首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Certain nascent peptide sequences, when within the ribosomal exit tunnel, can inhibit translation termination and/or peptide elongation. The 24 residue leader peptidyl-tRNA of the tna operon of E. coli, TnaC-tRNA(Pro), in the presence of excess tryptophan, resists cleavage at the tnaC stop codon. TnaC residue Trp12 is crucial for this inhibition. The approximate location of Trp12 in the exit tunnel was determined by crosslinking Lys11 of TnaC-tRNA(Pro) to nucleotide A750 of 23S rRNA. Methylation of nucleotide A788 of 23S rRNA was reduced by the presence of Trp12 in TnaC-tRNA(Pro), implying A788 displacement. Inserting an adenylate at position 751, or introducing the change U2609C in 23S rRNA or the change K90H or K90W in ribosomal protein L22, virtually eliminated tryptophan induction. These modified and mutated regions are mostly located near the putative site occupied by Trp12 of TnaC-tRNA(Pro). These findings identify features of the ribosomal exit tunnel essential for tna operon induction.  相似文献   

3.
4.
5.
Translation of the TnaC nascent peptide inhibits ribosomal activity in the presence of l-tryptophan, inducing expression of the tnaCAB operon in Escherichia coli. Using chemical methylation, this work reveals how interactions between TnaC and the ribosome are affected by mutations in both molecules. The presence of the TnaC-tRNA(Pro) peptidyl-tRNA within the ribosome protects the 23S rRNA nucleotide U2609 against chemical methylation. Such protection was not observed in mutant ribosomes containing changes in 23S rRNA nucleotides of the A748-A752 region. Nucleotides A752 and U2609 establish a base-pair interaction. Most replacements of either A752 or U2609 affected Trp induction of a TnaC-regulated LacZ reporter. However, the single change A752G, or the dual replacements A752G and U2609C, maintained Trp induction. Replacements at the conserved TnaC residues W12 and D16 also abolished the protection of U2609 by TnaC-tRNA(Pro) against chemical methylation. These data indicate that the TnaC nascent peptide in the ribosome exit tunnel interacts with the U2609 nucleotide when the ribosome is Trp responsive. This interaction is affected by mutational changes in exit tunnel nucleotides of 23S rRNA, as well as in conserved TnaC residues, suggesting that they affect the structure of the exit tunnel and/or the nascent peptide configuration in the tunnel.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Catalysis of peptide bond formation in the peptidyl transferase center is a major enzymatic activity of the ribosome. Mutations limiting peptidyl transferase activity are mostly lethal. However, cellular processes triggered by peptidyl transferase deficiency in the bacterial cell are largely unknown. Here we report a study of the lethal G2061C mutant of Escherichia coli 23S ribosomal RNA (rRNA). The G2061C mutation completely impaired the puromycin reaction and abolished formation of the active firefly luciferase in an in vitro translation system, while poly(U)- and short synthetic mRNA-directed peptidyl transferase reaction with aminoacylated tRNAs in vitro was seemingly unaffected. Study of the cellular proteome upon expression of the 23S rRNA gene carrying the G2061C mutation compared to cells expressing wild-type 23S rRNA gene revealed substantial differences. Most of the observed effects in the mutant were associated with reduced expression of stress response proteins and particularly proteins associated with the ppGpp-mediated stringent response.  相似文献   

13.
Oxazolidinone antibiotics inhibit bacterial protein synthesis by interacting with the large ribosomal subunit. The structure and exact location of the oxazolidinone binding site remain obscure, as does the manner in which these drugs inhibit translation. To investigate the drug-ribosome interaction, we selected Escherichia coli oxazolidinone-resistant mutants, which contained a randomly mutagenized plasmid-borne rRNA operon. The same mutation, G2032 to A, was identified in the 23S rRNA genes of several independent resistant isolates. Engineering of this mutation by site-directed mutagenesis in the wild-type rRNA operon produced an oxazolidinone resistance phenotype, establishing that the G2032A substitution was the determinant of resistance. Engineered U and C substitutions at G2032, as well as a G2447-to-U mutation, also conferred resistance to oxazolidinone. All the characterized resistance mutations were clustered in the vicinity of the central loop of domain V of 23S rRNA, suggesting that this rRNA region plays a major role in the interaction of the drug with the ribosome. Although the central loop of domain V is an essential integral component of the ribosomal peptidyl transferase, oxazolidinones do not inhibit peptide bond formation, and thus these drugs presumably interfere with another activity associated with the peptidyl transferase center.  相似文献   

14.
15.
A derivative of Mycobacterium smegmatis, which carries only one functional rRNA (rrn) operon, was used to isolate mutants resistant to the ribosome-targeted antibiotic linezolid. Isolation and characterization of linezolid-resistant clones revealed two classes of mutants. Ribosomes from class I mutants are resistant to oxazolidinones in an in vitro peptidyl transferase assay, indicating that resistance maps to the ribosome component. In contrast, ribosomes from class II mutants show wild-type susceptibility to a linezolid derivative in vitro, pointing to a non-ribosomal mechanism of resistance. Introduction of a wild-type ribosomal RNA operon into linezolid-resistant strains restored linezolid sensitivity in class I mutants, indicating that resistance (i) maps to the rRNA and (ii) is recessive. Sequencing of the entire rrn operon identified a single nucleotide alteration in 23S rRNA of class I mutant strains, 2447G --> T (Escherichia coli numbering). Introduction of mutant rrl2447T into M. smegmatis rrn- resulted in a linezolid-resistant phenotype, demonstrating a cause-effect relationship of the 2447G --> T alteration. The 2447G --> T mutation, which renders M. smegmatis linezolid resistant, confers lethality in E. coli. This finding is strong evidence of structural and pos-sibly functional differences between the ribosomes of Gram-positive and Gram-negative bacteria. In agreement with the results of the in vitro assay, class II mutants show a wild-type sequence of the complete rRNA operon. The lack of cross-resistance of the class II mutants to other antibiotics suggests a resistance mechanism other than activation of a broad-spectrum multidrug transporter.  相似文献   

16.
Polacek N  Swaney S  Shinabarger D  Mankin AS 《Biochemistry》2002,41(39):11602-11610
The key enzymatic activity of the ribosome is catalysis of peptide bond formation. This reaction is a target for many clinically important antibiotics. However, the molecular mechanisms of the peptidyl transfer reaction, the catalytic contribution of the ribosome, and the mechanisms of antibiotic action are still poorly understood. Here we describe a novel, simple, convenient, and sensitive method for monitoring peptidyl transferase activity (SPARK). In this method, the ribosomal peptidyl transferase forms a peptide bond between two ligands, one of which is tritiated whereas the other is biotin-tagged. Transpeptidation results in covalent attachment of the biotin moiety to a tritiated compound. The amount of the reaction product is then directly quantified using the scintillation proximity assay technology: binding of the tritiated radioligand to the commercially available streptavidin-coated beads causes excitation of the bead-embedded scintillant, resulting in detection of radioactivity. The reaction is readily inhibited by known antibiotics, inhibitors of peptide bond formation. The method we developed is amenable to simple automation which makes it useful for screening for new antibiotics. The method is useful for different types of ribosomal research. Using this method, we investigated the effect of mutations at a universally conserved nucleotide of the active site of 23S rRNA, A2602 (Escherichia coli numbering), on the peptidyl transferase activity of the ribosome. The activities of the in vitro reconstituted mutant subunits, though somewhat reduced, were comparable with those of the subunits assembled with the wild-type 23S rRNA, indicating that A2602 mutations do not abolish the ability of the ribosome to catalyze peptide bond formation. Similar results were obtained with double mutants carrying mutations at A2602 and another universally conserved nucleotide in the peptidyl transferase center, A2451. The obtained results agree with our previous conclusion that the ribosome accelerates peptide bond formation primarily through entropic rather than chemical catalysis.  相似文献   

17.
catA86 is the second gene in a constitutively transcribed, two-gene operon cloned from Bacillus pumilus . The region that intervenes between the upstream gene, termed the leader, and the catA86 coding sequence contains a pair of inverted repeat sequences which cause sequestration of the catA86 ribosome binding site in mRNA secondary structure. As a consequence, the catA86 coding sequence is untranslatable in the absence of inducer. Translation of the catA86 coding sequence is induced by chloramphenicol in Gram-positives and induction requires a function of the leader coding sequence. The leader-encoded peptide has been proposed to instruct its translating ribosome to pause at leader codon 6, enabling chloramphenicol to stall the ribosome at that site. Ribosome stalling causes destabilization of the RNA secondary structure, exposing the catA86 ribosome binding site, allowing activation of its translation. A comparable mechanism of induction by chloramphenicol has been proposed for the regulated cmlA gene from Gram-negative bacteria. The catA86 and cmlA leader-encoded peptides are in vitro inhibitors of peptidyl transferase, which is thought to be the basis for selection of the site of ribosome stalling. Both leader-encoded peptides have been shown to alter the secondary structure of Escherichia coli 23S rRNA in vitro. All peptide-induced changes in rRNA conformation are within domains IV and V, which contains the peptidyl transferase center. Here we demonstrate that the leader peptides alter the conformation of domains IV and V of large subunit rRNA from yeast and a representative of the Archaea. The rRNA target for binding the leader peptides is therefore conserved across kingdoms.  相似文献   

18.
19.
Some novel transcription attenuation mechanisms used by bacteria   总被引:2,自引:0,他引:2  
  相似文献   

20.
Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites   总被引:63,自引:0,他引:63  
D Moazed  H F Noller 《Cell》1989,57(4):585-597
Three sets of conserved nucleotides in 23 rRNA are protected from chemical probes by binding of tRNA to the ribosomal A, P, and E sites, respectively. They are located almost exclusively in domain V, primarily in or adjacent to the loop identified with the peptidyl transferase function. Some of these sites are also protected by antibiotics such as chloramphenicol, which could explain how these drugs interfere with protein synthesis. Certain tRNA-dependent protections are abolished when the 3'-terminal A or CA or 2',3'-linked acyl group is removed, providing direct evidence for the interaction of the conserved CCA terminus of tRNA with 23S rRNA. When the EF-Tu.GTP.aminoacyl-tRNA ternary complex is bound to the ribosome, no tRNA-dependent A site protections are detected in 23S rRNA until EF-Tu is released. Thus, EF-Tu prevents interaction of the 3' terminus of the incoming aminoacyl-tRNA with the peptidyl transferase region of the ribosome during anticodon selection, thereby permitting translational proofreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号