首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Speciation with gene flow may require adaptive divergence of multiple traits to generate strong ecologically based reproductive isolation. Extensive negative pleiotropy or physical linkage of genes in the wrong phase affecting these diverging traits may therefore hinder speciation, while genetic independence or “modularity” among phenotypic traits may reduce constraints and facilitate divergence. Here, we test whether the genetics underlying two components of diapause life history, initial diapause intensity and diapause termination timing, constrain differentiation between sympatric hawthorn and apple‐infesting host races of the fly Rhagoletis pomonella through analysis of 10,256 SNPs measured via genotyping‐by‐sequencing (GBS). Loci genetically associated with diapause termination timing were mainly observed for SNPs mapping to chromosomes 1–3 in the genome, most notably for SNPs displaying higher levels of linkage disequilibrium (LD), likely due to inversions. In contrast, selection on initial diapause intensity affected loci on all five major chromosomes of the genome, specifically those showing low levels of LD. This lack of overlap in genetically associated loci suggests that the two diapause phenotypes are largely modular. On chromosome 2, however, intermediate level LD loci and a subgroup of high LD loci displayed significant negative relationships between initial diapause intensity and diapause termination time. These gene regions on chromosome 2 therefore affected both traits, while most regions were largely independent. Moreover, loci associated with both measured traits also tended to exhibit highly divergent allele frequencies between the host races. Thus, the presence of nonoverlapping genetic modules likely facilitates simultaneous, adaptive divergence for the measured life‐history components.  相似文献   

2.
Ecological speciation with gene flow may be an important mode of diversification for phytophagous insects. The recent shift of Rhagoletis pomonella from its native host downy hawthorn (Crataegus mollis) to introduced apple (Malus domestica) in the northeastern United States is a classic example of sympatric host race formation. Here, we test whether R. pomonella has similarly formed host races on four native Crataegus species in the southern United States: western mayhaw (C. opaca), blueberry hawthorn (C. brachyacantha), southern red hawthorn (C. mollis var. texana) and green hawthorn (C. viridis). These four southern hosts differ from each other in their fruiting phenology and in the volatile compounds emitted from the surface of their fruits. These two traits form the basis of ecological reproductive isolation between downy hawthorn and apple flies in the north. We report evidence from microsatellite population surveys and eclosion studies supporting the existence of genetically differentiated and partially reproductively isolated host races of southern hawthorn flies. The results provide an example of host shifting and ecological divergence involving native plants and imply that speciation with gene flow may be commonly initiated in Rhagoletis when ecological opportunity presents itself.  相似文献   

3.
True fruit flies in the Rhagoletis pomonella sibling species group are at the center of a long-standing debate concerning modes of speciation. The allopatric separation of populations is widely thought to be a prerequisite for speciation in sexually reproducing animals. However, speciation in the R. pomonella group appears to have occurred sympatrically as a consequence of these flies shifting and adapting to new host plants. The sympatric shift of R. pomonella from its native host hawthorn to introduced domestic apple, which occurred approximately 150 years ago, provides a test of whether host specialization is sufficient to allow populations to differentiate in the absence of geographic barriers to gene flow. We report the results of a geographic study of allozyme variation for hawthorn and apple infesting populations of R. pomonella across the eastern United States and Canada. Six loci consistently show significant allele frequency differences at paired apple and hawthorn sites. These six loci map to three different regions of the genome, and linkage disequilibrium exists between non-allelic genes within each of these regions. Allele frequencies for five of the six loci displaying host associated differences also co-vary significantly with latitude. Inter-host divergence is, therefore, superimposed on north-south clinal patterns of intra-host variation such that the magnitude of genetic divergence between hawthorn and apple flies is a function of latitude. The findings suggest that partially reproductively isolated “host races” can evolve in sympatry as a consequence of R. pomonella infesting new host plants. Host recognition and host associated developmental traits are discussed as important factors differentiating apple and hawthorn flies.  相似文献   

4.
The recent shift of Rhagoletis pomonella Walsh (Diptera: Tephritidae) from its ancestral host hawthorn to apple is a model for incipient sympatric speciation in action. Previous studies have shown that changes in the over‐wintering pupal diapause are critical for differentially adapting R. pomonella flies to a difference in the fruiting times of apples vs. hawthorns, generating ecologically based reproductive isolation. Here, we exposed pupae of the hawthorn race to various combinations of pre‐ and over‐wintering rearing conditions and analyzed their effects on eclosion time and genetics. We report certain unexpected results in regards to a combination of brief pre‐winter and over‐wintering periods indicative of gene*environment interactions requiring a reassessment of our current understanding of R. pomonella diapause. We present a hypothesis that involves physiological factors related to stored energy reserves in pupae that influences the depth and duration of Rhagoletis diapause. This ‘pupal energy reserve’ hypothesis can account for our findings and help clarify the role host plant‐related life history adaptation plays in phytophage biodiversity.  相似文献   

5.
Studies of related populations varying in their degrees of reproductive isolation can provide insights into speciation. Here, the transition from partially isolated host races to more fully separated sibling species is investigated by comparing patterns of genetic differentiation between recently evolved (~150 generations) apple and ancestral hawthorn‐infesting populations of Rhagoletis pomonella to their sister taxon, the undescribed flowering dogwood fly attacking Cornus florida. No fixed or diagnostic private alleles differentiating the three populations were found at any of 23 microsatellites and 10 allozymes scored. Nevertheless, allele frequency differences were sufficient across loci for flowering dogwood fly populations from multiple localities to form a diagnosable genotypic cluster distinct from apple and hawthorn flies, indicative of species status. Genome‐wide patterns of differentiation were correlated between the host races and species pair comparisons along the majority of chromosomes, suggesting that similar disruptive selection pressures affect most loci. However, differentiation was more pronounced, with some additional regions showing elevated divergence, for the species pair comparison. Our results imply that Rhagoletis sibling species such as the flowering dogwood fly represent host races writ large, with the transition to species status primarily resulting from increased divergence of the same regions separating apple and hawthorn flies.  相似文献   

6.
Host shifts of phytophagous insect specialists to novel plants can result in divergent ecological adaptation, generating reproductive isolation and potentially new species. Rhagoletis pomonella fruit flies in eastern North America underwent a host shift ~160 ya from native downy hawthorn (Crataegus mollis) to introduced, domesticated apple (Malus domestica). Divergent selection on diapause phenology related to the earlier fruiting time of apples versus downy hawthorns resulted in partial allochronic reproductive isolation between the fly races. Here, we test for how rapid and repeatable shifts in life‐history timing are driving ecological divergence of R. pomonella in the Pacific Northwestern USA. The fly was introduced into the region via larval‐infested apples 40–65 ya and now attacks native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (Crataegus monogyna), in addition to early‐ and late‐maturing apple varieties in the region. To investigate the life‐history timing hypothesis, we used a field‐based experiment to characterize the host‐associated eclosion and flight activity patterns of adults, and the feeding times of larvae at a field site in Vancouver, Washington. We also assessed the degree to which differences in host‐fruiting time generate allochronic isolation among apple‐, black hawthorn‐, and ornamental hawthorn‐associated fly populations. We conclude that host‐associated fly populations are temporally offset 24.4% to 92.6% in their seasonal distributions. Our results imply that R. pomonella possesses the capacity for rapid and repeatable shifts in diapause life history to match host‐fruiting phenology, which can generate ecologically based reproductive isolation, and potentially biodiversity in the process.  相似文献   

7.
The pace of divergence and likelihood of speciation often depends on how and when different types of reproductive barriers evolve. Questions remain about how reproductive isolation evolves after initial divergence. We tested for the presence of sexual isolation (reduced mating between populations due to divergent mating preferences and traits) in Rhagoletis pomonella flies, a model system for incipient ecological speciation. We measured the strength of sexual isolation between two very recently diverged (~170 generations) sympatric populations, adapted to different host fruits (hawthorn and apple). We found that flies from both populations were more likely to mate within than between populations. Thus, sexual isolation may play an important role in reducing gene flow allowed by early-acting ecological barriers. We also tested how warmer temperatures predicted under climate change could alter sexual isolation and found that sexual isolation was markedly asymmetric under warmer temperatures – apple males and hawthorn females mated randomly while apple females and hawthorn males mated more within populations than between. Our findings provide a window into the early speciation process and the role of sexual isolation after initial ecological divergence, in addition to examining how environmental conditions could shape the likelihood of further divergence.  相似文献   

8.
During speciation‐with‐gene‐flow, effective migration varies across the genome as a function of several factors, including proximity of selected loci, recombination rate, strength of selection, and number of selected loci. Genome scans may provide better empirical understanding of the genome‐wide patterns of genetic differentiation, especially if the variance due to the previously mentioned factors is partitioned. In North American lake whitefish (Coregonus clupeaformis), glacial lineages that diverged in allopatry about 60,000 years ago and came into contact 12,000 years ago have independently evolved in several lakes into two sympatric species pairs (a normal benthic and a dwarf limnetic). Variable degrees of reproductive isolation between species pairs across lakes offer a continuum of genetic and phenotypic divergence associated with adaptation to distinct ecological niches. To disentangle the complex array of genetically based barriers that locally reduce the effective migration rate between whitefish species pairs, we compared genome‐wide patterns of divergence across five lakes distributed along this divergence continuum. Using restriction site associated DNA (RAD) sequencing, we combined genetic mapping and population genetics approaches to identify genomic regions resistant to introgression and derive empirical measures of the barrier strength as a function of recombination distance. We found that the size of the genomic islands of differentiation was influenced by the joint effects of linkage disequilibrium maintained by selection on many loci, the strength of ecological niche divergence, as well as demographic characteristics unique to each lake. Partial parallelism in divergent genomic regions likely reflected the combined effects of polygenic adaptation from standing variation and independent changes in the genetic architecture of postzygotic isolation. This study illustrates how integrating genetic mapping and population genomics of multiple sympatric species pairs provide a window on the speciation‐with‐gene‐flow mechanism.  相似文献   

9.
Parallel phenotypic differentiation is generally attributed to parallel adaptive divergence as an evolutionary response to similar environmental contrasts. Such parallelism may actually originate from several evolutionary scenarios ranging from repeated parallel divergence caused by divergent selection to a unique divergence event followed by gene flow. Reconstructing the evolutionary history underlying parallel phenotypic differentiation is thus fundamental to understand the relative contribution of demography and selection on genomic divergence during speciation. In this study, we investigate the divergence history of replicate European whitefish (Coregonus lavaretus), limnetic and benthic species pairs from two lakes in Norway and two lakes in Switzerland. Demographic models accounting for semi‐permeability and linked selection were fitted to the unfolded joint allele frequency spectrum built from genome‐wide SNPs and compared to each other in each species pair. We found strong support for a model of asymmetrical post‐glacial secondary contact between glacial lineages in all four lakes. Moreover, our results suggest that heterogeneous genomic differentiation has been shaped by the joint action of linked selection accelerating lineage sorting during allopatry, and heterogeneous migration eroding divergence at different rates along the genome following secondary contact. Our analyses reveal how the interplay between demography, selection and historical contingency has influenced the levels of diversity observed in previous whitefish phylogeographic studies. This study thus provides new insights into the historical demographic and selective processes that shaped the divergence associated with ecological speciation in European whitefish.  相似文献   

10.
Recently diverged taxa showing marked phenotypic and ecological diversity provide optimal systems to understand the genetic processes underlying speciation. We used genome‐wide markers to investigate the diversification of the Reunion grey white‐eye (Zosterops borbonicus) on the small volcanic island of Reunion (Mascarene archipelago), where this species complex exhibits four geographical forms that are parapatrically distributed across the island and differ strikingly in plumage colour. One form restricted to the highlands is separated by a steep ecological gradient from three distinct lowland forms which meet at narrow hybrid zones that are not associated with environmental variables. Analyses of genomic variation based on single nucleotide polymorphism data from genotyping‐by‐sequencing and pooled RAD‐seq approaches show that signatures of selection associated with elevation can be found at multiple regions across the genome, whereas most loci associated with the lowland forms are located on the Z sex chromosome. We identified TYRP1, a Z‐linked colour gene, as a likely candidate locus underlying colour variation among lowland forms. Tests of demographic models revealed that highland and lowland forms diverged in the presence of gene flow, and divergence has progressed as gene flow was restricted by selection at loci across the genome. This system holds promise for investigating how adaptation and reproductive isolation shape the genomic landscape of divergence at multiple stages of the speciation process.  相似文献   

11.
12.
The role of species divergence due to ecologically based divergent selection—or ecological speciation—in generating and maintaining biodiversity is a central question in evolutionary biology. Comparison of the genomes of phylogenetically related taxa spanning a selective habitat gradient enables discovery of divergent signatures of selection and thereby provides valuable insight into the role of divergent ecological selection in speciation. Tidal marsh ecosystems provide tractable opportunities for studying organisms' adaptations to selective pressures that underlie ecological divergence. Sharp environmental gradients across the saline–freshwater ecotone within tidal marshes present extreme adaptive challenges to terrestrial vertebrates. Here, we sequence 20 whole genomes of two avian sister species endemic to tidal marshes—the saltmarsh sparrow (Ammospiza caudacutus) and Nelson's sparrow (A. nelsoni)—to evaluate the influence of selective and demographic processes in shaping genome‐wide patterns of divergence. Genome‐wide divergence between these two recently diverged sister species was notably high (genome‐wide FST = 0.32). Against a background of high genome‐wide divergence, regions of elevated divergence were widespread throughout the genome, as opposed to focused within islands of differentiation. These patterns may be the result of genetic drift resulting from past tidal march colonization events in conjunction with divergent selection to different environments. We identified several candidate genes that exhibited elevated divergence between saltmarsh and Nelson's sparrows, including genes linked to osmotic regulation, circadian rhythm, and plumage melanism—all putative candidates linked to adaptation to tidal marsh environments. These findings provide new insights into the roles of divergent selection and genetic drift in generating and maintaining biodiversity.  相似文献   

13.
Ecological speciation via host-shifting is often invoked as a mechanism for insect diversification, but the relative importance of this process is poorly understood. The shift of Rhagoletis pomonella in the 1850s from the native downy hawthorn, Crataegus mollis, to introduced apple, Malus pumila, is a classic example of sympatric host race formation, a hypothesized early stage of ecological speciation. The accidental human-mediated introduction of R. pomonella into the Pacific Northwest (PNW) in the late 1970s allows us to investigate how novel ecological opportunities may trigger divergent adaptation and host race formation on a rapid timescale. Since the introduction, the fly has spread in the PNW, where in addition to apple, it now infests native black hawthorn, Crataegus douglasii, and introduced ornamental hawthorn, Crataegus monogyna. We use this “natural experiment” to test for genetic differentiation among apple, black, and ornamental hawthorn flies co-occurring at three sympatric sites. We report evidence that populations of all three host-associations are genetically differentiated at the local level, indicating that partial reproductive isolation has evolved in this novel habitat. Our results suggest that conditions suitable for initiating host-associated divergence may be common in nature, allowing for the rapid evolution of new host races when ecological opportunity arises.  相似文献   

14.
The shift of the apple (AP) maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), from its ancestral host downy hawthorn, Crataegus mollis (DH) (Torr. & A. Gray) Scheele, to introduced domesticated AP, Malus domestica Borkh. (both Rosaceae), is a model for ecological divergence and incipient sympatric speciation with gene flow. However, a portion of the variation contributing to the sympatric host shift from DH to AP appears to have a different biogeographic history, pre‐dating the shift. One potential source of standing variation may trace to a number of different native hawthorn species infested by R. pomonella in the southern USA, where the AP‐attacking race is absent. Herein, we investigate this possibility for the southern red hawthorn (SR) endemic to Texas, Crataegus mollis var. texana (Buckl.), which has been described as a member of the Molles series that includes the more northern distributed DH. We report results from chemical analyses of host fruit volatiles, fly behavioural responses to synthetic fruit blends, and microsatellite surveys of fly populations, implying that R. pomonella infesting SR may behaviourally and genetically represent a native host race differing from the DH‐infesting fly. No fly reared from SR responded to AP fruit volatiles in flight tunnel assays. However, coupled gas chromatographic‐electroantennographic detection (GC‐EAD) profiles for SR fruit contain all five of the component esters that comprise the standard AP volatile blend inducing behavioural orientation for AP‐infesting flies, compounds that appear to be largely missing from volatile profiles for DH fruit. Thus, SR‐infesting flies do not represent a source for a preassembled AP‐accepting phenotype. However, they may help explain why the ancestral DH race that shifted to AP in the northeastern USA had the ability to recognize AP fruit esters, potentially enabling the shift to AP. Our results highlight how categorizing speciation into different geographic modes may not adequately describe the evolutionary origins of important genetic variation fuelling adaptive radiation and the genesis of new biodiversity.  相似文献   

15.
Rhagoletis pomonella Walsh (Diptera: Tephritidae) is a model species for sympatric speciation through host race formation on apple and hawthorn. The bacterial endosymbiont Wolbachia, a manipulator of arthropod reproduction, has been considered to contribute to speciation in several species. A potential role of Wolbachia in sympatric speciation of R. pomonella remains to be tested despite an earlier detection by PCR. In this study, we isolated Wolbachia from R. pomonella individuals from both host species using multi‐locus sequence typing (MLST) and the surface protein wsp. By cloning and sequencing of 311 plasmids, we found sequence types of at least four wPom strains. A complete MLST profile was obtained only for wPom1, whereas MLST loci of the other putative strains were difficult to assign because of multiple infections and low sample numbers. wPom1 occurs in both host races, whereas different sequence types were found at low frequencies only in apple‐infesting R. pomonella. This warrants further investigation as it cannot be excluded that Wolbachia plays a part in this model of sympatric speciation.  相似文献   

16.
Despite substantial interest in coevolution's role in diversification, examples of coevolution contributing to speciation have been elusive. Here, we build upon past studies that have shown both coevolution between South Hills crossbills and lodgepole pine (Pinus contorta), and high levels of reproductive isolation between South Hills crossbills and other ecotypes in the North American red crossbill (Loxia curvirostra) complex. We used genotyping by sequencing to generate population genomic data and applied phylogenetic and population genetic analyses to characterize the genetic structure within and among nine of the ecotypes. Although genome‐wide divergence was slight between ecotypes (FST = 0.011–0.035), we found evidence of relative genetic differentiation (as measured by FST) between and genetic cohesiveness within many of them. As expected for nomadic and opportunistic breeders, we detected no evidence of isolation by distance. The one sedentary ecotype, the South Hills crossbill, was genetically most distinct because of elevated divergence at a small number of loci rather than pronounced overall genome‐wide divergence. These findings suggest that mechanisms related to recent local coevolution between South Hills crossbills and lodgepole pine (e.g. strong resource‐based density dependence limiting gene flow) have been associated with genome divergence in the face of gene flow. Our results further characterize a striking example of coevolution driving speciation within perhaps as little as 6000 years.  相似文献   

17.
Populations that maintain phenotypic divergence in sympatry typically show a mosaic pattern of genomic divergence, requiring a corresponding mosaic of genomic isolation (reduced gene flow). However, mechanisms that could produce the genomic isolation required for divergence‐with‐gene‐flow have barely been explored, apart from the traditional localized effects of selection and reduced recombination near centromeres or inversions. By localizing FST outliers from a genome scan of wild pea aphid host races on a Quantitative Trait Locus (QTL) map of key traits, we test the hypothesis that between‐population recombination and gene exchange are reduced over large ‘divergence hitchhiking’ (DH) regions. As expected under divergence hitchhiking, our map confirms that QTL and divergent markers cluster together in multiple large genomic regions. Under divergence hitchhiking, the nonoutlier markers within these regions should show signs of reduced gene exchange relative to nonoutlier markers in genomic regions where ongoing gene flow is expected. We use this predicted difference among nonoutliers to perform a critical test of divergence hitchhiking. Results show that nonoutlier markers within clusters of FST outliers and QTL resolve the genetic population structure of the two host races nearly as well as the outliers themselves, while nonoutliers outside DH regions reveal no population structure, as expected if they experience more gene flow. These results provide clear evidence for divergence hitchhiking, a mechanism that may dramatically facilitate the process of speciation‐with‐gene‐flow. They also show the power of integrating genome scans with genetic analyses of the phenotypic traits involved in local adaptation and population divergence.  相似文献   

18.
In previous studies, we have shown that apple and hawthorn populations of Rhagoletis pomonella (Diptera: Tephritidae) represent partially reproductively isolated and genetically differentiated host races; a result consistent with predictions of sympatric speciation models. The geographic pattern of allozyme variation for these flies is complex, however, as inter-host differences are superimposed on latitudinal allele frequency clines within the races. In addition, pronounced allele frequency shifts exist among R. pomonella populations across three major ecological transition zones in the mid-western United States. This suggests that selection related to environmental heterogeneity is responsible for the allele frequency shifts, but does not rule out secondary contact as an alternative possibility. Resolution of this issue is important, because if secondary contact is involved, then we would have to reassess the relationship host race formation has with speciation in the R. pomonella group.Here, we present results from a detailed genetic analysis of fly populations spanning the deciduous/prairie transition zone near the border between the states of Wisconsin and Illinois. Allele frequencies for hawthorn populations within the zone formed spikes, rather than the expected steps, and these frequency peaks correlated with variation in local ambient temperature conditions. Ambient temperature, and not secondary contact, therefore appears to be an important determinant of the shape of R. pomonella allele frequency clines. Allele frequency heterogeneity was also observed among apple populations, but was less pronounced compared to that for hawthorn flies. This suggests that ambient temperature differentially affects the host races, possibly through differences in the fruiting phenologies of apple and hawthorn trees. Several pairs of linked loci displayed concordant allele frequency changes and were in disequilibrium among both apple and hawthorn populations along the Wisconsin/Illinois transect. Although we do not know the reason for the observed pattern of disequilibrium, site to site variation in levels of inter-host migration, coupled with selection, seem the most likely explanations. We conclude by discussing how host specific adaptations, such as those associated with ambient temperature, may interact with host recognition traits to drive the sympatric speciation process for R. pomonella group flies.  相似文献   

19.
Next‐generation sequencing has made it possible to begin asking questions about the process of divergence at the level of the genome. For example, recently, there has been a debate around the role of ‘genomic islands of divergence’ (i.e. blocks of outlier loci) in facilitating the process of speciation‐with‐gene‐flow. The Swainson's thrush, Catharus ustulatus, is a migratory songbird with two genetically distinct subspecies that differ in a number of traits known to be involved in reproductive isolation in birds (plumage coloration, song and migratory behaviour), despite contemporary gene flow along a secondary contact zone. Here, we use RAD‐PE sequencing to test emerging hypotheses about the process of divergence at the level of the genome and identify genes and gene regions involved in differentiation in this migratory songbird. Our analyses revealed distinct genomic islands on 15 of the 23 chromosomes and an accelerated rate of divergence on the Z chromosome, one of the avian sex chromosomes. Further, an analysis of loci linked to traits known to be involved in reproductive isolation in songbirds showed that genes linked to migration are significantly more differentiated than expected by chance, but that these genes lie primarily outside the genomic islands. Overall, our analysis supports the idea that genes linked to migration play an important role in divergence in migratory songbirds, but we find no compelling evidence that the observed genomic islands are facilitating adaptive divergence in migratory behaviour.  相似文献   

20.
In this issue, Flaxman et al. ( 2014 ) report the results of sophisticated whole‐genome simulations of speciation with gene flow, enhancing our understanding of the process by building on previous single‐locus, multilocus and analytical works. Their findings provide us with new insights about how genomes can diverge and the importance of statistical and chromosomal linkage in facilitating reproductive isolation. The authors characterize the conditions under which, even with high gene flow and weak divergent selection, reproductive isolation between populations can occur due to the emergent stochastic process of genomewide congealing, where numerous statistically or physically linked loci of small effect allow selection to limit effective migration rates. The initial congealing event can occur within a broad range conditions, and once initiated, the self‐reinforcing process leads to rapid divergence and ultimately two reproductively isolated populations. Flaxman et al.'s ( 2014 ) work is a valuable contribution to our understanding of speciation with gene flow and in making a more predictive field of evolutionary genomics and speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号