首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根瘤菌是一类引起豆科植物结瘤固氮的土壤细菌。根瘤中的类菌体固定空气中的氮气为宿主植物提供充足的氮源。共生体系的建立始于细菌与宿主植物间复杂的信号交换过程。植物产生类黄酮诱导相应的根瘤菌合成分泌结瘤因子 ,后者进而诱导宿主植物根系形态变化以及早期根瘤素基因表达。以下将就宿主植物结瘤因子的特异识别和早期信号传导进行讨论。  相似文献   

2.
3.
Acylated chitooligosaccharide signals (Nod factors) trigger the development of root nodules on leguminous plants and play an important role in determining host specificity in the Rhizobium-plant symbiosis. Here, the ability of plant chitinases to hydrolyze different Nod factors and the potential significance of the structural modifications of Nod factors in stabilizing them against enzymatic inactivation were investigated. Incubation of the sulfated Nod factors of Rhizobium meliloti, NodRm-IV(S) and NodRm-V(S), as well as their desulfated derivatives NodRm-IV and NodRm-V, with purified chitinases from the roots of the host plant Medicago and the nonhost plant Vicia resulted in the release of the acylated lipotrisaccharide NodRm-III from NodRm-V, NodRm-IV and NodRm-V(S), whereas NodRm-IV(S) was completely resistant to digestion by both chitinases. Kinetic analysis showed that the structural parameters determining host specificity, the length of the oligosaccharide chain, the acylation at the nonreducing end and the sulfatation at the reducing end of the lipooligosaccharide, influence the stability of the molecule against degradation by chitinases. When the Nod factors were incubated in the presence of intact roots of Medicago, as well as of Vicia, the acylated lipotrisaccharide was similarly released in vivo from all Nod factors except NodRm-IV(S). In addition, a dimer-forming activity was observed in intact roots which also cleaved NodRm-IV(S). This activity was much greater in Medicago than in Vicia and increased upon incubation. The initial overall degradation rate of the Nod factors on Medicago was inversely correlated with their biological activities on Medicago roots. These results open the possibility that the activity of Nod factors on Medicago may partly be determined by the action of chitinases.  相似文献   

4.
Legumes can acquire nitrogen through a symbiotic interaction with rhizobial bacteria. The initiation of this process is determined by a molecular dialogue between the two partners. Legume roots exude flavonoids that induce the expression of the bacterial nodulation genes, which encode proteins involved in the synthesis and secretion of signals called Nod factors (NFs). NFs signal back to the plant root and trigger several responses, leading to bacterial invasion and nodule formation. Here, we describe the molecular and cellular characterization of a Phaseolus vulgaris non-nodulating mutant (NN-mutant). Root hair cells of the NN-mutant plant respond with swelling and branching when inoculated with Rhizobium etli, albeit without curling induction. Furthermore, neither initiation of cell division in the outer cortex, nor entrapment of bacteria nor infection thread formation was observed. Both the bean wild-type and the NN-mutant responded with elevated intracellular calcium changes in the root hairs. Although the NN-mutant is deficient in early nodulin gene expression when inoculated with R. etli, it can be effectively colonized by arbuscular mycorrhizal fungi (Glomus intraradices). Our data indicate that the P. vulgaris NN-mutant is not blocked at the NFs early perception stage, but at later downstream stages between Ca2+ signaling and early nodulin induction. This supports the idea that both microsymbionts are perceived and trigger different downstream pathways in the host plant.  相似文献   

5.
Nod factors of Rhizobium are a key to the legume door   总被引:7,自引:3,他引:4  
Symbiotic interactions between rhizobia and legumes are largely controlled by reciprocal signal exchange. Legume roots excrete flavonoids which induce rhizobial nodulation genes to synthesize and excrete lopo-oligosaccharide Nod factors. In turn, Nod factors provoke deformation of the root hairs and nodule primordium formation. Normally, rhizobia enter roots through infection threads in markedly curled root hairs. If Nod factors are responsible for symbiosis-specific root hair deformation, they could also be the signal for entry of rhizobia into legume roots. We tested this hypothesis by adding, at inoculation, NodNGR-factors to signal-production-deficient mutants of the broad-host-range Rhizobium sp. NGR234 and Bradyrhizobium japorticum strain USDA110. Between 10 −7 M and 10−6 M NodNGR factors permitted these NodABC mutants to penetrate, nodulate and fix nitrogen on Vigna unguiculata and Glycine max, respectively. NodNGR factors also allowed Rhizobium fredii strain USDA257 to enter and fix nitrogen on Calopogonium caeruleum, a non-host. Detailed cytological investigations of V. unguiculata showed that the NodABC mutant UGR AnodABC, in the presence of NodNGR factors, entered roots in the same way as the wild-type bacterium. Since infection threads were also present in the resulting nodules, we conclude that Nod factors are the signals that permit rhizobia to penetrate legume roots via infection threads.  相似文献   

6.
During effective symbiosis, rhizobia colonize their hosts, and avoid plant defence mechanisms. To determine whether the host defence responses can be elicited by the symbiotic bacteria, specific markers involved in incompatible pathogenic interactions are required. The available markers of alfalfa defence mechanisms are described and their use in the study of the symbiotic interaction discussed. As defence-related gene expression in roots is not always related to defence mechanisms, other model systems have been established allowing confirmation of an important role of bacterial surface components in alfalfa-Rhizobium meliloti interactions. Nod factors at high concentrations have been shown to elicit defence-like responses in Medicago cell suspensions and roots. Elicitation of defence mechanisms by high levels of Nod factors in Rhizobium-infected roots may be a part of the mechanism by which nodulation is feed-back regulated.The authors are with the Institut des Sciences Végétales, CNRS, F-91198 Gif-sur-Yvette cédex, France.  相似文献   

7.
Legumes form a mutualistic symbiosis with bacteria collectively referred to as rhizobia. The bacteria induce the formation of nodules on the roots of the appropriate host plant, and this process requires the bacterial signaling molecule Nod factor. Although the interaction is beneficial to the plant, the number of nodules is tightly regulated. The gaseous plant hormone ethylene has been shown to be involved in the regulation of nodule number. The mechanism of the ethylene inhibition on nodulation is unclear, and the position at which ethylene acts in this complex developmental process is unknown. Here, we used direct and indirect ethylene application and inhibition of ethylene biosynthesis, together with comparison of wild-type plants and an ethylene-insensitive supernodulating mutant, to assess the effect of ethylene at multiple stages of this interaction in the model legume Medicago truncatula. We show that ethylene inhibited all of the early plant responses tested, including the initiation of calcium spiking. This finding suggests that ethylene acts upstream or at the point of calcium spiking in the Nod factor signal transduction pathway, either directly or through feedback from ethylene effects on downstream events. Furthermore, ethylene appears to regulate the frequency of calcium spiking, suggesting that it can modulate both the degree and the nature of Nod factor pathway activation.  相似文献   

8.
The interaction between legumes and rhizobial bacteria resultsin the formation of a unique organ, the nodule, on roots ofthe host plant. The nodule has evolved to harbour the bacterialsymbiont and provide conditions appropriate for the fixationof atmospheric nitrogen. Nod factor, generated by rhizobia,is sufficient to activate many of the responses involved inthe initiation of nodule development in the plant. Dissectingthe Nod factor signal transduction pathway has been greatlyaided by the adoption of genetically tractable model legumes.Recent studies have identified a number of genes involved inthis pathway and candidate proteins for the Nod factor receptor.Furthermore, a plethora of cellular responses have been linkedwith Nod factor perception. This Botanical Briefing covers recentadvances in the dissection of Nod factor signal transductionin the plant.Copyright 2001 Annals of Botany Company Review, Nod factor, rhizobia, nodulation, signal transduction  相似文献   

9.
Nitrogen‐fixing bacteria (rhizobia) form a nodule symbiosis with legumes, but also induce certain effects on non‐host plants. Here, we used a split‐root system of barley to examine whether inoculation with Rhizobium sp. strain NGR234 on one side of a split‐root system systemically affects arbuscular mycorrhizal (AM) root colonization on the other side. Mutant strains of NGR234 deficient in Nod factor production (strain NGRΔnodABC), perception of flavonoids (strain NGRΔnodD1) and secretion of type 3 effector proteins (strain NGRΩrhcN) were included in this study. Inoculation resulted in a systemic reduction of AM root colonization with all tested strains. However, the suppressive effect of strain NGRΩrhcN was less pronounced. Moreover, levels of salicylic acid, an endogenous molecule related to plant defense, were increased in roots challenged with rhizobia. These data indicate that barley roots perceived NGR234 and that a systemic regulatory mechanism of AM root colonization was activated. The suppressive effect appears to be Nod factor independent, but enhanced by type 3 effector proteins of NGR234.  相似文献   

10.
Specific complex interactions between soil bacteria belonging to Rhizobium, Sinorhizobium, Mesorhizobium, Phylorhizobium, Bradyrhizobium and Azorhizobium commonly known as rhizobia, and their host leguminous plants result in development of root nodules. Nodules are new organs that consist mainly of plant cells infected with bacteroids that provide the host plant with fixed nitrogen. Proper nodule development requires the synthesis and perception of signal molecules such as lipochitooligosaccharides, called Nod factors that are important for induction of nodule development. Bacterial surface polysaccharides are also crucial for establishment of successful symbiosis with legumes. Sugar polymers of rhizobia are composed of a number of different polysaccharides, such as lipopolysaccharides (LPS), capsular polysaccharides (CPS or K-antigens), neutral β-1, 2-glucans and acidic extracellular polysaccharides (EPS). Despite extensive research, the molecular function of the surface polysaccharides in symbiosis remains unclear.  相似文献   

11.
Lipochitooligosaccharide nodulation factors (Nod factors) produced by rhizobia are a major host range determinant. These factors play a pivotal role in the molecular signal exchange, infection and induction of symbiotic developmental responses in legumes leading to the formation of a nodule in which rhizobia carry out N2 fixation. Determining whether rice ( Oryza sativa ) can respond to Nod factors could lead to strategies that would make rice amenable to develop a nitrogen-fixing endosymbiotic association with rhizobia. We introduced into rice the promoter of the infection-related gene MtENOD12 (from Medicago truncatula ) fused to the β-glucuronidase (GUS) reporter gene to serve as a molecular marker to aid in the detection of Nod factor signal perception by rice cells. Treatment of the transgenic rice roots with Nod factors (10–6–10–9 m ) under nitrogen-limiting conditions induced MtENOD12 -GUS expression in cortical parenchyma, endodermis and pericycle. In contrast, chitooligosaccharide backbone alone failed to elicit such a response in the root tissues. These findings demonstrate that rice roots perceive Nod factors and that these lipochitooligosaccharides, but not simple chitin oligomers, act as signal molecules in activating MtENOD12 in cortical parenchyma as in legumes. Exogenous application of N -naphthaleneacetic acid mimicked the Nod factor-elicited tissue-specific expression of MtENOD12 in roots while cytokinins inhibited it, thus evidencing that Nod factors, auxin and cytokinins probably act on similar signaling elements responsible for the regulation of MtENOD12 activation in rice. Taken together, these results suggest that at least a portion of the signal transduction machinery important for legume nodulation is likely to exist in rice.   相似文献   

12.
紫云英根瘤菌结瘤因子的初步研究   总被引:7,自引:1,他引:7  
最近的研究结果表明,豆科植物与根瘤菌的共生识别是一种双向的信号物质交换过程.首先是豆科植物的根或种子分泌类黄酮物质,诱导根瘤菌的结瘤基因(nod genes)产生结瘤因子(nod factors),分泌到胞外,为植物所接受,从而引发植物某些基因表达,细胞分化,细胞壁形成,最终导致根毛变形等一系列变化.已经测定了几种苜蓿根瘤菌(Rhizobium meliloti)和豌豆根瘤菌(R.leguminosarum bv.viciae)结瘤因子的分子结构式,它们均属于寡糖胺类物质,在没有根瘤菌存在的条件下,结瘤因子能独立地促使根毛发生变形,这是检测结瘤因子是否存在的重要手段,即根毛变形试验(Root hairdeformation assay,简称Had试验).高浓度的结瘤因子甚至能诱导植物产生空瘤,其组织结构与典型的根瘤相同.  相似文献   

13.
14.
Medicago truncatula is a model legume plant that interacts symbiotically with Sinorhizobium meliloti, the alfalfa symbiont. This process involves a molecular dialogue between the bacterium and the plant. Legume roots exude flavonoids that induce the expression of a set of rhizobial genes, the nod genes, which are essential for nodulation and determination of the host range. In turn, nod genes control the synthesis of lipo-chito-oligosaccharides (LCOs), Nod factors, which are bacteria-to-plant signal molecules mediating recognition and nodule organogenesis. M. truncatula roots or seeds have been treated with Nod factors and hydroponically growing seedlings have been inoculated with a limiting population of S. meliloti. It has been shown that submicromolar concentrations of Nod factors increase the number of nodules per plant on M. truncatula. Compared with roots, this increase is more noticeable when seeds are treated. M. truncatula seeds are receptive to submicromolar concentrations of Nod factors, suggesting the possibility of a high affinity LCO perception system in seeds or embryos as well.  相似文献   

15.
D'Haeze W  Holsters M 《Glycobiology》2002,12(6):79R-105R
The onset of nodule development, the result of rhizobia-legume symbioses, is determined by the exchange of chemical compounds between microsymbiont and leguminous host plant. Lipo-chitooligosaccharidic nodulation (Nod) factors, secreted by rhizobia, belong to these signal molecules. Nod factors consist of an acylated chitin oligomeric backbone with various substitutions at the (non)reducing-terminal and/or nonterminal residues. They induce the formation and deformation of root hairs, intra- and extracellular alkalinization, membrane potential depolarization, changes in ion fluxes, early nodulin gene expression, and formation of nodule primordia. Nod factors play a key role during nodule initiation and act at nano- to picomolar concentrations. A correct chemical structure is required for induction of a particular plant response, suggesting that Nod factor-receptor interaction(s) precede(s) a Nod factor-induced signal transduction cascade. Current data on Nod factor structures and Nod factor-induced responses are highlighted as well as recent advances in the characterization of proteins, possibly involved in recognition of Nod factors by the host plant.  相似文献   

16.
Lipochito-oligosaccharides, Nod factors secreted by Rhizobium bacteria, are signal molecules that induce deformation of root hairs of their host plant. A bioassay was used for deformation, and the cytological changes induced by specific lipochito-oligosaccharides in root hairs of Vicia sativa L. (vetch), grown between glass slides, were examined. In the assay, root hairs of a particular developmental stage, those that were terminating growth, were susceptible to deformation. These hairs obtained characteristics of tip-growing cells again: (i) a polar cytoplasmic organization and reverse fountain streaming, (ii) an accumulation of a spectrin-like antigen at the tip, and (iii) a tip-focused calcium gradient. Calcium gradients were visualized in Indo-1 loaded root hairs with UV confocal microscopy and ratio-imaging. The results show that hairs respond to the bacterial signal by recovering cytoplasmic polarity and exocytosis.  相似文献   

17.
18.
Legumes and rhizobium bacteria form a symbiosis that results in the development of nitrogen-fixing nodules on the root of the host plant. The earliest plant developmental changes are triggered by bacterially produced nodulation (Nod) factors. Within minutes of exposure to Nod factors, sharp oscillations in cytoplasmic calcium levels (calcium spiking) occur in epidermal cells of several closely related legumes. We found that Lotus japonicus, a legume that follows an alternate developmental pathway, responds to both its bacterial partner and to the purified bacterial signal with calcium spiking. Thus, calcium spiking is not restricted to a particular pathway of nodule development and may be a general component of the response of host legumes to their bacterial partner. Using Nod factor-induced calcium spiking as a tool to identify mutants blocked early in the response to Nod factor, we show that the L. japonicus Ljsym22-1 mutant but not the Ljsym30 mutant fails to respond to Nod factor with calcium spiking.  相似文献   

19.
Nod factors are lipochitooligosaccharide (LCO) produced by soil bacteria commonly known as rhizobia acting as signals for the legume plants to initiate symbiosis. Nod factors trigger early symbiotic responses in plant roots and initiate the development of specialized plant organs called nodules, where biological nitrogen fixation takes place. Here, the effect of specific LCO originating from flavonoid induced Rhizobium leguminosarum bv. viciae GR09 culture was studied on germination, plant growth and nodulation of pea and vetch. A crude preparation of GR09 LCO significantly enhanced symbiotic performance of pea and vetch grown under laboratory conditions and in the soil. Moreover, the effect of GR09 LCOs seed treatments on the genetic diversity of rhizobia recovered from vetch and pea nodules was presented.  相似文献   

20.
The analysis of SA accumulation in roots of plant symbiotic mutants revealed two independent phenomena associated with the inability of either the plant or the microsymbiont to form a compatible symbiosis. SA accumulation in roots of the wild type and symbiosis-resistant P2 (Nod-, MYC-) Pisum sativum genotypes was induced upon interaction with Glomus mosseae. The amplitude of this accumulation was higher in P2 plants and increased with time, an effect that was not observed in roots of the wild-type, an effect that was not observed in roots of the wild-type P. sativum genotype. Likewise, Rhizobium leguminosarum wild type or a mutant blocked in Nod factor biosynthesis induced SA accumulation in P2, whereas SA accumulation in roots of the wild-type plant was dependent on the inability of the bacterium to produce Nod factors. These results suggest that the sym30 gene, which is mutated in P2 plants, could be implicated in a common pathway that leads to the suppression of an SA-dependent defence mechanism in legume plants against Rhizobium and endomycorrhizal fungi, thus allowing establishment of symbiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号