首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Apolipoprotein B-100 (apoB-100) is degraded by endoplasmic reticulum-associated degradation (ERAD) when lipid availability limits assembly of VLDLs. The ubiquitin ligase gp78 and the AAA-ATPase p97 have been implicated in the proteasomal degradation of apoB-100. To study the relationship between ERAD and VLDL assembly, we used small interfering RNA (siRNA) to reduce gp78 expression in HepG2 cells. Reduction of gp78 decreased apoB-100 ubiquitination and cytosolic apoB-ubiquitin conjugates. Radiolabeling studies revealed that gp78 knockdown increased secretion of newly synthesized apoB-100 and, unexpectedly, enhanced VLDL assembly, as the shift in apoB-100 density in gp78-reduced cells was accompanied by increased triacylglycerol (TG) secretion. To explore the mechanisms by which gp78 reduction might enhance VLDL assembly, we compared the effects of gp78 knockdown with those of U0126, a mitogen-activated protein kinase/ERK kinase1/2 inhibitor that enhances apoB-100 secretion in HepG2 cells. U0126 treatment increased secretion of both apoB100 and TG and decreased the ubiquitination and cellular accumu-lation of apoB-100. Furthermore, p97 knockdown caused apoB-100 to accumulate in the cell, but if gp78 was concomitantly reduced or assembly was enhanced by U0126 treatment, cellular apoB-100 returned toward baseline. This indicates that ubiquitination commits apoB-100 to p97-mediated retrotranslocation during ERAD. Thus, decreasing ubiquitination of apoB-100 enhances VLDL assembly, whereas improving apoB-100 lipidation decreases its ubiquitination, suggesting that ubiquitination has a regulatory role in VLDL assembly.  相似文献   

2.
The peroxisome proliferator-activated receptor (PPAR) alpha agonist WY 14,643 increased the secretion of apolipoprotein (apo) B-100, but not that of apoB-48, and decreased triglyceride biosynthesis and secretion from primary rat hepatocytes. These effects resulted in decreased secretion of apoB-100-very low density lipoprotein (VLDL) and an increased secretion of apoB-100 on low density lipoproteins/intermediate density lipoproteins. ApoB-48-VLDL was also replaced by more dense particles. The proteasomal inhibitor lactacystin did not influence the recovery of apoB-100 or apoB-48 in primary rat hepatocytes, indicating that co-translational (proteasomal) degradation is of less importance in these cells. Treatment with WY 14,643 made the recovery of apoB-100 sensitive to lactacystin, most likely reflecting the decreased biosynthesis of triglycerides. The PPAR alpha agonist induced a significant increase in the accumulation of pulse-labeled apoB-100 even after a short pulse (2-5 min). There was also an increase in apoB-100 nascent polypeptides, indicating that the co-translational degradation of apoB-100 was inhibited. However, a minor influence on an early posttranslation degradation cannot be excluded. This decreased co-translational degradation of apoB-100 explained the increased secretion of the protein. The levels of apoB-48 remained unchanged during these pulse-chase experiments, and albumin production was not affected, indicating a specific effect of PPAR alpha agonists on the co-translational degradation of apoB-100. These findings explain the difference in the rate of secretion of the two apoB proteins seen after PPAR alpha activation. PPAR alpha agonists increased the expression and biosynthesis of liver fatty acid-binding protein (LFABP). Increased expression of LFABP by transfection of McA-RH7777 cells increased the secretion of apoB-100, decreased triglyceride biosynthesis and secretion, and increased PPAR alpha mRNA levels. These findings suggest that PPAR alpha and LFABP could interact to amplify the effect of endogenous PPAR alpha agonists on the assembly of VLDL.  相似文献   

3.
The microsomal triglyceride transfer protein (MTP) is necessary for the proper assembly of the apolipoprotein B containing lipoproteins, very low density lipoprotein and chylomicrons. Recent research has significantly advanced our understanding of the role of MTP in these pathways at the molecular and cellular level. Biochemical studies suggest that initiation of lipidation of the nascent apolipoprotein B polypeptide may occur through a direct association with MTP. This early lipidation may be required to allow the nascent polypeptide to fold properly and therefore avoid ubiquitination and degradation. Concerning the addition of core neutral lipids in the later stages of lipoprotein assembly, cell culture studies show that MTP lipid transfer activity is not required for this to occur for apolipoprotein B-100 containing lipoproteins. Likewise, MTP does not appear to directly mediate addition of core neutral lipid to nascent apoB-48 particles. However, new data indicate that MTP is required to produce triglyceride rich droplets in the smooth endoplasmic reticulum which may supply the core lipids for conversion of nascent, dense apoB-48 particles to mature VLDL. In addition, assembly of dense apolipoprotein B-48 containing lipoproteins has been observed in mouse liver in the absence of MTP. As a result of these new data, an updated model for the role of MTP in lipoprotein assembly is proposed.  相似文献   

4.
Hepatic assembly of triacylglycerol (TAG)-rich very low density lipoproteins (VLDL) is achieved through recruitment of bulk TAG (presumably in the form of lipid droplets within the microsomal lumen) into VLDL precursor containing apolipoprotein (apo) B-100. We determined protein/lipid components of lumenal lipid droplets (LLD) in cells expressing recombinant human apoC-III (C3wt) or a mutant form (K58E, C3KE) initially identified in humans that displayed hypotriglyceridemia. Although expression of C3wt markedly stimulated secretion of TAG and apoB-100 as VLDL(1), the K58E mutation (located at the C-terminal lipid binding domain) abolished the effect in transfected McA-RH7777 cells and in apoc3-null mice. Metabolic labeling studies revealed that accumulation of TAG in LLD was decreased (by 50%) in cells expressing C3KE. A Fat Western lipid protein overlay assay showed drastically reduced lipid binding of the mutant protein. Substituting Lys(58) with Arg demonstrated that the positive charge at position 58 is crucial for apoC-III binding to lipid and for promoting TAG secretion. On the other hand, substituting both Lys(58) and Lys(60) with Glu resulted in almost entire elimination of lipid binding and loss of function in promoting TAG secretion. Thus, the lipid binding domain of apoC-III plays a key role in the formation of LLD for hepatic VLDL assembly and secretion.  相似文献   

5.
The balance between the hepatic assembly of apolipoprotein B (apoB) and its presecretory degradation at the level of the endoplasmic reticulum (ER) may control the secretion of apoB-containing lipoproteins. In one model, apoB that fails to assemble with lipid undergoes translocation arrest, exposing the protein to the cytosolic proteasome. To examine apoB's translocation behavior under various metabolic conditions, glycosylation site utilization studies were performed. A 70-amino acid peptide containing three sites for N-linked glycosylation was appended to the C-terminus of apoB-50 (amino-terminal 50% of apoB) and expressed in both hepatic and nonhepatic cell lines. When the C-terminal reporter peptide was released by cyanogen bromide cleavage, all of the sites were glycosylated irrespective of cell type, labeling time, or assembly status. Similar peptide mapping of endogenous apoB-100 expressed in HepG2 cells was performed to monitor glycosylation at Asn residues 2752 (apoB-61), 2955 (apoB-65), and 3074 (apoB-68). N-linked glycosylation occurred at a minimum of two of the three sites, a frequency identical to that observed in apoB-100 recovered from cell media. Treatment of cells with proteasome inhibitors produced a 2. 5-fold increase in intracellular apoB but failed to cause accumulation of an unglycosylated form. These results indicate that 1) the efficient translocation of apoB into the ER occurs independently of microsomal triglyceride transfer protein and its assembly with lipid and 2) despite its large size and affinity for lipid, delivery of misassembled apoB to the proteasome requires retrograde translocation from the ER lumen to cytosol.  相似文献   

6.
Apolipoprotein (apo) C-III plays a regulatory role in VLDL lipolysis and clearance. In this study, we determined a potential intracellular role of apoC-III in hepatic VLDL assembly and secretion. Stable expression of recombinant apoC-III in McA-RH7777 cells resulted in increased secretion efficiency of VLDL-associated triacylglycerol (TAG) and apoB-100 in a gene-dosage-dependent manner. The stimulatory effect of apoC-III on TAG secretion was manifested only when cells were cultured under lipid-rich (i.e., media supplemented with exogenous oleate) but not lipid-poor conditions. The stimulated TAG secretion was accompanied by increased secretion of apoB-100 and apoB-48 as VLDL1. Expression of apoC-III also increased mRNA and activity of microsomal triglyceride transfer protein (MTP). Pulse-chase experiments showed that apoC-III expression promoted VLDL1 secretion even under conditions where the MTP activity was inhibited immediately after the formation of lipid-poor apoB-100 particles, suggesting an involvement of apoC-III in the second-step VLDL assembly process. Consistent with this notion, the newly synthesized apoC-III was predominantly associated with TAG within the microsomal lumen that resembled lipid precursors of VLDL. Introducing an Ala23-to-Thr mutation into apoC-III, a naturally occurring mutation originally identified in two Mayan Indian subjects with hypotriglyceridemia, abolished the ability of apoC-III to stimulate VLDL secretion from transfected cells. Thus, expression of apoC-III in McA-RH7777 cells enhances hepatic TAG-rich VLDL assembly and secretion under lipid-rich conditions.  相似文献   

7.
The transfer of triglyceride from sites of synthesis in the endoplasmic reticulum to cytoplasmic lipid droplets and nascent VLDL (very low density lipoproteins) in rat liver in vivo has been examined with [3H]glycerol, cell fractionation, and electron microscopy. Rates of mass transfer of newly synthesized triglyceride were estimated from the specific radioactivity of triglyceride present in microsomal membranes and the radioactivity observed in recipient triglyceride pools. Fasting decreased the transfer of triglyceride to nascent VLDL without affecting transfer to lipid droplets. Stimulation of triglyceride synthesis with 2-tetradecylglycidic acid (TDGA) increased transfer of triglyceride to nascent VLDL 5-fold, and to lipid droplets 14-fold, 1 hr after TDGA administration. Triglyceride transfer to nascent VLDL was increased 6-fold, and to lipid droplets 37-fold, above control rates 6 hr following TDGA treatment, indicative of saturation of triglyceride assembly into nascent VLDL and storage of excess triglyceride in lipid droplet reservoirs. These liver triglyceride pools were concurrently expanded and electron microscopy demonstrated more abundant VLDL particles in the endoplasmic reticulum together with a proliferation of lipid droplets in hepatocytes. TDGA progressively decreased hepatic sn-glycerol-3-phosphate in fasting rats while triglyceride synthesis increased, indicating that sn-glycerol-3-phosphate does not limit the rate of triglyceride synthesis in this metabolic state. Results implicate triglyceride transfer from endoplasmic reticulum membranes to nascent VLDL as a regulated determinant of hepatic VLDL assembly and VLDL triglyceride secretion in vivo.  相似文献   

8.
Neutral lipids are stored in the cytosol in so-called lipid droplets. These are dynamic organelles with neutral lipids as the core surrounded by a monolayer of amphipathic lipids (phospholipids and cholesterol) and specific proteins (PAT proteins and proteins involved in the turnover of lipids and in the formation and trafficking of the droplets). Lipid droplets are formed at microsomal membranes as primordial droplets with a diameter of 0.1-0.4 microm and increase in size by fusion. In this article, we review the assembly and fusion of lipid droplets, and the processes involved in the secretion of triglycerides. Triglycerides are secreted from cells by two principally different processes. In the mammary gland, lipid droplets interact with specific regions of the plasma membrane and bud off with an envelope consisting of the membrane, to form milk globules. In the liver and intestine, very low-density lipoproteins (VLDL) and chylomicrons are secreted by using the secretory pathway of the cell. Finally, we briefly review the importance of lipid droplets in the development of insulin resistance and atherosclerosis.  相似文献   

9.
The liver secretes triglyceride-rich VLDLs, and the triglycerides in these particles are taken up by peripheral tissues, mainly heart, skeletal muscle, and adipose tissue. Blocking hepatic VLDL secretion interferes with the delivery of liver-derived triglycerides to peripheral tissues and results in an accumulation of triglycerides in the liver. However, it is unclear how interfering with hepatic triglyceride secretion affects adiposity, muscle triglyceride stores, and insulin sensitivity. To explore these issues, we examined mice that cannot secrete VLDL [due to the absence of microsomal triglyceride transfer protein (Mttp) in the liver]. These mice exhibit markedly reduced levels of apolipoprotein B-100 in the plasma, along with reduced levels of triglycerides in the plasma. Despite the low plasma triglyceride levels, triglyceride levels in skeletal muscle were unaffected. Adiposity and adipose tissue triglyceride synthesis rates were also normal, and body weight curves were unaffected. Even though the blockade of VLDL secretion caused hepatic steatosis accompanied by increased ceramides and diacylglycerols in the liver, the mice exhibited normal glucose tolerance and were sensitive to insulin at the whole-body level, as judged by hyperinsulinemic euglycemic clamp studies. Normal hepatic glucose production and insulin signaling were also maintained in the fatty liver induced by Mttp deletion. Thus, blocking VLDL secretion causes hepatic steatosis without insulin resistance, and there is little effect on muscle triglyceride stores or adiposity.  相似文献   

10.
Inhibition of esterified and non-esterified cholesterol synthesis by lovastatin in primary rat hepatocytes suppressed the net synthesis and very-low-density lipoprotein (VLDL) secretion of apolipoprotein B (apoB)-48 and apoB-100. Lovastatin did not alter the rates of apoB-48 and apoB-100 post-translational degradation. 25-Hydroxycholesterol, which inhibited non-esterified cholesterol synthesis but increased the synthesis of cholesteryl ester, showed differential effects on the metabolism of apoB-48 and apoB-100. Whereas the secretion of apoB-48 VLDL was suppressed there was no effect on the secretion of apoB-100 VLDL. The post-translational degradation of apoB-48, but not of apoB-100, was enhanced by 25-hydroxycholesterol. The net synthesis rates of apoB-48 and apoB-100 were unaffected by 25-hydroxycholesterol. The inhibitory effect of lovastatin alone on the net synthesis of apoB-48 and apoB-100 was reversed by the simultaneous presence of 25-hydroxycholesterol, suggesting a role for newly synthesised cholesteryl ester. Prevention of the reversal effect by the acyl-CoA: cholesterol acyltransferase (ACAT) inhibitor YM 17E supported this interpretation. In the presence of lovastatin, restoration of the net synthesis of apoB by 25-hydroxycholesterol was not accompanied by an increased VLDL output of apoB-48 and apoB-100. However, under these conditions there was an increased post-translational degradation of apoB-48 and apoB-100. These results suggest that interference with intracellular cholesterol and cholesteryl ester metabolism interrupts VLDL assembly at sites of both apoB net synthesis and post-translational degradation.  相似文献   

11.
Sterol-induced binding to Insigs in the endoplasmic reticulum (ER) allows for ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. This ubiquitination marks reductase for recognition by the ATPase VCP/p97, which mediates extraction and delivery of reductase from ER membranes to cytosolic 26 S proteasomes for degradation. Here, we report that reductase becomes dislocated from ER membranes into the cytosol of sterol-treated cells. This dislocation exhibits an absolute requirement for the actions of Insigs and VCP/p97. Reductase also appears in a buoyant fraction of sterol-treated cells that co-purifies with lipid droplets, cytosolic organelles traditionally regarded as storage depots for neutral lipids such as triglycerides and cholesteryl esters. Genetic, biochemical, and localization studies suggest a model in which reductase is dislodged into the cytosol from an ER subdomain closely associated with lipid droplets.  相似文献   

12.
Cellular apoB in primary rat hepatocyte cultures was pulse-labeled with [(35)S]methionine for 1 h. Cells were then chased with excess unlabeled methionine for periods of up to 16 h in the presence or absence of BMS-200150, an inhibitor of microsomal triglyceride transfer protein (MTP). The secretion of apoB-48-VLDL was more sensitive to MTP inhibition than was apoB-100-VLDL. Inhibition of MTP had no inhibitory effect on the secretion of denser particles (apoB-48 HDL and apoB-100 HDL). BMS-200150 delayed the net removal of newly synthesized apoB-48 and apoB-100 from the microsomal and Golgi membranes, but not from the corresponding lumenal compartments. Only minor proportions of the microsomal lumen apoB-48 and apoB-100 (12-16% and 17-19%, respectively) were present as VLDL irrespective of whether MTP was inactivated or not. The HDL fraction contained most of the lumenal apoB-48 (67-73%) and a somewhat smaller proportion of apoB-100 (44-47%). The remainder of the lumenal apoB was associated with the IDL/LDL fraction. These proportions were unaffected by MTP inactivation. Excess labeled apoB which accumulated in the membranes in the presence of BMS-200150 was degraded. Inhibition of MTP prevented the removal of pre-synthesized triacylglycerol (TAG) from the hepatocytes as apoB-VLDL. Under these conditions intracellular TAG accumulated mainly in the cell cytosol, but also, to a lesser extent, in the microsomal membranes. The results suggest that inactivation of MTP inhibits a pathway of VLDL assembly which does not involve the bulk lumenal compartments of the microsomes. Suppression of this pathway ultimately prevents the net transfer of cytosolic TAG into mature apoB-VLDL.  相似文献   

13.
Lipid accumulation alters macrophage biology and contributes to lipid retention within the vessel wall. In this study, we investigated the role of adipophilin on triglyceride accumulation and lipid-droplet formation in THP-1-derived macrophages (THP-1 macrophages). In the presence of acetylated low-density lipoprotein, macrophages infected with an adenovirus expressing human adipophilin showed a 31% increase in triglyceride content and a greater number of lipid droplets compared with control cells. Incubation of macrophages with very low-density lipoprotein (VLDL) dramatically increased cellular triglyceride content similarly in control and adipophilin-overexpressing cells. By itself, VLDL increased adipophilin expression, which explains the lack of effect of adipophilin overexpression on cellular triglyceride content in macrophages loaded with VLDL. The lipid-droplet content of macrophages was increased by overexpression of adipophilin and/or loading with VLDL. In contrast, inhibition of adipophilin expression using siRNA prevented lipid-droplet formation and significantly reduced intracellular triglyceride content. Using inhibitors of beta-oxidation and acyl-coenzyme A synthetase, results were obtained which suggest that adipophilin elevates cellular lipids by inhibition of beta-oxidation and stimulation of long-chain fatty acid incorporation into triglycerides. Adipophilin expression in THP-1 macrophages altered the cellular content of different lipids and enhanced the size of lipid droplets, consistent with a role for adipophilin in human foam cell formation.  相似文献   

14.
Very low density lipoprotein (VLDL), a large particle containing apolipoprotein B (apoB) and large amounts of neutral lipids, is formed in the luminal space within the endoplasmic reticulum (ER) of hepatic cells. The assembly mechanism of VLDL particles is a tightly regulated process where apoB, associated with an insufficient amount of lipids, is selectively degraded intracellularly. In this study we found that treatment of HuH-7 human hepatoma cells with verapamil inhibited secretion of apoB-containing lipoprotein particles through increasing degradation of apoB. Addition of N-acetylleucyl-leucyl-norleucinal, an inhibitor of proteasome and other cysteinyl proteases that are responsible for apoB degradation, restored apoB recovery from verapamil-treated cells. De novo synthesis of lipids from [14C]acetate was increased in the presence of verapamil, suggesting that verapamil decreases lipid availability for apoB thus leading to the secretion of apoB-containing lipoprotein. We prepared cytosolic fractions from cells preincubated with [14C]acetate and used as a donor of radioactive lipids. When this cytosolic fraction was incubated with microsomes isolated separately, radioactive triglyceride (TG) accumulated in the luminal space of the microsomes. The transfer of radioactive TG from the cytosolic fraction to the microsomal lumen was inhibited in the presence of verapamil, suggesting that there is a verapamil-sensitive mechanism for TG transfer across ER membranes that is involved in formation of apoB-containing lipoprotein particles in ER. Verapamil showed no inhibitory effect on microsomal TG transfer protein, a well known lipid transfer protein in ER. We propose from these results that there is novel machinery for transmembrane movement of neutral lipids, which is involved in providing TG for apoB during VLDL assembly in ER.  相似文献   

15.
We have used an extraction procedure, which released membrane-bound apoB-100, to study the assembly of apoB-48 VLDL (very low density lipoproteins). This procedure released apoB-48, but not integral membrane proteins, from microsomes of McA-RH7777 cells. Upon gradient ultracentrifugation, the extracted apoB-48 migrated in the same position as the dense apoB-48-containing lipoprotein (apoB-48 HDL (high density lipoprotein)) secreted into the medium. Labeling studies with [(3)H]glycerol demonstrated that the HDL-like particle extracted from the microsomes contains both triglycerides and phosphatidylcholine. The estimated molar ratio between triglyceride and phosphatidylcholine was 0.70 +/- 0.09, supporting the possibility that the particle has a neutral lipid core. Pulse-chase experiments indicated that microsomal apoB-48 HDL can either be secreted as apoB-48 HDL or converted to apoB-48 VLDL. These results support the two-step model of VLDL assembly. To determine the size of apoB required to assemble HDL and VLDL, we produced apoB polypeptides of various lengths and followed their ability to assemble VLDL. Small amounts of apoB-40 were associated with VLDL, but most of the nascent chains associated with VLDL ranged from apoB-48 to apoB-100. Thus, efficient VLDL assembly requires apoB chains of at least apoB-48 size. Nascent polypeptides as small as apoB-20 were associated with particles in the HDL density range. Thus, the structural requirements of apoB to form HDL-like first-step particles differ from those to form second-step VLDL. Analysis of proteins in the d < 1.006 g/ml fraction after ultracentrifugation of the luminal content of the cells identified five chaperone proteins: binding protein, protein disulfide isomerase, calcium-binding protein 2, calreticulin, and glucose regulatory protein 94. Thus, intracellular VLDL is associated with a network of chaperones involved in protein folding. Pulse-chase and subcellular fractionation studies showed that apoB-48 VLDL did not accumulate in the rough endoplasmic reticulum. This finding indicates either that the two steps of apoB lipoprotein assembly occur in different compartment or that the assembled VLDL is transferred rapidly out of the rough endoplasmic reticulum.  相似文献   

16.
Very-low-density lipoprotein assembly and secretion   总被引:8,自引:0,他引:8  
The assembly of apolipoprotein B (apoB) into VLDL is broadly divided into two steps. The first involves transfer of lipid by the microsomal triglyceride transfer protein (MTP) to apoB during translation. The second involves fusion of apoB-containing precursor particles with triglyceride droplets to form mature VLDL. ApoB and MTP are homologs of the egg yolk storage protein, lipovitellin. Homodimerization surfaces in lipovitellin are reutilized in apoB and MTP to achieve apoB-MTP interactions necessary for first step assembly. Structural modeling predicts a small lipovitellin-like lipid binding cavity in MTP and a transient lipovitellin-like cavity in apoB important for nucleation of lipid sequestration. The formation of triglyceride droplets in the endoplasmic reticulum requires MTP however, their fusion with apoB may be MTP-independent. Second step assembly is modulated by phospholipase D and A2. Phospholipases may prime membrane transport steps required for second step fusion and/or channel phospholipids into a pathway for VLDL triglyceride production. The enzymology of VLDL triglyceride synthesis is still poorly understood; however, it appears that ACAT2 is the sole source of cholesterol esters for VLDL and chylomicron assembly. VLDL production is controlled primarily at the level of presecretory degradation. Recently, it was discovered that the LDL receptor modulates VLDL production through its interactions with nascent VLDL in the secretory pathway.  相似文献   

17.
The ATPase associated with various cellular activities (AAA-ATPase) p97 (p97) has been implicated in the retrotranslocation of target proteins for delivery to the cytosolic proteasome during endoplasmic reticulum-associated degradation (ERAD). Apolipoprotein B-100 (apoB-100) is an ERAD substrate in liver cells, including the human hepatoma, HepG2. We studied the potential role of p97 in the ERAD of apoB-100 in HepG2 cells using cell permeabilization, coimmunoprecipitation, and gene silencing. Degradation was abolished when HepG2 cytosol was removed by digitonin permeabilization, and treatment of intact cells with the proteasome inhibitor MG132 caused accumulation of ubiquitinated apoB protein in the cytosol. Cross-linking of intact cells with the thiol-cleavable agent dithiobis(succinimidylpropionate) (DSP), as well as nondenaturing immunoprecipitation, demonstrated an interaction between p97 and intracellular apoB. Small interfering ribonucleic acid (siRNA)-mediated reduction of p97 protein increased the intracellular levels of newly synthesized apoB-100, predominantly because of a decrease in the turnover of newly synthesized apoB-100 protein. However, although the posttranslational degradation of newly synthesized apoB-100 was delayed by p97 knockdown, secretion of apoB-100 was not affected. Knockdown of p97 also impaired the release of apoB-100 and polyubiquitinated apoB into the cytosol. In summary, our results suggest that retrotranslocation and proteasomal degradation of apoB-100 can be dissociated in HepG2 cells, and that the AAA-ATPase p97 is involved in the removal of full-length apoB from the biosynthetic pathway to the cytosolic proteasome.  相似文献   

18.
Adipose differentiation-related protein (ADRP) is a lipid droplet-associated protein that is expressed in various tissues. In mice treated with the peroxisome proliferator-activated receptor alpha (PPARalpha) agonist Wy14,643 (Wy), hepatic mRNA and protein levels of ADRP as well as hepatic triglyceride content increased. Also in primary mouse hepatocytes, Wy increased ADRP expression and intracellular triglyceride mass. The triglyceride mass increased in spite of unchanged triglyceride biosynthesis and increased palmitic acid oxidation. However, Wy incubation decreased the secretion of newly synthesized triglycerides, whereas apolipoprotein B secretion increased. Thus, decreased availability of triglycerides for VLDL assembly could help to explain the cellular accumulation of triglycerides after Wy treatment. We hypothesized that this effect could be mediated by increased ADRP expression. Similar to PPARalpha activation, adenovirus-mediated ADRP overexpression in mouse hepatocytes enhanced cellular triglyceride mass and decreased the secretion of newly synthesized triglycerides. In ADRP-overexpressing cells, Wy incubation resulted in a further decrease in triglyceride secretion. This effect of Wy was not attributable to decreased cellular triglycerides after increased fatty acid oxidation because the triglyceride mass in Wy-treated ADRP-overexpressing cells was unchanged. In summary, PPARalpha activation prevents the availability of triglycerides for VLDL assembly and increases hepatic triglyceride content in part by increasing the expression of ADRP.  相似文献   

19.
Glucosamine-induced endoplasmic reticulum (ER) stress was recently shown to specifically reduce apolipoprotein B-100 (apoB-100) secretion by enhancing the proteasomal degradation of apoB-100. Here, we examined the mechanisms linking glucosamine-induced ER stress and apoB-lipoprotein biogenesis. Trypsin sensitivity studies suggested glucosamine-induced changes in apoB-100 conformation. Endoglycosidase H studies of newly synthesized apoB-100 revealed glucosamine induced N-linked glycosylation defects resulting in reduced apoB-100 secretion. We also examined glucosamine-induced changes in VLDL assembly and secretion. A dose-dependent (1-10 mM glucosamine) reduction was observed in VLDL-apoB-100 secretion in primary hepatocytes (24.2-67.3%) and rat McA-RH7777 cells (23.2-89.5%). Glucosamine also inhibited the assembly of larger VLDL-, LDL-, and intermediate density lipoprotein-apoB-100 but did not affect smaller HDL-sized apoB-100 particles. Glucosamine treatment during the chase period (posttranslational) led to a 24% reduction in apoB-100 secretion (P < 0.01; n = 4) and promoted post-ER apoB degradation. However, the contribution of post-ER apoB-100 degradation appeared to be quantitatively minor. Interestingly, the glucosamine-induced posttranslational reduction in apoB-100 secretion could be partially prevented by treatment with desferrioxamine or vitamin E. Together, these data suggest that cotranslational glucosamine treatment may cause defects in apoB-100 N-linked glycosylation and folding, resulting in enhanced proteasomal degradation. Posttranslationally, glucosamine may interfere with the assembly process of apoB lipoproteins, leading to post-ER degradation via nonproteasomal pathways.  相似文献   

20.
Apolipoprotein-B100 (apoB100) is the essential protein for the assembly and secretion of very low density lipoproteins (VLDL) from liver. The hepatoma HepG2 cell line has been the cell line of choice for the study of synthesis and secretion of human apoB-100. Despite the general use of HepG2 cells to study apoB100 metabolism, they secrete relatively dense, lipid-poor particles compared with VLDL secreted in vivo. Recently, Huh-7 cells were adopted as an alternative model to HepG2 cells, with the implicit assumption that Huh-7 cells were superior in some respects of lipoprotein metabolism, including VLDL secretion. In this study we addressed the hypothesis that the spectrum of apoB100 lipoprotein particles secreted by Huh-7 cells more closely resembles the native state in human liver. We find that Huh-7 cells resemble HepG2 cells in the effects of exogenous lipids, microsomal triglyceride transfer protein (MTP)-inhibition, and proteasome inhibitors of apoB100 secretion, recovery, and degradation. In contrast to HepG2 cells, however, MEK-ERK inhibition does not correct the defect in VLDL secretion. Huh-7 cells do not appear to offer any advantages over HepG2 cells as a general model of human apoB100-lipoprotein metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号