首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many generalist populations may actually be composed of relatively specialist individuals. This 'individual specialization' may have important ecological and evolutionary implications. Although this phenomenon has been documented in more than one hundred taxa, it is still unclear how individuals within a population actually partition resources. Here we applied several methods based on network theory to investigate the intrapopulation patterns of resource use in the gracile mouse opossum Gracilinanus microtarsus . We found evidence of significant individual specialization in this species and that the diets of specialists are nested within the diets of generalists. This novel pattern is consistent with a recently proposed model of optimal foraging and implies strong asymmetry in the interactions among individuals of a population.  相似文献   

2.
We investigated the fitness consequences of specialization in an organism whose host choice has an immense impact on human health: the African malaria vector Anopheles gambiae s.s. We tested whether this mosquito’s specialism on humans can be attributed to the relative fitness benefits of specialist vs. generalist feeding strategies by contrasting their fecundity and survival on human‐only and mixed host diets consisting of blood meals from humans and animals. When given only one blood meal, An. gambiae s.s. survived significantly longer on human and bovine blood, than on canine or avian blood. However, when blood fed repeatedly, there was no evidence that the fitness of An. gambiae s.s. fed a human‐only diet was greater than those fed generalist diets. This suggests that the adoption of generalist host feeding strategies in An. gambiae s.s. is not constrained by intraspecific variation in the resource quality of blood from other available host species.  相似文献   

3.
Individual specialization in resource use is a widespread driver for intra-population trait variation, playing a crucial evolutionary role in free-living animals. We investigated the individual foraging specialization of Black-tailed Godwits (Limosa limosa islandica) during the wintering period. Godwits displayed distinct degrees of individual specialization in diet and microhabitat use, indicating the presence of both generalist and specialist birds. Females were overall more specialist than males, primarily consuming polychaetes. Specialist males consumed mainly bivalves, but some individuals also specialized on gastropods or polychaetes. Sexual dimorphism in bill length is probably important in determining the differences in specialization, as longer-billed individuals have access to deep-buried polychaetes inaccessible to most males. Different levels of specialization within the same sex, unrelated to bill length, were also found, suggesting that mechanisms other traits are involved in explaining individual specialization. Godwits specialized on bivalves achieved higher intake rates than non-specialist birds, supporting the idea that individual foraging choices or skills result in different short-term payoffs within the same population. Understanding whether short-term payoffs are good indicators of long-term fitness and how selection operates to favour the prevalence of specialist or generalist godwits is a major future challenge.  相似文献   

4.
Density‐dependent dynamics have considerable effects in many ecological processes and patterns that characterize natural populations. In the present study, we aim at evaluating the effect of density on the diet width and between‐individual variability in nine different pike cichlid Crenicichla lepidota populations dwelling in floodplain lagoons. Our results indicated that low‐density populations exhibit small diet breadth as well as small between‐individual variability in their diet. In addition, these populations were characterized by a nested diet pattern, where the diet of specialist individuals represented a subset of the food items consumed by generalist individuals. Populations with intermediate densities had a larger populational diet breadth while the individual diet breadth remained unchanged. This pattern was due to an increase in between‐individual variability in diet, which consequently decreases the diet overlap among individuals and thus lower diet nestedness. Finally, under high densities, the niche width at the population level decreased because of lower between‐individual variability and higher diet overlap. Together, these results showed that niche width exhibits a non‐linear function with density. At first, an increase in density increased the niche width because of greater between‐individual diet variability. However, after a threshold density value, the effect was reversed, and the niche width decreased because of a higher diet overlap among individuals.  相似文献   

5.
Despite recent findings on the ecological relevance of within population diet variation far less attention has been devoted to the role diet variation for ecological services. Seed dispersal is a key ecological service, affecting plant fitness and regeneration based on foraging by fruit‐eating vertebrates. Here we used a network approach, widely used to understand how seed‐dispersal is organized at the species level, to gain insights into the patterns that emerge at the individual‐level. We studied the individual fruit consumption behavior of a South American didelphid Didelphis albiventris, during the cool–dry and warm–wet seasons. In species–species networks the heterogeneity in specialization levels generates patterns such as nestedness and asymmetry. Because generalist populations may be comprised of specialized individuals, we hypo thesized that network structural properties, such as nestedness, should also emerge at the individual level. We detected variation in fruit consumption that was not related to resource availability, ontogenetic or sexual factors or sampling biases. Such variation resulted in the structural patterns often found in species–species seed‐dispersal networks: low connectance, a high degree of nestedness and the absence of modules. Moreover structure varied between the warm–wet and cool–dry seasons, presumably as a consequence of seasonal fluctuation in fruit availability. Our findings suggest individuals may differ in selectivity causing asymmetries in seed dispersal efficiency within the population. In this sense the realized dispersal would differ from the expected dispersal estimated from their average dispersal potential. Additionally the results suggest possible frequency‐dependent effects on seed dispersal that might affect individual plant performance and plant community composition.  相似文献   

6.
Some carnivores are known to survive well in urban habitats, yet the underlying behavioral tactics are poorly understood. One likely explanation for the success in urban habitats might be that carnivores are generalist consumers. However, urban populations of carnivores could as well consist of specialist feeders. Here, we compared the isotopic specialization of red foxes in urban and rural environments, using both a population and an individual level perspective. We measured stable isotope ratios in increments of red fox whiskers and potential food sources. Our results reveal that red foxes have a broad isotopic dietary niche and a large variation in resource use. Despite this large variation, we found significant differences between the variance of the urban and rural population for δ13C as well as δ15N values, suggesting a habitat‐specific foraging behavior. Although urban regions are more heterogeneous regarding land cover (based on the Shannon index) than rural regions, the dietary range of urban foxes was smaller compared with that of rural conspecifics. Moreover, the higher δ13C values and lower δ15N values of urban foxes suggest a relatively high input of anthropogenic food sources. The diet of most individuals remained largely constant over a longer period. The low intraindividual variability of urban and rural red foxes suggests a relatively constant proportion of food items consumed by individuals. Urban and rural foxes utilized a small proportion of the potentially available isotopic dietary niche as indicated by the low within‐individual variation compared to the between‐individual variation. We conclude that generalist fox populations consist of individual food specialists in urban and rural populations at least over those periods covered by our study.  相似文献   

7.
A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of elongated open water (limnetic) species and high‐bodied shore (benthic) species from generalist ancestors. Studies on phenotype‐diet correlations have suggested that population‐wide individual specialization occurs at an early evolutionary and ecological stage of divergence and niche partitioning. This variable restricted niche use across individuals can provide the raw material for earliest stages of sympatric divergence. We investigated variation in morphology and diet as well as their correlations along the benthic‐limnetic axis in an extremely young Midas cichlid species, Amphilophus tolteca, endemic to the Nicaraguan crater lake Asososca Managua. We found that A. tolteca varied continuously in ecologically relevant traits such as body shape and lower pharyngeal jaw morphology. The correlation of these phenotypes with niche suggested that individuals are specialized along the benthic‐limnetic axis. No genetic differentiation within the crater lake was detected based on genotypes from 13 microsatellite loci. Overall, we found that individual specialization in this young crater lake species encompasses the limnetic‐ as well as the benthic macro‐habitat. Yet there is no evidence for any diversification within the species, making this a candidate system for studying what might be the early stages preceding sympatric divergence.  相似文献   

8.
Competing hypotheses explaining species’ use of resources have been advanced. Resource limitations in habitat and/or food are factors that affect assemblages of species. These limitations could drive the evolution of morphological and/or behavioural specialization, permitting the coexistence of closely related species through resource partitioning and niche differentiation. Alternatively, when resources are unlimited, fluctuations in resources availability will cause concomitant shifts in resource use regardless of species identity. Here, we used next‐generation sequencing to test these hypotheses and characterize the diversity, overlap and seasonal variation in the diet of three species of insectivorous bats of the genus Pteronotus. We identified 465 prey (MOTUs) in the guano of 192 individuals. Lepidoptera and Diptera represented the most consumed insect orders. Diet of bats exhibited a moderate level of overlap, with the highest value between Pteronotus parnellii and Pteronotus personatus in the wet season. We found higher dietary overlap between species during the same seasons than within any single species across seasons. This suggests that diets of the three species are driven more by prey availability than by any particular predator‐specific characteristic. P. davyi and P. personatus increased their dietary breadth during the dry season, whereas P. parnellii diet was broader and had the highest effective number of prey species in all seasons. This supports the existence of dietary flexibility in generalist bats and dietary niche overlapping among groups of closely related species in highly seasonal ecosystems. Moreover, the abundance and availability of insect prey may drive the diet of insectivores.  相似文献   

9.
Ecological studies traditionally assume that generalist populations are homogeneous in the use of food resources, but empirical evidence supports that intraspecific differences in morphology, physiology and behaviour affect foraging decisions and promote diet variation among individuals. Furthermore, the temporal availability of resources may shape the dynamics of population trophic niche, which ultimately depends on individual niches. In this study, we investigated the seasonal changes in individual-based networks between the Helmeted Manakin Antilophia galeata, a generalist frugivorous bird, and fruiting plants, following theoretical models of interindividual diet variation based on the Optimal Diet Theory. Selective individuals were the majority of the generalist population of the Helmeted Manakin. Our results suggest that the structure of the individual-resource networks varied seasonally. We found that modularity was higher than expected by chance in the wet season, when fruit availability was also higher. In the dry season, modules disappeared and the network became more nested. These findings are consistent with the Distinct Preference Model of diet variation. We suggest that downscaling ecological networks to the individual level may reveal emergent properties that, albeit existent, are not evident in species–resources networks.  相似文献   

10.
An animal's choice of foraging habitat reflects its response to environmental cues and is likely to vary among individuals in a population. Analyzing the magnitude of individual habitat selection can indicate how resilient populations may be to anthropogenic habitat change, where individually varying, broadly generalist populations have the potential to adjust their behavior. We collected GPS point data from 39 European nightjars (Caprimulgus europaeus) at a UK breeding site where restoration measures have altered large areas of habitat between breeding seasons. We calculated individual habitat selection over four breeding seasons to observe changes that might align with change in habitat. We also analyzed change in home range size in line with change in habitat availability, to examine functional relationships that can represent trade‐offs made by the birds related to performance of the habitat. Individual explained more of the variation in population habitat selection than year for most habitat types. Individuals differed in the magnitude of their selection for different habitat types, which created a generalist population composed of both generalist and specialist individuals. Selection also changed over time but only significantly for scrub habitat (60% decrease in selection over 4 years). Across the population, individual home range size was 2% smaller where availability of cleared habitat within the home range was greater, but size increased by 2% where the amount of open water was higher, indicating the presence of trade‐offs related to habitat availability. These results highlight that using individual resource selection and specialization measures, in conjunction with functional responses to change, can lead to better understanding of the needs of a population. Pooling specialist and generalist individuals for analysis could hide divergent responses to change and consequently obscure information that could be important in developing effective conservation strategies.  相似文献   

11.
12.
Foraging theory predicts that generalist foragers should switch resources more readily, while specialist foragers should remain constant to preferred food resources. Plant‐pollinator interactions provide a convenient system to test such predictions because floral resources are often temporally patchy, thus requiring long‐lived pollinators to switch resources seasonally. Furthermore, flowering phenologies range from ‘steady‐state’ (low‐rewarding but highly reliable) to ‘big‐bang’ (high‐rewarding but ephemeral) plant species. We assessed how nectarivorous Old World bats respond to this temporally variable floral environment by examining their diets throughout the year. Over 15 months of fieldwork in southern Thailand, we simultaneously: (1) recorded the flowering phenologies of six bat‐pollinated plant taxa; and (2) assessed the diets of seven common flower‐visiting bat species. As predicted, the generalist nectarivore (Eonycteris spelaea) frequently switched diets and utilized both big‐bang and steady‐state resources, while the specialist nectarivores (Macroglossus minimus and M. sobrinus) foraged on one or two steady‐state plant species year‐round. Our results suggest that larger and faster bat species are able to fly longer distances in search of big‐bang resources, while smaller bat species rely on highly predictable food resources. This study supports the theory that generalist foragers have flexible diets, while specialist species restrict foraging to preferred floral resources even when other floral resources are more abundant. Moreover, these findings demonstrate how plant flowering phenology and pollinator diet breadth can shape the frequency and constancy of pollinator visits; we further discuss how such interactions can influence the potential extent of gene flow within a patchy floral environment.  相似文献   

13.
Individual specialization in diet or foraging behavior within apparently generalist populations has been described for many species, especially in polar and temperate marine environments, where resource distribution is relatively predictable. It is unclear, however, whether and how increased environmental variability – and thus reduced predictability of resources – due to global climate change will affect individual specialization. We determined the within‐ and among‐individual components of the trophic niche and the within‐individual repeatability of δ13C and δ15N in feathers and red blood cells of individual female southern rockhopper penguins (Eudyptes chrysocome) across 7 years. We also investigated the effect of environmental variables (Southern Annular Mode, Southern Oscillation Index, and local sea surface temperature anomaly) on the isotopic values, as well as the link between stable isotopes and female body mass, clutch initiation dates, and total clutch mass. We observed consistent red blood cell δ13C and δ15N values within individuals among years, suggesting a moderate degree of within‐individual specialization in C and N during the prebreeding period. However, the total niche width was reduced and individual specialization not present during the premolt period. Despite significant interannual differences in isotope values of C and N and environmental conditions, none of the environmental variables were linked to stable isotope values and thus able to explain phenotypic plasticity. Furthermore, neither the within‐individual nor among‐individual effects of stable isotopes were found to be related to female body mass, clutch initiation date, or total clutch mass. In conclusion, our results emphasize that the degree of specialization within generalist populations can vary over the course of 1 year, even when being consistent within the same season across years. We were unable to confirm that environmental variability counteracts individual specialization in foraging behavior, as phenotypic plasticity in δ13C and δ15N was not linked to any of the environmental variables studied.  相似文献   

14.
The cumulative effect of individual‐level foraging patterns may have important consequences for ecosystem functioning, population dynamics and conservation. Dietary specialization, whereby an individual exploits a subset of resources available to the rest of the population, can develop in response to environmental or intrinsic population factors. However, accurate assessment of individual diets may be difficult because analyses of recent food intake may misrepresent foraging variability within a heterogeneous environment. We used quantitative fatty acid signature analysis (QFASA) and a novel index of longitudinal dietary change to examine the individual foraging patterns of 64 polar bears Ursus maritimus successively sampled in Western and Southern Hudson Bay between 1994–2003. Estimated diets varied between and within age and sex classes, with adult male polar bears consuming significantly more bearded seal Erignathus barbatus than adult female or subadult bears, whose diets were dominated by ringed seal Pusa hispida. Among individual adult males, consumption of bearded seal accounted for 0–98% of the diet and bearded seal consumption was positively correlated with individual dietary specialization, as measured by proportional similarity (PSi) to the rest of the population. Most individual diets were consistent from year‐to‐year and were therefore not a product of short‐term heterogeneity in prey distribution. However, a novel dietary change index indicated that adult male polar bears had the most temporally variable diets with 23% of adult males switching their diet from predominantly ringed seal to predominantly bearded seal or vice versa. We conclude that QFASA is well‐suited to analyses of individual‐level foraging because it reflects an animal's diet over the preceding weeks to months. The subpopulations of bears in this study were near the southern limit of their species range and have experienced negative individual‐ and population‐level impacts related to sea ice loss and climate warming. The tightly constrained diets of some individuals, particularly adult females and subadults, may make them especially sensitive to future climate change.  相似文献   

15.
Many raptor species are considered to be generalists, taking a range of prey species. However, longitudinal dietary records are often scarce, although necessary for characterizing niche width of species at population and individual levels. Quantifying raptor diets at large spatio‐temporal scales is often necessary for refining conservation efforts, although it can be particularly difficult and may involve a great effort by conventional means. Therefore, we adopted the analysis of stable isotopes in tissues of predators and their potential food sources as a complementary methodology for assessing animals' diet. We examined the isotopic composition (δ13C and δ15N) of White‐tailed Eagles Haliaeetus albicilla from Germany, Finland and Greenland to detect patterns of dietary variation and quantify diet composition. The isotopic analysis included liver and muscle samples from Eagles of the three populations together with 16 potential food sources in the German population. Our results suggested dietary differences between German and Greenlandic Eagles, in accordance with the availability of freshwater and marine habitats in each population. Within the German population, we found seasonal shifts in isotopic ratios, suggesting the birds responded to temporal changes in food availabilities, and age‐related isotopic differences, indicating different diets in adults and juveniles. Isotopic values of liver and muscle tissues collected from the same animal showed intra‐individual short‐term changes in the German and Finnish but not Greenlandic population. This suggests that local feeding niches of this generalist predator may vary with local food supplies, which determines the niche width (from generalist to specialist) at the individual level. Our results also revealed that game mammal carcasses constitute an important food source (29.5% of diet) for the German Eagle population during the winter half‐year corresponding to the hunting season. This result is of relevance to management and conservation because the White‐tailed Eagle and other raptor species are affected by the ingestion of lead ammunition from shot mammalian carcasses.  相似文献   

16.
We characterised the phylogeographic patterns displayed by five species of bumblebees with largely overlapping ranges in Eurasia, but different levels of range fragmentation, range size and food specialization. Genetic variation across the range of each species was explored by using sequence variation of a total of 368 specimens at one mitochondrial and two nuclear DNA fragments (total of ~2380 bp). Comparing patterns of genetic variation across species allowed us to investigate whether diet specialization, relative range size and/or fragmentation, impact phylogeographic patterns in bumblebees. As expected, stronger fragmentations of the species range are associated with a stronger overall geographic differentiation. Furthermore, diet specialization appears to increase population structure at the landscape level, presumably due to the less widespread and more heterogeneously distributed food resources. Conversely, no clear association was highlighted between diet specialization or overall range size and genetic diversity. Surprisingly, the two generalist and co‐distributed species investigated, B. pratorum and B. hortorum, displayed widely divergent patterns in terms of genetic diversity and population structure. We suggest these differences are best explained by contrasting responses to past climate changes, possibly involving different glacial refuges. Overall, our results are compatible with a combined impact of two interacting parameters on intraspecific genetic variation: environment disturbances (presumably related to past climate changes) and features specific to the organism, such as diet specialization. They thus further highlight the challenge of dissociating both parameters in phylogeographic studies.  相似文献   

17.
1. Predators select a prey according to its energetic and nutritional composition. Generalist predators avoid, whereas specialists often specialise on well‐defended prey. The aim of this study was to find the suitability of woodlice prey for generalist and specialist predators by comparing their handling efficiency. 2. Laboratory experiments were performed in which specialist and generalist predators were reared on monotypic diets comprising one or other of two woodlice species that differ in their defensive strategies: rollers (Armadillidium) and clingers (Porcellio). A control group was reared on a mixture of arthropods (excluding woodlice). Three spider predators were used that differ in their adaptations to deal with woodlice prey: a woodlice specialist, Dysdera crocata; an oligophagous generalist, Pholcus phalangioides, that also captures woodlice; and a euryphagous generalist, Tegenaria domestica, that does not feed on woodlice. The frequency of capture was recorded and various fitness parameters were measured, namely survival, growth rate, and ontogenetic development. 3. It was found that the specialist, D. crocata, performed best on the Porcellio diet, and similarly well on Armadillidium and mixed diets. The two generalists, P. phalangioides and T. domestica, had poor performance on both woodlice diets but performed well on the mixed diet. 4. The results show that woodlice are unsuitable prey for both oligophagous and euryphagous generalist predators.  相似文献   

18.
Two hypotheses, nutrient constraints and detoxification limitation, have been proposed to explain the lack of specialists among mammalian herbivores. The nutrient constraint hypothesis proposes that dietary specialization in mammalian herbivores is rare because no one plant can provide all requisite nutrients. The detoxification limitation hypothesis suggests that the mammalian detoxification system is incapable of detoxifying high doses of similar secondary compounds present in a diet of a single plant species. We experimentally tested these hypotheses by comparing the performance of specialist and generalist woodrats (Neotoma) on a variety of dietary challenges. Neotoma stephensi is a narrow dietary specialist with a single species, one-seeded juniper, Juniperus monosperma, comprising 85–95% of its diet. Compared with other plants available in the habitat, juniper is low in nitrogen and high in fiber, phenolics, and monoterpenes. The generalist woodrat, N. albigula, also consumes one-seeded juniper, but to a lesser degree. The nutrient constraint hypothesis was examined by feeding both species of woodrats a low-nitrogen, high-fiber diet similar to that found in juniper. We found no differences in body mass change, or apparent digestibility of dry matter or nitrogen between the two species of woodrats after 35 days on this diet. Moreover, both species were in positive nitrogen balance. We tested the detoxification limitation hypothesis by comparing the performance of the generalist and specialist on diets with and without juniper leaves, the preferred foliage of the specialist, as well as on diets with and without α-pinene, the predominant monoterpene in juniper. We found that on the juniper diet, compared with the specialist, the generalist consumed less juniper and lost more mass. Urine pH, a general indicator of overall detoxification processes, declined in both groups on the juniper diet. The generalist consumed half the toxin load of the specialist yet its urine pH was slightly lower. Moreover, the generalist consumed significantly less of the treatment with high concentrations of α-pinene compared to the control treatment, while the specialist consumed the same amount of food regardless of α-pinene concentration. For both groups, urine pH declined as levels of α-pinene in the diet increased. The generalist produced a significantly more acidic urine than the specialist on the treatment with the highest α-pinene concentration. Our results suggest that in this system, specialists detoxify plant secondary compounds differently than generalists and plant secondary compounds may be more important than low nutrient levels in maintaining dietary diversity in generalist herbivores. Received: 5 May 1999 / Accepted: 14 November 1999  相似文献   

19.
Resource availability largely determines the distribution and behaviour of organisms. In plant–pollinator communities, availability of floral resources may change so rapidly that pollinator individuals can benefit from switching between multiple resources, i.e. different flowering plant species. Insect pollinator individuals of a given generation often occur in different time windows during the reproductive season. This temporal variation in individual occurrences, together with the rapidly changing resource availability, may lead individuals of the same population to encounter and use different resources, resulting in an apparent individual specialisation. We hypothesized, that 1) individual pollinators change their resource use (flower visitation) during their lifetime according to the changing availability of floral resources, and that 2) temporal variation in individual occurrences of pollinators and in resource availability will partly explain individual specialisation. To test these hypotheses, we observed flower visitations of individually marked clouded Apollo butterflies Parnassius mnemosyne during one reproductive season. We found temporal changes in lifetime individual resource use that followed the changes in resource availability, indicating that butterflies can adjust foraging to varying resource availability. Individuals differed considerably in their resource use. This variation was partly explained by temporal variation in both floral resource availability and temporal occurrence of individual butterflies. We suggest the butterfly as a sequential specialist, i.e. short‐term specialist and long‐term generalist. This foraging plasticity can be essential for short‐living insect pollinators in rapidly changing environments. Although flowering dynamics do not fully explain the variability in foraging, our results highlight the importance of temporal dimension in resource use studies. Ultimately, the relative pace of environmental change compared to individual lifespan may be a key factor in resource use plasticity.  相似文献   

20.
David M. Watson 《Biotropica》2013,45(2):195-202
Mistletoes rely on birds for seed dispersal, but the presumed importance of mistletoe‐specialist frugivores has not been critically examined nor compared with generalist frugivores and opportunistic foragers. The contribution of these three groups was compared directly by quantifying bird visitation to fruiting mistletoe plants ( Oryctanthus occidentalis: Loranthaceae) at Barro Colorado Island, Panama, and by comparing these results with proportions calculated from other empirical studies of mistletoe visitation conducted elsewhere. After more than 100 h of timed watches, 23 bird species were recorded visiting eight heavily infected host trees ( Luehea seemannii: Tiliaceae). Eight of these species visited mistletoe, of which five (all tyrannids) consumed mistletoe fruit. Although two mistletoe specialist frugivores ( Tyrannulus elatus and Zimmerius vilissimus) removed most fruit (73%), more than a quarter was consumed by one generalist frugivore ( Mionectes oleagineus) and two opportunists ( Myiozetetes cayanensis and Myiozetetes similis). Post consumption behaviour varied: the specialists flew from mistletoe to mistletoe, the generalist rested in the subcanopy and understory, and the opportunists spent most time hawking insects and resting high in the canopy. Integrating these data with previous work, the dietary specialization, short gut passage rate and strict habitat preferences of mistletoe specialists suggests that their services relate primarily to intensification and contagious dispersal, while species with broader diets are more likely to visit uninfected trees and establish new infections. The presumed importance of mistletoe‐specialist frugivores was not supported and mistletoes are considered to be comparable to many other bird‐dispersed plants, relying on both specialist and generalist frugivores, while opportunists may be disproportionately important in long‐distance dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号