首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 675 毫秒
1.
For decades, microbial natural products have been one of the major sources of novel drugs for pharmaceutical companies, and today all evidence suggests that novel molecules with potential therapeutic applications are still waiting to be discovered from these natural sources, especially from actinomycetes. Any appropriate exploitation of the chemical diversity of these microbial sources relies on proper understanding of their biological diversity and other related key factors that maximize the possibility of successful identification of novel molecules. Without doubt, the discovery of platensimycin has shown that microbial natural products can continue to deliver novel scaffolds if appropriate tools are put in place to reveal them in a cost-effective manner. Whereas today innovative technologies involving exploitation of uncultivated environmental diversity, together with chemical biology and in silico approaches, are seeing rapid development in natural products research, maximization of the chances of exploiting chemical diversity from microbial collections is still essential for novel drug discovery. This work provides an overview of the integrated approaches developed at the former Basic Research Center of Merck Sharp and Dohme in Spain to exploit the diversity and biosynthetic potential of actinomycetes, and includes some examples of those that were successfully applied to the discovery of novel antibiotics.  相似文献   

2.
Natural products as a screening resource   总被引:1,自引:0,他引:1  
Natural products have been the most productive source of leads for new drugs, but they are currently out of fashion with the pharmaceutical industry. New approaches to sourcing novel compounds from untapped areas of biodiversity coupled with the technical advances in analytical techniques (such as microcoil NMR and linked LC-MS-NMR) have removed many of the difficulties in using natural products in screening campaigns. As the 'chemical space' occupied by natural products is both more varied and more drug-like than that of combinatorial chemical collections, synthetic and biosynthetic methods are being developed to produce screening libraries of natural product-like compounds. A renaissance of drug discovery inspired by natural products can be predicted.  相似文献   

3.
The need for a new antibiotic pipeline to confront threat imposed by resistant pathogens has become a major global concern for human health. To confront the challenge there is a need for discovery and development of new class of antibiotics. Nature which is considered treasure trove, there is re-emerged interest in exploring untapped microbial to yield novel molecules, due to their wide array of negative effects associated with synthetic drugs. Natural product researchers have developed many new techniques over the past few years for developing diverse compounds of biopotential. Taking edge in the advancement of genomics, genetic engineering, in silico drug design, surface modification, scaffolds, pharmacophores and target-based approach is necessary. These techniques have been economically sustainable and also proven efficient in natural product discovery. This review will focus on recent advances in diverse discipline approach from integrated Bioinformatics predictions, genetic engineering and medicinal chemistry for the synthesis of natural products vital for the discovery of novel antibiotics having potential application.  相似文献   

4.
With the decision to award the Nobel Prize in Physiology or Medicine to Drs. S. ōmura, W.C. Campbell, and Y. Tu, the importance and usefulness of natural drug discovery and development have been revalidated. Since the end of the twentieth century, many genome analyses of organisms have been conducted, and accordingly, numerous microbial genomes have been decoded. In particular, genomic studies of actinomycetes, micro-organisms that readily produce natural products, led to the discovery of biosynthetic gene clusters responsible for producing natural products. New explorations for natural products through a comprehensive approach combining genomic information with conventional methods show great promise for the discovery of new natural products and even systematic generation of unnaturally occurring compounds.  相似文献   

5.
微生物天然产物具有丰富的化学结构多样性和诱人的生物活性,持续启迪着创新医药和农药的发现。近年来,随着高通量测序技术的快速发展,巨大的微生物基因组数据揭示了多样生物合成和新颖天然产物的潜能远高于以前的认知。然而,如何高效地激活隐性的生物合成基因簇 (BGCs) 并识别相应的化合物,以及避免已知代谢产物的重复发现等挑战依然严峻。本文描述了面对这些问题时基因组学、生物信息学、机器学习、代谢组学、基因编辑和合成生物学等新技术在发现药用先导化合物过程中提供的机遇;总结并论述了在潜力菌株优选、BGCs的生物信息学预测、沉默 BGCs的高效激活以及目标产物的识别和跟踪方面的新见解;提出了基于潜力菌株选择和多组学挖掘技术从微生物天然产物中高效发现先导结构的系统线路 (SPLSD),并讨论了未来天然产物药用先导发现的机遇和挑战。  相似文献   

6.
7.
Natural products of microbial origin have proven to be the wellspring of clinically useful compounds for human therapeutics. Streptomyces species are predominant sources of bioactive compounds, most of which serve as potential drug candidates. While the exploitation of natural products has been severely reduced over the past two decades, the growing crisis of evolution and dissemination of drug resistant pathogens have again attracted great interest in this field. The emerging synthetic biology has been heralded as a new bioengineering platform to discover novel bioactive compounds and expand bioactive natural products diversity and production. Herein, we review recent advances in the natural products exploitation of Streptomyces with the applications of synthetic biology from three major aspects, including recently developed synthetic biology tools, natural products biosynthetic pathway engineering strategies as well as chassis host modifications.  相似文献   

8.
Microorganisms have a long track record as important sources of novel bioactive natural products, particularly in the field of drug discovery. While microbes have been shown to biosynthesize a wide array of molecules, recent advances in genome sequencing have revealed that such organisms have the potential to yield even more structurally diverse secondary metabolites. Thus, many microbial gene clusters may be silent under standard laboratory growth conditions. In the last ten years, several methods have been developed to aid in the activation of these cryptic biosynthetic pathways. In addition to the techniques that demand prior knowledge of the genome sequences of the studied microorganisms, several genome sequence-independent tools have been developed. One of these approaches is microorganism co-culture, involving the cultivation of two or more microorganisms in the same confined environment. Microorganism co-culture is inspired by the natural microbe communities that are omnipresent in nature. Within these communities, microbes interact through signaling or defense molecules. Such compounds, produced dynamically, are of potential interest as new leads for drug discovery. Microorganism co-culture can be achieved in either solid or liquid media and has recently been used increasingly extensively to study natural interactions and discover new bioactive metabolites. Because of the complexity of microbial extracts, advanced analytical methods (e.g., mass spectrometry methods and metabolomics) are key for the successful detection and identification of co-culture-induced metabolites.  相似文献   

9.
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.  相似文献   

10.
Microbes that have gained resistance against antibiotics pose a major emerging threat to human health. New targets must be identified that will guide the development of new classes of antibiotics. The selective inhibition of key microbial enzymes that are responsible for the biosynthesis of essential metabolites can be an effective way to counter this growing threat. Aspartate semialdehyde dehydrogenases (ASADHs) produce an early branch point metabolite in a microbial biosynthetic pathway for essential amino acids and for quorum sensing molecules. In this study, molecular modeling and docking studies were performed to achieve two key objectives that are important for the identification of new selective inhibitors of ASADH. First, virtual screening of a small library of compounds was used to identify new core structures that could serve as potential inhibitors of the ASADHs. Compounds have been identified from diverse chemical classes that are predicted to bind to ASADH with high affinity. Next, molecular docking studies were used to prioritize analogs within each class for synthesis and testing against representative bacterial forms of ASADH from Streptococcus pneumoniae and Vibrio cholerae. These studies have led to new micromolar inhibitors of ASADH, demonstrating the utility of this molecular modeling and docking approach for the identification of new classes of potential enzyme inhibitors.  相似文献   

11.
Editorial     
For decades, microbial natural products have been one of the major sources of novel drugs for pharmaceutical companies, and today all evidence suggests that novel molecules with potential therapeutic applications are still waiting to be discovered from these natural sources, especially from actinomycetes. Any appropriate exploitation of the chemical diversity of these microbial sources relies on the proper understanding of their biological diversity and other related key factors that maximize the possibility of successful identification of novel molecules. Without doubt, the discovery of platensimycin has shown that microbial natural products can continue to deliver novel scaffolds if appropriate tools are put in place to reveal them in a cost-effective manner. Whereas today innovative technologies involving exploitation of uncultivated environmental diversity, together with chemical biology and in silico approaches, are seeing rapid development in natural products research, maximization of the chances of exploiting chemical diversity from microbial collections is still essential for novel drug discovery. This work provides an overview of the integrated approaches developed at the former Basic Research Center of Merck Sharp and Dohme in Spain to exploit the diversity and biosynthetic potential of actinomycetes, and includes some examples of those that were successfully applied to the discovery of novel antibiotics.The second review is "Strain improvement in actinomycetes in the postgenomic era" by Senior Editor Richard H. Baltz. J Ind Microbiol Biotechnol (2011) doi: 10.1007/s10295-010-0934-z. http://www.springerlink.com/content/mm02855532776506/fulltext.html.
  相似文献   

12.
侯路宽  李花月  李文利 《微生物学报》2017,57(11):1722-1734
传统的"活性-化合物"天然药物发现方法导致大量已知化合物被重复分离,大大加剧了新药发现的难度。规模化基因组测序揭示了微生物基因组中存在大量的隐性(cryptic)次级代谢产物生物合成基因簇,如何激活这些隐性基因簇成为当今世界天然产物研究领域的难点与热点。本文从途径特异性和多效性两个角度综述了隐性生物合成基因簇激活策略;同时,对基因组信息指导下结构导向(structure-guided)的化合物定向分离技术进行了归纳。隐性基因簇的激活为定向发掘具有优良活性的新型天然产物提供了新的契机。  相似文献   

13.
The RIKEN Natural Products Depository (NPDepo) is a public depository of small molecules. Currently, the NPDepo chemical library contains 39,200 pure compounds, half of which are natural products and their derivatives. In order to reinforce the uniqueness of our chemical library, we have improved our strategies for the collection of microbial natural products. Firstly, a microbial metabolite fraction library coupled with an MP (microbial products) plot database provides a powerful resource for the efficient isolation of microbial metabolites. Secondly, biosynthetic studies of microbial metabolites have enabled us to not only access ingenious biosynthetic machineries, but also obtain a variety of biosynthetic intermediates. Our chemical library contributes to the discovery of molecular probes for increasing our understanding of complex biological processes and for eventually developing new drug leads.  相似文献   

14.
We urgently need new antibiotics to counteract the rising in the emergence of multidrug-resistant microorganisms. To improve the identification of antimicrobial compounds of microbial origin, numerous multidisciplinary approaches are being implemented. However, the development of innovative microbial cultivation strategies is necessary to exploit the full biosynthetic potential of non-culturable microorganisms. Here, I highlight various articles that employ high-throughput microfluidic-based strategies to identify novel antimicrobial metabolites based on bacterial activities. The rapid development of this technology will likely advance the field of antibiotic discovery.  相似文献   

15.

Background

Nature has been a source of medicinal products for millennia, with many useful drugs developed from plant sources. Following discovery of the penicillins, drug discovery from microbial sources occurred and diving techniques in the 1970s opened the seas. Combinatorial chemistry (late 1980s), shifted the focus of drug discovery efforts from Nature to the laboratory bench.

Scope of Review

This review traces natural products drug discovery, outlining important drugs from natural sources that revolutionized treatment of serious diseases. It is clear Nature will continue to be a major source of new structural leads, and effective drug development depends on multidisciplinary collaborations.

Major Conclusions

The explosion of genetic information led not only to novel screens, but the genetic techniques permitted the implementation of combinatorial biosynthetic technology and genome mining. The knowledge gained has allowed unknown molecules to be identified. These novel bioactive structures can be optimized by using combinatorial chemistry generating new drug candidates for many diseases.

General Significance

The advent of genetic techniques that permitted the isolation / expression of biosynthetic cassettes from microbes may well be the new frontier for natural products lead discovery. It is now apparent that biodiversity may be much greater in those organisms. The numbers of potential species involved in the microbial world are many orders of magnitude greater than those of plants and multi-celled animals. Coupling these numbers to the number of currently unexpressed biosynthetic clusters now identified (> 10 per species) the potential of microbial diversity remains essentially untapped.  相似文献   

16.
Due to the low structural diversity within the set of antimalarial drugs currently available in the clinic and the increasing number of cases of resistance, there is an urgent need to find new compounds with novel modes of action to treat the disease. Microbial natural products are characterized by their large diversity provided in terms of the chemical complexity of the compounds and the novelty of structures. Microbial natural products extracts have been underexplored in the search for new antiparasitic drugs and even more so in the discovery of new antimalarials. Our objective was to find new druggable natural products with antimalarial properties from the MEDINA natural products collection, one of the largest natural product libraries harboring more than 130,000 microbial extracts. In this work, we describe the optimization process and the results of a phenotypic high throughput screen (HTS) based on measurements of Plasmodium lactate dehydrogenase. A subset of more than 20,000 extracts from the MEDINA microbial products collection has been explored, leading to the discovery of 3 new compounds with antimalarial activity. In addition, we report on the novel antiplasmodial activity of 4 previously described natural products.  相似文献   

17.
Natural product discovery is currently undergoing a transformation from a phenotype-driven field to a genotype-driven one. The increasing availability of genome sequences, coupled with improved techniques for identifying biosynthetic gene clusters, has revealed that secondary metabolomes are strikingly vaster than previously thought. New approaches to correlate biosynthetic gene clusters with the compounds they produce have facilitated the production and isolation of a rapidly growing collection of what we refer to as “reverse-discovered” natural products, in analogy to reverse genetics. In this review, we present an extensive list of reverse-discovered natural products and discuss seven important lessons for natural product discovery by genome-guided methods: structure prediction, accurate annotation, continued study of model organisms, avoiding genome-size bias, genetic manipulation, heterologous expression, and potential engineering of natural product analogs.  相似文献   

18.
《Biotechnology advances》2017,35(8):936-949
With the rapidly growing number of sequenced microbial (meta)genomes, enormous cryptic natural product (NP) biosynthetic gene clusters (BGCs) have been identified, which are regarded as a rich reservoir for novel drug discovery. A series of powerful tools for engineering BGCs has accelerated the discovery and development of pharmaceutically active NPs. Here, we describe recent advances in the strategies for BGCs manipulation, which are driven by emerging technologies, including efficient DNA recombination systems, versatile CRISPR/Cas9 genome editing tools and diverse DNA assembly methods. We further discuss how these approaches could be used for genome mining studies and industrial strain improvement.  相似文献   

19.
20.
Bacteria grown in pure culture have been the starting point for the discovery of many of the antibacterials now in use. Metagenomics, which utilizes culture-independent methods to access the collective genomes of natural bacterial populations, provides a means of exploring the antimicrobials produced by the large collections of bacteria that are known to be present in the environment but remain recalcitrant to culturing. Both novel small molecule antibiotics and new antibacterially active proteins have been identified using metagenomic approaches. The recent application of metagenomics to the discovery of bioactive small molecules, small molecule biosynthetic gene clusters and antibacterially active enzymes is discussed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号