreas were analyzed for binding of vitamin D3 metabolites by sucrose density gradient centrifugation. Both cytosol fractions were found to contain a 3.6S macromolecule which specifically binds 1,25-dihydroxy[3H] vitamin D3 and in addition a 5 to 6S macromolecule which binds 25-hydroxy[3H]vitamin D3. Sucrose gradient analysis of a KCl extract prepared from kidney or pancreas chromatin resulted in a peak (3.6S) of bound 1,25-dihydroxyvitamin D3 which could not be distinguished from the cytoplasmic binding component. The interaction of 1,25-dihydroxy[3H]vitamin D3 with the cytoplasmic binding component of both tissues occurred at low concentrations of hormone with high affinity.  相似文献   

7.
1,25-Dihydroxy[3H]cholecalciferol was converted into several more-polar metabolites by a cultured pig kidney cell line (LLC PK1). The production of metabolites was stimulated by pretreating the cells with unlabelled 1,25-dihydroxycholecalciferol. A similar profile of metabolites was observed on high-pressure-liquid-chromatographic analysis of an extract from the kidneys of rats dosed intravenously with 1,25-dihydroxy[3H]cholecalciferol. Among the metabolites detected were 1,24,25-trihydroxycholecalciferol, 1,25-dihydroxy-24-oxocholecalciferol, 1,23,25-trihydroxy-24-oxocholecalciferol and 1,25-dihydroxycholecalciferol-26,23-lactone. The results are in accord with data reported for intestinal 1,25-dihydroxycholecalciferol metabolism [Napoli, Pramanik, Royal, Reinhardt & Horst (1983) J. Biol. Chem. 258, 9100-9107]. These data indicate that C-23- and C-24-oxidation of 1,25-dihydroxycholecalciferol are phenomena common to calciferol target tissues, and that regulation of 1,25-dihydroxycholecalciferol homoeostasis is dependent on the rate of its metabolism in addition to the rate of its synthesis.  相似文献   

8.
1alpha,25-Dihydroxyvitamin D3 administration to rachitic chicks results in an increase in the chromatin template activity of intestinal target tissue assayed in vitro using Escherichia coli RNA polymerase. The maximum stimulation of template capacity was 12 to 20% over control values and occurred 2 hours after administration of the sterol. This rapid effect preceded the biologic response to 1alpha,25-dihydroxyvitamin D3 in the intestine and was not observed in other tissues such as liver or kidney. The in vivo enhancement of intestinal chromatin template activity was specific for the 1alpha,25-dihydroxyvitamin D3 hormone in that equivalent doses of 25-hydroxyvitamin D3 or vitamin D3 did not elicit a response in 2 to 3 hours. Only 1alpha-hydroxyvitamin D3, a synthetic sterol which is very rapidly metabolized to the 1alpha,25-dihydroxyvitamin D3 form, was able to minic the natural hormone in vivo. To further elucidate the nuclear mechanism of action of 1alpha,25-dihydroxyvitamin D3, the hormone was preincubated at 0 degrees with intestinal cytosol to form hormone-receptor complexes. After addition of the hormone-receptor complexes to purified intestinal mucosa nuclei and incubation for 1 hour at 25 degrees, chromatin isolated from this reconstituted system displayed a significant increase in template activity as compared to chromatin prepared from similar in vitro incubations not containing hormone. This stimulation was 12 to 24% over control values and exhibited an absolute requirement for intestinal cell cytosol. The response was specific for physiologic levels of 1alpha,25-dihydroxyvitamin D3, but occurred with pharmacologic doses of 25-hydroxyvitamin D3. It is concluded that a stimulation of the chromatin template activity of intestinal target tissue by 1alpha,25-dihydroxyvitamin D3 may be an integral part of the ultimate physiologic response of enhanced calcium transport.  相似文献   

9.
The common marmoset, a New World monkey, requires a large amount of cholecalciferol (110 i.u./day per 100g body wt.) to maintain its normal growth. In a previous report, we demonstrated that the circulating levels of 1 alpha, 25-dihydroxycholecalciferol [1 alpha,25(OH)2D3] in the marmosets are much higher than those in rhesus monkeys and humans, but the marmosets are not hypercalcaemic [Shinki, Shiina, Takahashi, Tanioka, Koizumi & Suda (1983) Biochem. Biophys. Res. Commun. 14, 452-457]. To compare the effect of the daily intake of cholecalciferol, two rhesus monkeys were given a large amount of cholecalciferol (900 i.u./day per 100g body wt). Their serum levels of calcium, 25-hydroxycholecalciferol and 24R,25-dihydroxycholecalciferol were markedly elevated, but the serum 1 alpha,25(OH)2D3 levels remained within a range similar to those in the rhesus monkeys fed the normal diet (intake of cholecalciferol 5 i.u./day per 100g body wt). Intestinal cytosols prepared from both monkeys contained similar 3.5 S macromolecules to which 1 alpha,25(OH)2D3 was bound specifically. However, the cytosols from the marmosets contained only one-sixth as many 1 alpha,25(OH)2D3 receptors as those from the rhesus monkeys. Furthermore, the activity of the 1 alpha,25(OH)2D3-receptor complex in binding to DNA-cellulose was very low in the marmosets. These results suggest that the marmoset possesses an end-organ resistance to 1 alpha,25(OH)2D3 and is a useful animal model for studying the mechanism of vitamin D-dependent rickets, type II.  相似文献   

10.
M Kubota  E Abe  T Shinki    T Suda 《The Biochemical journal》1981,194(1):103-109
The relationship between bone formation and vitamin D metabolism was investigated in the developing chick embryo. Fertilized White Leghorn eggs were incubated at 38 degrees C in an incubator for 21 days. The fresh weight and calcium content of embryonic tibiae began to increase at day 12 and attained maximal values at day 19. Bone alkaline phosphatase and citrate decarboxylation activities, both of which represent osteoblastic activity, also began to increase at days 10-12, reached maximal values at day 19 and sharply declined thereafter. Both bone enzyme activities were highly correlated with CA2+-binding activity in the chorioallantoic membrane measured by the Chelex 100 assay. When mesonephric and metanephric homogenates were incubated with 25-hydroxy[3H]cholecalciferol, a marked and concomitant increase occurred in the metanephric 1 alpha- and 24-hydroxylase activity after day 14. The production of 1 alpha, 25-dihydroxycholecalciferol attained a maximal value at day 19 and decreased thereafter, whereas that of 24,25-dihydroxycholecalciferol continued to increase until hatching. The production rate of 1 alpha, 25-dihydroxycholecalciferol by the metanephros coincided with the changes in Ca2+-binding activity in the chorioallantoic membrane and osteoblastic activity. Since both intestinal calcium absorption and bone mineral mobilization do not occur in embryonic life, these results support the idea that 1 alpha, 25-dihydroxycholecalciferol may be involved directly in bone formation or induction of a calcium-binding protein in the chorioallantoic membrane.  相似文献   

11.
The effect of cholecalciferol metabolites on ornithine decarboxylase activity and on DNA synthesis in developing long bones was investigated in vitamin D-depleted rats. In the epiphysis there was a 6.4-fold increase in ornithine decarboxylase activity 5 h after a single injection of 24R,25-dihydroxycholecalciferol but not of 24S,25-dihydroxycholecalciferol or other vitamin D metabolites. In comparison, in the diaphysis and duodenum, 1 alpha,25-dihydroxycholecalciferol, but not other vitamin D metabolites, caused a 3-3.5-fold increase in the enzyme activity. The enzyme activity in the tissues examined attained a maximal value at 5 h after the injection of the metabolites. The activity of ornithine decarboxylase in the epiphysial region increased dose-dependently as the result of a single injection of 24R,25-dihydroxycholecalciferol and attained a maximal value at a dose between 30 and 3000 ng. In addition, administration of 24R,25-dihydroxycholecalciferol, but not 24S,25-dihydroxycholecalciferol or other metabolites, caused within 24 h a 1.7-2.0-fold increase in [3H]thymidine incorporation into DNA of the epiphyses of tibial bones. In comparison, 1 alpha,25-dihydroxycholecalciferol caused a 1.5-fold increase in [3H]thymidine incorporation into DNA of the diaphyses and of the duodenum. The present data indicate that 24R,25-dihydroxycholecalciferol is involved in the regulation of epiphyseal growth, whereas 1 alpha,25,dihydroxycholecalciferol stimulates the proliferation of cells in the diaphysis of long bones and in the intestinal mucosa.  相似文献   

12.
Activation of androgen receptor in rat liver cytosol was studied in vitro. The state of activation was judged by binding of [3H] R1881-receptor complex to chromatin. High ionic strength (0.4 M KCl as a final concentration) provoked the binding of [3H] R1881-receptor complex to chromatin at 0 degrees C. At low ionic strength, activation was very slow at 0 degrees C, but was very rapid at 25 degrees C and reached the maximum at 15 min of heating.  相似文献   

13.
G Shyamala 《Biochemistry》1975,14(2):437-444
The specific interaction of glucocorticoids with nuclei of mouse mammary tumor was studied in vitro by incubation of the tissue with [3H]dexamethasone at 25 degrees. It was demonstrated that the mammary tumors contain a limited number of specific nuclear binding sites which were saturated with low hormone concentrations (10-8 M)9 The concentrations of specific binding sites in the nuclei were related to the concentration of cytoplasmic binding sites of unincubated tissues and varied between individual tumors. The binding component in the nuclei appeared to be a protein and was easily solubilized with 0.4 M KCl containing buffers. The ability of various corticoids to block the nuclear localization of the steroid correlated well with their glucocorticoid potency. Estradiol and progesterone at concentrations of 10-6 M were also effective in competing for the glucocorticoid receptor binding sites. However, while the glucocorticoids such as hydrocortisone and corticosterone translocated to nuclear sites also specific for dexamethasone, estradiol and progesterone competed for the cytoplasmic binding sites and did not translocate to the nucleus. The possible significance of the interaction of various steroids with the glucocorticoid receptors in mammary tumors is discussed.  相似文献   

14.
The 25-hydroxylations of [(3)H]cholecalciferol and 1alpha-hydroxy[(3)H]cholecalciferol in perfused rat liver were compared. Results showed that about twice as much 1alpha(OH)D(3) (1alpha-hydroxycholecalciferol) was incorporated into the liver as cholecalciferol. 25-Hydroxy[(3)H]cholecalciferol and 1alpha-25-dihydroxy[(3)H]cholecalciferol were not incorporated significantly. Livers isolated from vitamin D-deficient rats formed the 25-hydroxy derivatives of cholecalciferol and 1alpha(OH)D(3) respectively linearly with time for at least 120min. The rate of 1alpha,25(OH)(2)D(3) (1alpha,25-dihydroxycholecalciferol) production increased exactly 10-fold on successive 10-fold increases in the dose of 1alpha(OH)D(3), suggesting that hepatic 25-hydroxylation of 1alpha(OH)D(3) is not under metabolic control. On the other hand, the rate of conversion of cholecalciferol into 25(OH)D(3) (25-hydroxycholecalciferol) did not increase linearly with increase in the amount of cholecalciferol in the perfusate. The 25-hydroxylation of cholecalciferol seemed to proceed at a similar rate to that of 1alpha(OH)D(3) at doses of less than 1nmol, but with doses of more than 2.5nmol, the conversion of cholecalciferol into 25(OH)D(3) became much less efficient, though the linear relation between the amounts of substrate and product was maintained. A reciprocal plot of data on the 25-hydroxylation of cholecalciferol gave two K(m) values of about 5.6nm and 1.0mum, whereas that for the 25-hydroxylation of 1alpha(OH)D(3) gave a single K(m) value of about 2.0mum. These results suggest that there are two modes of 25-hydroxylation of cholecalciferol in the liver, which seem to be closely related to the mechanism of control of 25(OH)D(3) production by the liver.  相似文献   

15.
A cell-free system prepared from the estrogen-primed chick oviduct was developed and used to study the uptake of cytoplasmic progesterone-receptor complex by isolated nuclei. The receptor and purified nuclei were shown to be stable at 25 degrees, but not at 37 degrees. Thus, nuclear incubations were routinely performed at 25 degrees. Such incubations revealed greater nuclear uptake of the cytoplasmic hormone-receptor complex as compared to control incubations performed at 0 degrees. The uptake process showed a quantitative preference for oviduct nuclei. No net uptake occurred during 0 degrees incubations when the nuclei were preincubated in the absence of cytoplasmic components at 25 degrees. In contrast, the temperature requirement was partially removed by preincubation of the hormone-receptor complex at 25 degrees prior to incubation with nuclei at 0 degrees. Nuclear uptake was not accompanied by measurable alterations in the sedimentation properties of the progesterone receptor. The activation and nuclear uptake of receptor was clearly dependent upon prior binding of steroid hormone to the receptor indicating that the active nuclear form of the receptor could not be generated in the absence of the hormone. Receptor precipitation with ammonium sulfate also partially removed the temperature requirement for nuclear binding. In contrast to temperature activation, ammonium sulfate precipitation activated the receptor in the absence of hormone. It thus seemed likely that temperature and salt activation of receptor occurred via different mechanisms. Although we were able to destroy up to 60% of the nuclear DNA content by treatment with DNase prior to nuclear incubation, some 80 to 85% of the receptor-binding capacity was still present in the treated nuclei. Thus, chick progesterone receptors apparently bind to a relatively DNase-resistant portion of the oviduct genome. The properties of this system indicate its value for further investigation into the initial events of progesterone action in the chick oviduct.  相似文献   

16.
Treatment of logarithmically growing rat intestinal epithelial cells (IEC-6) in culture with vitamin D3 (cholecalciferol), 25-hydroxy vitamin D3 (25-hydroxy cholecalciferol), 1,25-dihydroxy vitamin D3 (1,25-dihydroxycholecalciferol), and 24,25 dihydroxy vitamin D3 (24(R),25-dihydroxycholecalciferol), caused an inhibition of the cholesterol biosynthetic pathway at two separate sites. At concentrations greater than 2 micrograms/ml, the hydroxylated forms of vitamin D3 caused an accumulation of methyl sterols indicating an inhibition of lanosterol demethylation. Vitamin D3, however, had little effect on lanosterol demethylation. A second site of inhibition occurs at 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase), the rate limiting enzyme in cholesterol biosynthesis at concentrations less than 2 micrograms/ml. All vitamin D3 compounds, except 1,25-dihydroxy vitamin D3, inhibited HMG-CoA reductase activity in a concentration-dependent manner. The lack of inhibition of HMG-CoA reductase activity by 1,25-dihydroxy vitamin D3 in IEC-6 cells was not due to impaired uptake, since 1,25-dihydroxy vitamin D3 caused an accumulation of methyl sterols under similar conditions. The inhibition of HMG-CoA reductase activity and cholesterol synthesis by vitamin D3 and 25-hydroxy vitamin D3 was also observed in other cell culture lines such as human skin fibroblasts (GM-43), transformed human liver cells (Hep G2), and mouse peritoneal macrophages (J-774). On the other hand, 1,25-hydroxy vitamin D3 showed effects on HMG-CoA reductase activity that varied with the cell line. In J-774 and human skin fibroblasts, 1,25-dihydroxy vitamin D3 showed a biphasic effect on reductase activity such that at low concentrations reductase activity was inhibited but was restored to control values at high concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have investigated the reason for the lack of specific 1,25-dihydroxyvitamin D-3 binding activity in extracts of ATCC HL-60 cells. Although intact ATCC HL-60 cells specifically and saturably take up 1,25-dihydroxy[3H]vitamin D-3, whole cell extracts have little or no specific binding of 1,25-dihydroxyvitamin D-3. The absence of specific binding can now be explained by the action of a serine proteinase in these cells. When diisopropylfluorophosphate (DFP), a potent inhibitor of serine proteinase, is added to the buffer used for extraction, specific binding of 1,25-dihydroxy[3H]vitamin D-3 in the extract is observed. The loss of specific binding could not be prevented by hydrolyzed DFP or other serine proteinase inhibitors, such as phenylmethylsulfonylfluoride, benzamidine and aprotinin. The proteolytic activity from ATCC cells also destroyed specific 1,25-dihydroxy[3H]vitamin D-3 binding in high-salt extracts from pig intestinal nuclei or from another HL-60 cell line (LG HL-60 cells). However, the proteinase did not affect the levels of the specific binding in these preparations if the receptor was occupied with 1,25-dihydroxy[3H]vitamin D-3 prior to exposure to the proteinase. The binding and sedimentation characteristics of the receptors from various sources were not changed by the presence of DFP. The Kd of the receptor in ATCC HL-60 cells is 1.2.10(-10) M, which is identical to that in the LG HL-60 cells. The 1,25-dihydroxy[3H]vitamin D-3 receptor complex from the ATCC cells sediments as a single 3.5 S component and elutes from DNA-Sephadex column in two peaks at 0.09 and 0.15 M KCl. The material eluting at 0.15 M KCl has the same DNA-binding activity as preparations from pig intestine or LG HL-60 cells. Immunoprecipitation studies demonstrated that monoclonal antibodies to the pig receptor, IVG8C11, quantitatively precipitate the 1,25-dihydroxy[3H]vitamin D-3-binding activity from ATCC HL-60 cells as well as that from LG HL-60 cells or pig intestinal nuclei. Therefore, the previous failure to demonstrate the 1,25-dihydroxyvitamin D-3 receptor in ATCC HL-60 cells is because of the presence of a potent serine proteinase and not because of an abnormal or absent receptor.  相似文献   

18.
1. 1 alpha-Hydroxy[7-3H]cholecalciferol (specific radioactivity of 2-Ci/mmol) was synthesized, and its metabolism in chicks studied. 2. 1 alpha-Hydroxy[7-3H]cholecalciferol was metabolized very rapidly in the chick to 1 alpha,25-dihydroxy[7-3H]cholecalciferol and to a metabolite less polar than 1 alpha-hydroxycholecalciferol. Intestine exhibited highest accumulation of 1 alpha-25-dihydroxy[7-3H]cholecalciferol, and liver exhibited highest accumulation of the non-polar metabolite. 3. Tissue uptake of 1 alpha-hydroxy[7-3H]cholecalciferol and its metabolites in chicks that were dosed continuously for 16 days with 1 alpha-hydroxy[7-3H]cholecalciferol did not exceed by very much that observed in tissues obtained from chicks that were dosed with a single injection of 1 alpha-hydroxy[7-3H]cholecalciferol 24 h before killing, except for liver and kidney. 4. Lowest accumulation of metabolites was noted in muscle and bone, and for the latter, highest uptake of 1 alpha,25-dihydroxy[7-3H]cholecalciferol was noted in the epiphysial periosteum and the metaphysis. 5. Formation of 1 alpha,24,25-trihydroxy[7-3H]cholecalciferol was not observed in the chicks that were dosed continuously with 1 alpha-hydroxy[7-3H]cholecalciferol, despite the fact that plasma calcium and phosphorus were normal and despite the presence of renal 24-hydroxylase activity. 6. The vitamin D status of the chicks did not appear to affect the metabolic profile of the administered 1 alpha-hydroxy[7-3H]cholecalciferol.  相似文献   

19.
The binding of 1 alpha,25-dihydroxy (26,27-methyl-[3H]) cholecalciferol ([3H]1,25-(OH)2D3) to its receptor in cytosol of the anterior pituitary cells was examined in hyperthyroid- and hypothyroid rats, as well as in normal rats. The binding capacity increased by 41% in L-Thyroxine-treated hyperthyroid rats and decreased by 49% in propylthiouracil-ingested hypothyroid rats as compared with normal control rats, whereas the affinity of the receptor for [3H]-1,25(OH)2D3 showed no difference among these 3 animal groups. These findings indicate that the number of 1,25(OH)2D3 receptors in the pituitary may be regulated by thyroid hormone, and further suggest that 1,25-(OH)2D3 may play some role in regulating functions of the anterior pituitary.  相似文献   

20.
Specific binding of 1α,25-dihydroxyvitamin D3 to macromolecular components of small intestinal nuclei and cytosol is demonstrated. The nuclear 1α,25-dihydroxyvitamin D3 complex can be extracted from chromatin by 0.3 M KCl and sediments at 3.7S in sucrose density gradients. The cytoplasmic 1α,25-dihydroxyvitamin D3-binding components also sediment at 3.7S, identically to the nuclear complex under the ultracentrifugation procedures employed.Macromolecular binding components with a high affinity for 25-hydroxyvitamin D3 (Kd = 4.5 × 10−9 M) were also identified in intestinal cytosol which differ from the 1α,25-hydroxyvitamin D3 receptor in that: 1) they sediment at 5–6S in sucrose gradients, 2) they are observed in organs other than the intestine, and 3) while they do bind 1α,25-dihydroxyvitamin D3 at higher concentrations than 25-hydroxyvitamin D3, they are not observed to transfer either 25-hydroxyvitamin D3 or 1α,25-dihydroxyvitamin D3 to the nucleus, in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号