首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
HUW LLOYD 《Ibis》2008,150(4):735-745
Habitat restoration strategies for fragmented high Andean forest landscapes must consider the influence of within‐patch habitat quality on bird abundance. I examined vegetation and bird abundance at three locations within a highly fragmented Polylepis forest landscape in the Cordillera Vilcanota, southern Peru. Across the landscape, there was significant variation in the vegetation structure of Polylepis forest patches of different size categories, especially in terms of tree girth, tree height, tree density, and canopy vegetation structure. Principal Component Analysis extracted five factors of habitat quality, which together accounted for 74.2% of the variability within 15 habitat variables. Polylepis bird species differed in their responses to habitat quality but, overall, variation in Polylepis bird abundance was not fully captured by the range of habitat quality variables. Tall, dense vegetation cover was clearly important for 11 conservation‐important species, a high density of large trees was important for 10 species and primary forest ground cover was important for eight species. Habitat quality exhibited no significant influence on the abundance of only one species –Asthenes urubambensis. The abundance of seven species was associated with lower elevation forest, but only one species was associated with higher elevation forest. Management of habitat quality in large and medium remnant forest patches throughout the Cordillera Vilcanota, particularly in the 3800–4200 m elevation range, will be a cornerstone in ensuring the persistence of the majority of conservation‐important bird species populations.  相似文献   

2.
Fragmentation is predicted to increase inbreeding depression and lower the evolutionary potential of organisms by disrupting dispersal. Trees may be more resilient to fragmentation effects due to potential long-distance dispersal mechanisms that genetically connect fragments. Polylepis woodlands in the high Andes are highly fragmented and are currently the focus of reforestation and conservation efforts. Polylepis multijuga Plige (Rosaceae) is a threatened, endemic tree species in the northern Andes of Peru. Samples were collected from 371 adult trees in nine forest fragments separated by 0.5–80 km and genotyped at amplified fragment length polymorphism loci (AFLP) and chloroplast intergenic regions to determine the connectedness of fragments and their suitability for collecting seed for restoration efforts. P. multijuga is wind-pollinated and dispersed; however, genetic diversity in P. multijuga was about half that reported for other wind-pollinated species. Genetic spatial autocorrelation and patterns of chloroplast and AFLP diversity suggest seed dispersal is very limited and that wind dispersed pollen does not effectively connect all fragments. Conservation of this species will require reforestation efforts and possibly augmentation of some fragments to increase their genetic diversity. Collecting seed from multiple large fragments and from individuals separated by at least 25 m within fragments would maximize the genetic diversity of seed collections for reforestation or augmentation. Future studies of this and other Polylepis species should determine how complex topography may affect wind mediated dispersal between fragments and patterns of genetic diversity.  相似文献   

3.
In the Andean highlands, Polylepis woodlands are a rare and unique ecosystem of the treeline. Although human activities have caused the loss of extensive forested areas and decreased woodland regeneration, few systematic and quantitative assessments have been carried out in Polylepis forests. This study compares differences in habitat characteristics, population structure, and reproductive output in populations of Polylepis tomentella subject to different levels of human disturbance in the south‐central Andes of Bolivia. We selected P. tomentella because the species still covers large extensions in the form of fragmented forest patches. Results show that human activities affected all the studied populations. Moderately disturbed populations exhibited a lower percentage of farmed area (0.6%) and browsed plants (4%) than strongly disturbed populations (5% and 12%, respectively). All populations exhibited similar proportion of plants with logging scars. Potassium content and canopy closure were 1.5 and 2.5 higher, respectively, in strongly disturbed populations. The density of saplings and seedlings were 75 percent and 80 percent lower in strongly disturbed populations than in moderately disturbed population, even though reproductive individuals produced twice more flowers and fruits. Our results suggest that fruit production does not limit regeneration of P. tomentella and post‐dispersal mechanisms may decrease seed germination and increase seedling mortality. Overall, strongly disturbed populations will be less likely to regenerate, leading to population decline. Conservation programs should facilitate forest recovery by promoting seedling establishment, reducing overharvesting and over‐browsing, and protecting remaining adult plants.  相似文献   

4.
The frequent occurrence of all year-round below zero temperatures in tropical high mountains constitutes a most stressful climatic factor that plants have to confront. Polylepis forests are found well above the continuous forest line and are distributed throughout the Andean range. These trees require particular traits to overcome functional limitations imposed on them at such altitudes. Considering seedling and sapling stages as filter phases in stressful environments, some functional aspects of the regeneration of Polylepis sericea, a species associated to rock outcrops in the Venezuelan Andes, were studied. We characterized microclimatic conditions within a forest, in a forest gap and surrounding open páramo and determined low temperature resistance mechanisms in seedlings, saplings and ramets. Conditions in the forest understory were more stable compared to the forest gaps and open surrounding páramo. Minimum temperatures close to the ground were 3.6 °C lower in the open páramo compared to the forest understory. Maximum temperatures were 9.0 °C higher in the open páramo. Ice nucleation and injury temperatures occurred between ?6 and ?8 °C for both ramets and saplings, an evidence of frost avoidance to low nighttime temperatures. In this particular forest, this resistance ability is determinant in their island-like distribution in very specific less severe temperature habitats.  相似文献   

5.
Rachel T. King 《Biotropica》2003,35(4):462-471
I investigated the effects of successional stage and micro‐elevation on seedling establishment of Calophyllum brasiliense (Clusiaceae), a common canopy tree of seasonally flooded lowland forest along the Manú River meander zone in southeastern Peru. To compare seedling establishment between microhabitat types, I planted C. brasiliense seeds in a fully crossed experimental design of three successional stages (early, mid, and mature) and two micro‐elevations (levees and backwaters). Seedling establishment success in this study was affected by both successional stage and micro‐elevation, but micro‐elevation was most important in mid‐successional habitats. In general, seedlings in early succession experienced better conditions than in mature forest; light levels were higher, herbivory lower, and seedling growth higher. In mid‐successional forest, micro‐elevation determined habitat quality; backwaters had higher light levels, lower herbivory, and higher seedling growth and survival than levees. Mid‐successional backwaters were similar in quality to early successional forest for seedling establishment, while levees in that same successional stage were the poorest microhabitats for establishment. Although mid‐successional backwaters are similar to early succession for seedling establishment, in the long run, seedlings that establish in mid‐succession have a lower chance of reaching reproductive size before their habitat ages to mature forest than members of their cohort that established in early succession. I hypothesize that successful recruitment for C. brasiliense in the Manú River meander system requires dispersal to early successional habitat.  相似文献   

6.
Clonal propagation becomes more abundant with increasing altitudes as environmental conditions worsen. To date, little attention has been paid to the way in which clonal propagation affects genetic diversity and the fine‐scale spatial genetic structure (FSGS) of clonal alpine trees. An AFLP study was undertaken to quantify the clonal and genetic diversity and FSGS of the vulnerable treeline species Polylepis reticulata in Ecuador. We successfully genotyped 32 and 75 ramets within 4 m × 100 m (coarse scale) and 4 m × 4 m (fine scale) transects of one population, respectively. Higher genotypic diversity was detected at the coarse scale than at the fine scale, while lower genetic diversity was detected for P. reticulata than other Polylepis spp. at both scales. Significantly stronger FSGS was detected at the ramet level than the genet level for P. reticulata within a spatial distance of 3 m. The studied P. reticulata population showed pronounced FSGS (Sp = 0.012 at the genet level, a statistic reflecting declining pairwise kinship with distance) revealed restricted gene dispersal, which implies restricted seed dispersal for this population, assuming pollen flow is as extensive as that described for other wind‐pollinated tree species. Our results revealed that clonal diversity is a function of both sample size and the spatial scale of the sampling area. The findings highlights that clonal propagation has affected FSGS within a spatial distance of 3 m for this species.  相似文献   

7.
High Andean mountain forests, formed almost purely by trees of the genus Polylepis, occur nowadays as scattered remnant patches of a more continuous past distribution. Apparently, the destruction of Polylepis forests has mainly been caused by millennia of human disturbance, although forest distribution may also have fluctuated according to prevailing climatic conditions. Nowadays, the remaining Polylepis forest stands are still threatened by anthropogenic disturbance, which gradually degrades the forests. The aim of our study was to test if the structural variation of Polylepis forest patches, as an indication of forest degradation, can be predicted by accessibility to humans. The study was carried out in the Cordilleras Vilcanota and Vilcabamba, Cuzco, Peru. We used indices of forest biomass and proportion of vegetative regeneration as forest structural variables. First we examined the dependence of these variables on elevation with linear regressions. We did this separately for different Polylepis species and combining the species within humid and dry areas. Thereafter, we used the residual forest structural variation to assess possible relationships with accessibility, quantified as geographical distance to the nearest village, road or market centre. We found several significant relationships between the structural variables and accessibility, which may reflect different landscape related preferences in forest use. The results suggest accessibility can be used for rapid spatial prediction of Polylepis forest degradation, which facilitates identifying Polylepis forests that are potentially the most degraded and therefore in the most urgent need of restoration or conservation activities.  相似文献   

8.
Aim To explore successional processes associated with rain forest expansion in Eucalyptus‐dominated woodland savanna vegetation in north‐eastern Australia. Location Iron Range National Park and environs, northeast Queensland, Australia. This remote region supports probably the largest extent of lowland (< 300 m) rainforest remnant in Australia. Rainfall (c. 1700 mm p.a.) occurs mostly between November and June, with some rain typically occurring even in the driest months July–October. Methods (1) Sampling of rain forest seedling distributions, and other vegetation structural attributes, in fifteen 10 × 10 m quadrats distributed equi‐distantly between mature rain forest margins (range: 70–840 m), at each of 10 sites which were open‐canopied vegetation in 1943. (2) Assessment of relationships between rain forest seedling densities and structural characteristics, including distance‐to‐rain forest‐margin, canopy height, stem density. (3) Assessment of lifeform and dispersal spectra for defined vegetation structural types. Results Rates of rain forest invasion were found to be substrate‐mediated. Transects established on hematite schist, diorite, riverine alluvium, and granite developed closed canopies (termed phase III sites) by 1991. The remainder (four transects on poorly drained colluvial/alluvial sediments; one on dune sands) continued to occur either as grassy woodland (phase I), or with developing rain forest understoreys (phase II). Rain forest seedlings were observed at maximum sampled distances from mature rain forest margins at all sites. Lifeform and dispersal spectra data illustrated that: (1) the proportions of woodland trees, shrubs and graminoids declined with successional phase, with concomitant increases in rain forest primary trees and all other lifeform categories save rain forest trees; (2) the proportions of major dispersal syndromes did not vary between successional phases, neither for rain forest nor woodland taxa. Main conclusions Rain forest seedling distribution data for phases I and II sites illustrate three successional processes: margin extension – seedling density significantly negatively correlated with distance from mature rain forest margins at two sites; nucleation – seedling densities significantly positively correlated with tall trees at two sites; and irruption – seedling densities at two sites neither correlated with distance from mature rain forest margins, nor with measured vegetation structural features. The observation of irruptive rain forest regeneration at these sites, combined with decadal‐scale rain forest canopy development at the five remaining sites, illustrates that under conditions conducive to growth (moisture, substrate), low fire disturbance, and maintenance of diverse dispersal processes (high frugivore richness), rain forest can rapidly invade regional landscapes.  相似文献   

9.
The initial spatial pattern of seed deposition influences plant population and community structure, particularly when that pattern persists through recruitment. In a vertebrate‐dispersed rain forest tree, Virola calophylla, we found that spatially aggregated seed deposition strongly influenced the spatial structure of later stages. Seed dispersion was clumped, and seed densities were highest underneath V. calophylla females and the sleeping sites of spider monkeys (Ateles paniscus), the key dispersal agent. Although these site types had the lowest per capita seed‐to‐seedling survival, they had the highest seedling/sapling densities. Conversely, seed and seedling/sapling densities were lowest, and seed survival was highest, at sites of diurnal seed dispersal by spider monkeys. Negative density‐dependent and positive distance‐dependent seed survival thinned seed clumps. Nonetheless, the clumped dispersion at sleeping and parental sites persisted to the seedling/sapling stage because differences in seed deposition were large enough to offset differences in seed survival among these site types.  相似文献   

10.
We studied Polylepis forests along an elevational transect between 3,650 and 4,050 m a.s.l. at the treeline of the moist eastern cordillera in Bolivia to examine changes in above- and below-ground stand structure, leaf and root morphology, and regeneration in relation to stand microclimate. Field measurements and model predictions indicated relatively cold growth conditions of the Polylepis forests. Tree height, stem diameter, and basal area of the stands decreased markedly while stem density increased with elevation. Leaf morphology differed between the two occurring Polylepis species, and trees at the treeline had smaller leaves with higher specific leaf area. In contrast, fine root biomass increased from 37 g m−2 at the lowermost stand to 234 g m−2 at the treeline. Trees of the uppermost stand had higher specific root surface area and a much higher number of root tips per unit dry mass. Thus, root surface area and total number of root tips per unit ground area increased conspicuously from the lowermost stand to the treeline. Density of young growth inside the forest increased towards the treeline, while density in the open grassland decreased with elevation. Young growth originated from sexual reproduction at the lower forest but was comprised exclusively of root suckers at the treeline stand. We conclude that both the marked change in carbon allocation towards the root system, as well as the changes in root morphology with elevation indicate an adaptation to reduced nutrient supply under cold conditions of these Polylepis stands at the treeline in E Bolivia.
Dietrich HertelEmail:
  相似文献   

11.

Key message

Outplanted Polylepis australis seedling growth, survival and mycorrhizal response were not influenced by inoculation with soil from different vegetation types. Seedling inoculation would not be essential for reforestation practices.

Abstract

Polylepis forests are one of the most endangered high mountain ecosystems of South America and reforestation with native Polylepis species has been recommended. To determine whether native soil inoculation could help in reforestation success, a field trial was set up to evaluate the response of outplanted P. australis seedlings to the inoculation with soils from three vegetation types (a grassland, a mature forest and a degraded forest) and a sterile soil, used as control. We evaluated seedlings performance: growth and survival for 18 months, root/shoot ratio, phosphorous content and arbuscular mycorrhizal fungal (AMF) colonization. To interpret performance patterns we evaluated the colonization potential of the three inoculum soils and the changes of the AMF community composition of the seedlings rhizosphere in relation to inoculation treatment and season. Our main results showed no significant differences in seedlings survival and growth between treatments. The colonization potential of grassland and degraded forest soils was ~25 times greater than mature forest soil and specific spore density of some morphospecies varied with season. However, AMF spore community of seedlings rhizosphere became homogenized after outplanting and was similar between treatments after 12 months. Therefore, we conclude that soil inoculation is not essential for outplanted P. australis survival and increase in height, and thus all the tested soils could be used as inocula, including grassland soils which in practice are the easiest to collect.  相似文献   

12.
South American Polylepis mountain forests are endangered due to centuries of logging, fire clearance, and intensive livestock grazing. Polylepis australis (Rosaceae) dominates the tree canopy in the Central Argentinean Mountains, where livestock have been excluded or reduced to very low densities over wide areas. Lowered plant and bird diversity in these abandoned grazing areas suggest that some livestock grazing may be beneficial for conservation purposes. Our study aimed to determine whether this may also be true for forest regeneration. In 300 plots of 1 m2 distributed in sub-regions of high to moderate grazing pressure as well as grazing exclusion, we recorded the presence of P. australis seedlings and grazing indicators. Topographical parameters as well as vegetation and soil characteristics were also assessed. Seedling frequencies were highest in the region with moderate grazing, intermediate with grazing exclusion, and the lowest with high grazing pressures. Logistic regression models revealed that seedling occurrence was highest close to seeder trees, with intermediate litter coverage and at intermediate altitudes above sea level. Since grazing ultimately affects seeder tree occurrence through browsing and reduces litter cover and predominates in higher areas, we conclude that grazing is an important driving factor for P. australis regeneration. We confirm previous studies determining high grazing pressure to be detrimental for P. australis regeneration, but also provide data suggesting that its complete exclusion may not be recommendable either. Management should aim to alternate between a moderate grazing intensity to promote seedling recruitment, with subsequent exclusion to accelerate the growth of the established seedlings.  相似文献   

13.
Tropical trees often display long‐distance pollen dispersal, even in highly fragmented landscapes. Understanding how patterns of spatial isolation influence pollen dispersal and interact with background patterns of fine‐scale spatial genetic structure (FSGS) is critical for evaluating the genetic consequences of habitat fragmentation. In the endangered tropical timber tree Dysoxylum malabaricum (Meliaceae), we apply eleven microsatellite markers with paternity and parentage analysis to directly estimate historic gene flow and contemporary pollen dispersal across a large area (216 km2) in a highly fragmented agro‐forest landscape. A comparison of genetic diversity and genetic structure in adult and juvenile life stages indicates an increase in differentiation and FSGS over time. Paternity analysis and parentage analysis demonstrate high genetic connectivity across the landscape by pollen dispersal. A comparison between mother trees in forest patches with low and high densities of adult trees shows that the frequency of short‐distance mating increases, as does average kinship among mates in low‐density stands. This indicates that there are potentially negative genetic consequences of low population density associated with forest fragmentation. Single isolated trees, in contrast, frequently receive heterogeneous pollen from distances exceeding 5 km. We discuss the processes leading to the observed patterns of pollen dispersal and the implications of this for conservation management of D. malabaricum and tropical trees more generally.  相似文献   

14.
Seeds of many Amaryllidaceae are unorthodox (recalcitrant) and toxic, and cannot survive ingestion, yet are packaged in brightly colored fruits suggestive of zoochory. Seed dispersal and germination of the understory amaryllid, Clivia miniata, were investigated in KwaZulu‐Natal, South Africa. Motion‐activated cameras revealed that samango monkeys (Cercopithecus mitis labiatus) are the primary disperser of C. miniata seeds. They eat the mesocarp and, to a lesser extent, the exocarp, and spit the large (13 mm diameter) seeds whole and cleaned onto the forest floor. Most seeds were dispersed farther than 1 m from the parent. Experimental removal of the fruit pulp had a small positive effect on the rate of seed germination, but did not affect subsequent seedling growth rates. The main advantages of monkey dispersal of Clivia seeds appear to be short‐distance dispersal away from the dense foliage of clumped parent plants and occasional long‐distance dispersal through cheek‐pouching behavior.  相似文献   

15.
The movement ability of species in fragmented landscapes must be considered if habitat restoration strategies are to allow maximum benefit in terms of increased or healthier wildlife populations. We studied movements of a range of bird species between woodland patches within a high‐altitude Polylepis/matrix landscape in the Cordillera Vilcanota, Peru. Movement rates between Polylepis patches differed across guilds, with arboreal omnivores, arboreal sally‐strikers and nectarivores displaying the highest movement rates, and understorey guilds and arboreal sally‐gleaners the lowest movement rates. Birds tend to avoid flights to more distant neighboring patches, especially when moving from patches which were themselves isolated. The decline in bird flight frequencies with increasing patch isolation followed broken‐stick models most closely, and while we suggest that there is evidence for a decline in between‐patch movements over distances of 30–210 m, there was great variability in movement rates across individual patches. This variability is presumably a result of complex interactions between patch size, quality and configuration, and flight movement patterns of individual bird species. Our study does, however, highlight the contribution small woodland patches make toward fragmented Polylepis ecosystem functioning, and we suggest that, where financial resources permit, small patch restoration would be an important compliment to the restoration of larger woodland patches. Most important is that replanting takes place within 200 m or so of existing larger patches. This will be especially beneficial in allowing more frequent use of woodland elements within the landscape and in improving the total area of woodland patches that are functionally connected.  相似文献   

16.
The estimates of contemporary gene flow assessed based on naturally established seedlings provide information much needed for understanding the abilities of forest tree populations to persist under global changes through migration and/or adaptation facilitated by gene exchange among populations. Here, we investigated pollen‐ and seed‐mediated gene flow in two mixed‐oak forest stands (consisting of Quercus robur L. and Q. petraea [Matt.] Liebl.). The gene flow parameters were estimated based on microsatellite multilocus genotypes of seedlings and adults and their spatial locations within the sample plots using models that attempt to reconstruct the genealogy of the seedling cohorts. Pollen and seed dispersal were modelled using the standard seedling neighbourhood model and a modification—the 2‐component seedling neighbourhood model, with the later allowing separation of the dispersal process into local and long‐distance components. The 2‐component model fitted the data substantially better than the standard model and provided estimates of mean seed and pollen dispersal distances accounting for long‐distance propagule dispersal. The mean distance of effective pollen dispersal was found to be 298 and 463 m, depending on the stand, while the mean distance of effective seed dispersal was only 8.8 and 15.6 m, which is consistent with wind pollination and primarily seed dispersal by gravity in Quercus. Some differences observed between the two stands could be attributed to the differences in the stand structure of the adult populations and the existing understory vegetation. Such a mixture of relatively limited seed dispersal with occasional long distance gene flow seems to be an efficient strategy for colonizing new habitats with subsequent local adaptation, while maintaining genetic diversity within populations.  相似文献   

17.
Human‐induced alteration of habitat is a major threat to biodiversity worldwide, especially in areas of high biological diversity and endemism. Polylepis (Rosaceae) forest, a unique forest habitat in the high Andes of South America, presently occurs as small and isolated patches in grassland dominated landscapes. We examine how the avian community is likely influenced by patch characteristics (i.e., area, plant species composition) and connectivity in a landscape composed of patches of Polylepis forest surrounded by páramo grasslands in Cajas National Park in the Andes of southern Ecuador. We used generalized linear mixed models and an information‐theoretic approach to identify the most important variables probably influencing birds inhabiting 26 forest patches. Our results indicated that species richness was associated with area of a patch and floristic composition, particularly the presence of Gynoxys (Asteraceae). However, connectivity of patches probably influenced the abundance of forest and generalists species. Elsewhere, it has been proposed that effective management plans for birds using Polylepis should promote the conservation of mature Polylepis patches. Our results not only suggest this but also show that there are additional factors, such as the presence of Gynoxys plants, which will probably play a role in conservation of birds. More generally, these findings show that while easily measured attributes of the patch and landscape may provide some insights into what influences patch use by birds, knowledge of other factors, such as plant species composition, is essential for better understanding the distribution of birds in fragmented landscapes.  相似文献   

18.
Regeneration is known to be limited at many temperate tree lines, but very little data is available on the impacts of altitude and anthropogenic disturbance on regeneration patterns along tropical tree lines. The study focused on the reproductive traits of two Polylepis species in the Páramo de Papallacta in Ecuador along an altitudinal gradient, and involved different intensities of cattle trampling within subsequent altitudinal ranges. We analyzed flowering, fruit set, seed viability, germination, and seedling establishment as well as stand structure of Polylepis incana and P. pauta. The numbers of P. incana inflorescences and seedlings per m2 showed a marginally significant decrease with increasing altitude. Mean tree height was significantly lower at higher altitudes, while stem number increased. The number of P. pauta inflorescences also decreased significantly upslope. In both forest types, trampling was found to have a positive impact on seedling abundance, presumably due to the removal of the litter layer. Thus, there was no evidence of negative effects of moderate cattle grazing on both tree line species. However, sapling establishment was minimal inside the forest stands at all altitudes and grazing levels, and we consequently observed a low proportion of narrow stems within all investigated forests. Our results show that, along with vegetative growth limitations of adult trees, important regeneration traits such as seedling and inflorescence numbers are also influenced by altitude, which might contribute to the formation of the upper tree line. Nevertheless, recruitment in the forest interior was low overall indicating that further factors, such as light conditions, affect regeneration of the studied species.  相似文献   

19.
Abstract Araucaria Forest expansion over grassland takes place under wet climate conditions and low disturbance and it is hypothesized that isolated trees established on grassland facilitate the establishment of forest woody species beneath their canopies. Forest with Araucaria angustifolia is a particular type of Brazilian Atlantic Forest and the main forest type on the highland plateau in south Brazil, often forming mosaics with natural Campos grassland. The objectives of this paper were to evaluate the role of isolated shrubs and trees as colonization sites for seedlings of Araucaria Forest woody species on grassland, to determine which species function as preferential nurse plants in the process and the importance of vertebrate diaspore dispersal on the structure of seedling communities beneath nurse plants. The study was conducted in São Francisco de Paula, Rio Grande do Sul State, where we sampled isolated shrubs and trees in natural grassland near Araucaria Forest edges. Seedlings were counted and identified, and seedling diaspore dispersal syndromes, size and colour were registered. We detected 11 woody species with a potential role in nucleating grassland colonization by forest species. Beneath the canopies of nurse plants more forest species seedlings were found compared with open field grassland and the seedlings had diaspores mostly dispersed by vertebrates. Also, more seedlings were found under the canopy of A. angustifolia than beneath other nurse plant species. We conclude that A. angustifolia trees established on grassland act as nurse plants, by attracting disperser birds that promote colonization of the site by other forest species seedlings, and that under low level of grassland disturbance, conservation of frugivorous vertebrate assemblages may increase forest expansion over natural grassland and also facilitate the regeneration of degraded forest areas.  相似文献   

20.
Scattered patches of Polylepis forest that occur within the 3,000–4,500 m altitudinal belt of the Andean Cordillera from Venezuela to Argentina have been hypothesized to be remnants of once continuous forests whose range became fragmented through anthropogenic activities that probably preceded the Spanish conquest. Allozyme variation of Polylepis pauta from 12 forest populations in three adjacent watersheds in Northeastern Ecuador was investigated to assess whether observed patterns of gene diversity were consistent with a more continuous historical range of the species and to evaluate the populations’ potential for restoration. Genetic diversity and polymorphism in P. pauta populations were higher than mean values for most wind pollinated and dispersed temperate and tropical tree species with regional distributions. Genetic differentiation among watersheds was lower than among populations within each watershed. Isolation by distance was not evident and several populations from different watersheds were more genetically similar than populations from the same watershed. Larger forest patches with broader altitudinal ranges had more alleles. Forest patches on steeper slopes and at higher elevations supported populations with less genetic diversity; this might have resulted from the predominance of vegetative reproduction in these landslide prone areas. The amount of genetic diversity maintained by P. pauta, coupled with low genetic differentiation among populations within and among watersheds, is consistent with a more continuous historical range of the species in Northeastern Ecuador and point to the Oyacachi basin as having the highest levels of genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号