首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolism of leukotriene A4 into C4 by human platelets   总被引:1,自引:0,他引:1  
Tritium-labelled leukotriene A4 is converted by a suspension of human platelets into leukotriene C4. The conversion is stimulated by reduced glutathione and is dependent on the platelet concentration. Formation of leukotriene C4 is temperature and time dependent and is destroyed by heating the platelets at 100 degrees C for 5 min. Verification of leukotriene C4 formation was obtained by conversion into leukotriene D4 during reaction of the HPLC-purified platelet-derived leukotriene C4 with commercial gamma-glutamyl transpeptidase. In separate experiments we incubated authentic tritiated leukotriene C4 with human platelets and we showed the formation of tritiated leukotriene D4, demonstrating the presence of gamma-glutamyl transpeptidase activity in these cells. This activity could be blocked by the presence of reduced glutathione in the incubation mixture. In contrast, erythrocytes converted tritiated leukotriene A4 almost exclusively into leukotriene B4. Although platelets have been reported to lack 5-lipoxygenase activity, our study demonstrates that platelets possess the necessary machinery to transform leukotriene A4 into leukotrienes C4 and D4. Our results suggest that an intracellular interaction between platelets and leukotriene A4-forming cells, e.g., polymorphonuclear leukocytes, could lead to the formation of these potent peptidolipids in the circulation.  相似文献   

2.
Human platelets dose-dependently converted exogenous leukotriene A4 to leukotriene C4 and efficiently metabolized this compound to leukotrienes D4 and E4. Neither of these compounds were produced after stimulation of human platelet suspensions with ionophore A23187. After LTA4 incubation of subcellular fractions, formation of leukotriene C4 was exclusively observed in the particulate fraction and was separable from the classical glutathione S-transferase activity. This suggested the presence of a specific leukotriene C4 synthase in human platelets. Addition of physiological amounts of autologous platelets to human granulocyte suspensions significantly increased ionophore A23187-induced formation of leukotriene C4. In contrast, the production of leukotriene B4 was decreased. After preincubation of platelets with [35S]cysteine, 35S-labeled leukotriene C4 was produced by A23187-stimulated platelet-granulocyte suspensions, strongly indicating a transcellular biosynthesis of this compound.  相似文献   

3.
Transformation of leukotriene (LT) A4 into leukotriene C4 has been found to be carried out by human platelets in a rather efficient manner. LTC4 was characterized by a combination of high performance liquid chromatography, UV spectrophotometry, use of labeled precursor, guinea pig ileum bioassay, and enzyme immunoassay. LTA4 metabolism was found to be substrate-dependent, time-dependent, and proportional to platelet concentration even at sub- or supraphysiological levels (0.0019-1 X 10(9) platelets/ml). Neither plasma alone nor the supernatant of resting or activated platelets was found to catalyze the production of LTC4 in the presence or in the absence of reduced glutathione. These data suggest that platelets contain a glutathione S-transferase specific for LTC4 biosynthesis. The formation of LTC4 was greatly enhanced when LTA4 was incubated with platelets in the presence of albumin. Low concentrations of albumin (2-4 g/liter) stabilized LTA4 to an extent that conversion into LTC4 by the platelets could be detected after 1 h of incubation. The possible intercellular transfer of LTA4 between neutrophils and platelets was tested. The production of LTC4 by neutrophils was greatly enhanced in the presence of platelets. Furthermore, the supernatant of neutrophils stimulated with the calcium ionophore contained a short-lived acid-labile substance which was converted by the platelets into LTC4. When platelets were prelabeled with [35S]cysteine to allow intracellular synthesis of [35S]glutathione, the coincubation of both cell types challenged with the calcium ionophore resulted in the production of [35S] LTC4. These data indicate that platelets can produce large amounts of LTC4 from neutrophil-derived LTA4. They also suggest that such interactions may occur in vivo and that platelets could be an important contribution to the generation of the biologically active LTC4.  相似文献   

4.
Human B and T lymphocytes convert leukotriene A4 into leukotriene B4   总被引:1,自引:0,他引:1  
Incubation of human tonsillar B lymphocytes and peripheral blood T lymphocytes with leukotriene A4 led to the formation of leukotriene B4. The purity of these cell suspensions was more than 99%, containing less than 0.5% monocytes. Incubation of purified B or T lymphocytes with the calcium ionophore A23187 did not lead to the formation of any detectable amounts of leukotrienes. Several established cell lines of B and T lymphocytic origin were also found to convert leukotriene A4 into leukotriene B4, showing that monoclonal lymphocytic cells possess leukotriene A4 hydrolase activity.  相似文献   

5.
Leukotriene B4 (LTB4), formed by the 5-lipoxygenase pathway in human polymorphonuclear leukocytes (PMN), may be an important mediator of inflammation. Recent studies suggest that human leukocytes can convert LTB4 to products that are less biologically active. To examine the catabolism of LTB4, we developed (using high performance liquid chromatography) a sensitive, reproducible assay for this mediator and its omega-oxidation products (20-OH- and 20-COOH-LTB4). With this assay, we have found that human PMN (but not human monocytes, lymphocytes, or platelets) convert exogenous LTB4 almost exclusively to 20-OH- and 20-COOH-LTB4 (identified by gas chromatography-mass spectrometry). Catabolism of exogenous LTB4 by omega-oxidation is rapid (t1/2 approximately 4 min at 37 degrees C in reaction mixtures containing 1.0 microM LTB4 and 20 X 10(6) PMN/ml), temperature-dependent (negligible at 0 degrees C), and varies with cell number as well as with initial substrate concentration. The pathway for omega-oxidation in PMN is specific for LTB4 and 5(S),12(S)-dihydroxy-6,8,10,14-eicosatetraenoic acid (only small amounts of other dihydroxylated-derivatives of arachidonic acid are converted to omega-oxidation products). Even PMN that are stimulated by phorbol myristate acetate to produce large amounts of superoxide anion radicals catabolize exogenous leukotriene B4 primarily by omega-oxidation. Finally, LTB4 that is generated when PMN are stimulated with the calcium ionophore, A23187, is rapidly catabolized by omega-oxidation. Thus, human PMN not only generate and respond to LTB4, but also rapidly and specifically catabolize this mediator by omega-oxidation.  相似文献   

6.
Stimulation of human polymorphonuclear leukocytes with the chemotactic peptide formylmethionylleucylphenylalanine led to the formation of a novel leukotriene: 5(S),12(R)-dihydroxy-6,8,10,14-eicosatetraen-1,20-dioic acid. This dihydroxydicarboxylic acid is derived from omega-oxidation of 5(S),12(R),dihydroxy-6,8,10,14-eicosatetradienoic acid (leukotriene B4). The intermediate 5(S),12(R),20-trihydroxy-6,8,10,14-eicosatetraenoic acid was also isolated from these incubations. The two metabolites of leukotriene B4 exhibit chemotactic properties for human polymorphonuclear leukocytes but are less active in this respect than the parent compound.  相似文献   

7.
Incubation of human endothelial cells with leukotriene A4 resulted in the formation of leukotrienes B4, C4, D4 and E4. Endothelial cells did not produce leukotrienes after stimulation with the ionophore A23187 and/or exogenously added arachidonic acid. However, incubation of polymorphonuclear leukocytes with ionophore A23187 together with endothelial cells led to an increased synthesis of cysteinyl-containing leukotrienes (364%, mean, n = 11) and leukotriene B4 (52%) as compared to leukocytes alone. Thus, the major part of leukotriene C4 recovered in mixed cultures was attributable to the presence of endothelial cells. Similar incubations of leukocytes with fibroblasts or smooth muscle cells did not cause an increased formation of leukotriene C4 or leukotriene B4. The increased biosynthesis of cysteinyl-containing leukotrienes and leukotriene B4 in coincubation of leukocytes and endothelial cells appeared to be caused by two independent mechanisms. First, cell interactions resulted in an increased production of the total amount of leukotrienes, suggesting a stimulation of the leukocyte 5-lipoxygenase pathway, induced by a factor contributed by endothelial cells. Secondly, when endothelial cells prelabeled with [35S]cysteine were incubated with either polymorphonuclear leukocytes and A23187, or synthetic leukotriene A4, the specific activity of the isolated cysteinyl-containing leukotrienes were similar. Thus, transfer of leukotriene A4 from stimulated leukocytes to endothelial cells appeared to be an important mechanism causing an increased formation of cysteinyl-containing leukotrienes in mixed cultures of leukocytes and endothelial cells. In conclusion, the present study indicates that the vascular endothelium, when interacting with activated leukocytes, modulates both the quantity and profile of liberated leukotrienes.  相似文献   

8.
The metabolism of arachidonic acid (AA) was investigated in purified guinea pig alveolar eosinophils and macrophages. Alveolar eosinophils produced 12S-hydroxy-5,8,10-heptadecatraenoic acid (HHT) and small amounts only of 5-lipoxygenase products when stimulated by AA (10 microM) or ionophore A23187 (2 microM). However, when the cell suspensions were stimulated with both AA and A23187, the cells produced HHT, leukotriene (LT) B4, and 5S-hydroxy-6,8,11,14-eicosatetraenoic acid, whereas LTC4, D4, and E4 were undetectable. Similarly, alveolar macrophages stimulated with A23187 produced HHT, 5-hydroxy-6,8,11,14-eicosatetraenoic acid, and LTB4 but no peptido-leukotrienes. When LTA4 was added to suspensions of eosinophils and macrophages, only LTB4 was formed, whereas in parallel experiments, intact human platelets incubated with LTA4 produced LTC4. These data suggest that guinea pig alveolar eosinophils and macrophages contain both cyclooxygenase and 5-lipoxygenase, but do not produce peptido-leukotrienes, probably lacking LTA4 glutathione transferase activity. These studies demonstrate that guinea pig eosinophils differ from eosinophils of other animal species which have been shown to be major sources of leukotriene C4. The present data imply that eosinophils and macrophages are not the source of peptido-leukotrienes in anaphylactic guinea pig lungs.  相似文献   

9.
The formation of leukotriene B4 and its omega-oxidised metabolites has been compared in calcium ionophore-stimulated polymorphonuclear leukocytes, in the absence of exogenous substrate, from fourteen psoriatic subjects and thirteen healthy controls. Although there was no significant difference in the levels of leukotriene B4, the psoriatic cells synthesised significantly greater amounts of omega-oxidation products than control cells. This difference was confirmed in an experiment comparing the time course of formation of the omega-oxidation products of leukotriene B4, under similar conditions, in polymorphonuclear leukocytes from four psoriatic subjects and three healthy controls. The kinetic constants for the metabolism of exogenous leukotriene B4 by 20-hydroxylase were determined by a radiochromatographic enzyme assay in polymorphonuclear leukocytes from three patients with psoriasis and three healthy controls. No significant differences were found in the apparent Km and Vmax values. It is concluded that the increased formation of omega-oxidation products in psoriatic cells may be secondary to increased synthesis of leukotriene B4 by these cells, with consequent increased metabolism, rather than to an inherent abnormality of the 20-hydroxylase system. Further work is needed to determine the kinetics of the enzymes involved in leukotriene B4 synthesis in the psoriatic polymorphonuclear leukocyte, and also to assess the contribution of the leukotriene B4 and omega-oxidation products from polymorphonuclear leukocytes infiltrating the skin to the pathogenesis of the psoriatic lesion.  相似文献   

10.
Inhibition of leukotriene A4 hydrolase/aminopeptidase by captopril   总被引:3,自引:0,他引:3  
Captopril ((2S)-1-(3-mercapto-2-methyl-propionyl)-L-proline) inhibited the bifunctional, Zn(2+)-containing enzyme leukotriene A4 hydrolase/aminopeptidase reversibly and competitively with Ki = 6.0 microM for leukotriene B4 formation and Ki = 60 nM for L-lysine-p-nitroanilide hydrolysis at pH 8. Inhibition was independent of pH between pH 7 and 8, the optimum range for each catalytic activity. Half-maximal inhibition of leukotriene B4 formation by intact erythrocytes and neutrophils required 50 and 88 microM captopril, respectively. In neutrophils and platelets neither 5(S)-hydroxyeicosatetraenoic acid, 12(S)-hydroxyeicosatetraenoic acid, nor leukotriene C4 formation were reduced, indicating selective inhibition of leukotriene A4 hydrolase/aminopeptidase, not 5-lipoxygenase, 12-lipoxygenase, or leukotriene C4 synthase. In whole blood, captopril inhibited leukotriene B4 formation with an accompanying redistribution of substrate toward formation of cysteinyl leukotrienes. The decrease in leukotriene B4 was more substantial than the corresponding increase in cysteinyl leukotrienes suggesting that nonenzymatic hydration predominates over transcellular metabolism of leukotriene A4 by platelets during selective inhibition of leukotriene A4 hydrolase. Enalapril dicarboxylic acid and Glu-Trp-Pro-Arg-ProGln-Ile-Pro-Pro which inhibit angiotensin-converting enzyme: angiotensin I, bradykinin, and N-[3-(2-furyl)acryloyl]Phe-Gly-Gly which are substrates; and chloride ions which activate angiotensin-converting enzyme did not modulate leukotriene A4 hydrolase/aminopeptidase activity. The results indicate that: (i) the sulfhydryl group of captopril is an important determinant for inhibition of leukotriene A4 hydrolase/aminopeptidase, probably by binding to an active site Zn2+; (ii) aminopeptidase and leukotriene A4 hydrolase display differential susceptibility to inhibition; (iii) there is minimal functional similarity between angiotensin-converting enzyme (peptidyl dipeptidase) and leukotriene A4 hydrolase/aminopeptidase; (iv) captopril may be a useful prototype to identify more potent and selective leukotriene A4 hydrolase inhibitors.  相似文献   

11.
Concanavalin A (Con A) induces rosette formation of erythrocytes around polymorphonuclear leucocytes and lymphocytes in cell suspensions of autologous human blood cells. The effect which is most characteristic in a concentration between 25 and 50 microgram/ml is due to Con A bound on the erythrocyte membrane. A similar effect, although less pronounced, was observed with phytohaemagglutinin at concentrations of 10 and 25 microgram/ml. The treated erythrocytes showed a higher affinity to polymorphonuclears when compared with lymphocytes. At the contact area, the membrane of the erythrocyte became highly folded while its free surface was smooth and spherical. The effect of the local concentration and immunobilization of the lectin on the erythrocyte membrane and the similarity of the contact pattern to that of erythrophagocytosis are discussed.  相似文献   

12.
Alkaline hydrolysis of leukotriene A4 methyl ester to leukotriene A4 was studied in either methanol or acetone. Hydrolysis in acetone yielded larger amounts of leukotriene A4 than similar hydrolysis in methanol. The maximum amount was obtained 60 minutes after the beginning of the hydrolysis. Leukotriene A4, as well as leukotriene B4 methoxy isomers were obtained from hydrolysis of leukotriene A4 methyl ester in methanol. It was found that initial leukotriene A4 methyl ester concentration affected the amount of LTA4 produced during the hydrolysis. The maximum concentration of leukotriene A4 was obtained by hydrolyzing solutions of 0.25 mg/ml leukotriene methyl ester in acetone. Spontaneous degradation of leukotriene A4 occurred when it was diluted with tris buffer. Addition of bovine serum albumin to the tris buffer significantly prolonged the half life of leukotriene A4.  相似文献   

13.
Cultivation of human mononuclear bone marrow cells for 10 days in the presence of leukotriene B4 (8 X 10(-8) - 3 X 10(-6)M) led to an increase in the formation of granulocyte-macrophage colonies. The increase varied between 19 and 122% when compared to control cells. 5S, 12S-Dihydroxy-6, 8, 10, 14-eicosatetraenoic acid (5S, 12S-DHETE), an isomer of leukotriene B4, did not stimulate colony formation. Preincubation of the cells with 5S, 12S-DHETE inhibited the stimulatory action of leukotriene B4 on the proliferation of bone marrow cells. The present study indicates that leukotriene B4 amplifies the stimulation caused by the colony stimulating factor(s) and may play a role in modulating granulocyte and macrophage poiesis by a positive feedback mechanism.  相似文献   

14.
Studies were made on the effects of baicalein (5,6,7-trihydroxyflavone) on leukotrienes B4 and C4 biosyntheses and degranulation induced by calcium ionophore A23187 (A23187) in human polymorphonuclear leukocytes. Baicalein inhibited A23187-induced biosynthesis of leukotrienes B4 and C4 in human polymorphonuclear leukocytes. The concentration of baicalein required for 50% inhibition (IC50) of leukotrienes B4 and C4 formations was 1.46.10(-6) and 6.00.10(-7) M, respectively, using 1.0 microgram/ml of A23187. In addition, baicalein dose-dependently inhibited beta-glucuronidase and lysozyme releases induced by A23187, leukotriene B4 plus cytochalasin B and platelet-activating factor plus cytochalasin B. Furthermore, baicalein was found to inhibit dose-dependently Ca2+ uptake into the cells and Ca2+ mobilization from the intracellular stores.  相似文献   

15.
Purified human eosinophils were challenged with N-formyl-methionyl-leucyl-phenylalanine, leukotriene B4, platelet-activating-factor, valyl-glycyl-seryl-glutamic acid, phorbol myristate acetate, zymosan, opsonized zymosan and the calcium ionophore A23187 to induce leukotriene synthesis. Reversed-phase high performance liquid chromatography analysis demonstrated the almost exclusive synthesis of leukotriene C4 by eosinophils of 11 healthy donors after challenge with opsonized zymosan [(22 +/- 4) X 10(6) molecules LTC4/cell, mean +/- SE] or the calcium ionophore A23187 [(54 +/- 7) X 10(6) molecules LTC4/cell, mean +/- SE]. The other agents were not capable of inducing leukotriene formation. When in addition to opsonized zymosan N-formyl-methionyl-leucyl-phenylalanine or platelet-activating factor were added a significant increase of the leukotriene C4 synthesis by eosinophils was observed. These results suggest that eosinophils might be triggered to produce considerable amounts of the spasmogenic leukotriene C4 in vivo by C3b- and/or IgG-mediated mechanisms e.g. phagocytosis.  相似文献   

16.
Human erythrocytes contained a soluble cytosolic epoxide hydrolase for stereospecific enzymatic hydration of leukotriene A4 into leukotriene B4. The enzyme was purified 1100-fold, to apparent electrophoretic homogeneity, by conventional DEAE-Sephacel fractionation followed by high performance anion exchange and chromatofocusing procedures. Its characteristics include a molecular weight of 54,000 +/- 1,000, an isoelectric point 4.9 +/- 0.2, a Km apparent from 7 to 36 microM for enzymatic hydration of leukotriene A4, and a pH optimum ranging from 7 to 8. The enzyme was partially inactivated by its initial exposure to leukotriene A4. There was slow but detectable enzymatic hydration (pmol/min/mg) of certain arachidonic acid epoxides including (+/-)-14,15-oxido-5,8-11-eicosatrienoic acid and (+/-)-11,12-oxido-5,8,14-eicosatrienoic acid, but not others, including 5,6-oxido-8,11,14-eicosatrienoic acid. Human erythrocyte epoxide hydrolase did not hydrate either styrene oxide or trans-stilbene oxide. In terms of its physical properties and substrate preference for leukotriene A4, the erythrocyte enzyme differs from previously described versions of epoxide hydrolase. Human erythrocytes represent a novel source for an extrahepatic, cytosolic epoxide hydrolase with a potential physiological role.  相似文献   

17.
Leukotriene A4 hydrolase was rapidly and extensively purified from rat neutrophils using anion exchange and gel filtration high-pressure liquid chromatography. The enzyme which converts the allylic epoxide leukotriene A4 to the 5,12-dihydroxyeicosatetraenoic acid leukotriene B4 was localized in the cytosolic fraction and exhibited an optimum activity at pH 7.8 and an apparent Km for leukotriene A4 between 2 X 10(-5) and 3 X 10(-5) M. The purified leukotriene A4 hydrolase was shown to have a molecular weight of 68 000 on sodium dodecylsulfate polyacrylamide gel electrophoresis and of 50 000 by gel filtration. The molecular weight and monomeric native form of this enzyme are unique characteristics which distinguish leukotriene A4 hydrolase from previously purified epoxide hydrolases.  相似文献   

18.
The metabolism of leukotriene D4 to leukotriene E4 by a dipeptidase of kidney tissue is strongly inhibited by cilastatin (MK 0791) a known renal dehydropeptidase-I inhibitor. The comparison with similar enzyme activities from other tissues (liver, lung, serum, polymorphonuclear granulocytes) revealed a high specificity of cilastatin for the kidney enzyme which was found to be associated with the microsomal fraction. The lowest detectable inhibitory concentration of cilastatin within renal tissue was 8 X 10(-8)M.  相似文献   

19.
Bovine polymorphonuclear leukocytes exhibit a 12-lipoxygenase activity upon sonication. In contrast to bovine platelet 12-lipoxygenase and other 12-lipoxygenases, this enzyme is unable to convert 5(S)-HETE (5(S)-hydroxy,6-trans-8,11,14-cis-eicosatetraenoic acid) or 5(S)-HPETE (5(S)-hydroperoxy,6-trans-8,11,14-cis-eicosatetraenoic acid) into 5(S),12(S)-dihydroxy-6,10-trans,8,14-cis-eicosatetraenoic acid. Surprisingly, the formation of leukotriene A4-derived products namely leukotriene B4 and the leukotriene B4-isomers 12-epi,6-trans- leukotriene B4 and 6-trans-leukotriene B4, was observed upon incubation of this enzyme with 5(S)-HPETE. Hence, the 12-lipoxygenase from bovine polymorphonuclear leukocytes possesses leukotriene A4-synthase activity.  相似文献   

20.
Inhibition of leukotriene formation is one of the approaches to the treatment of asthma and other inflammatory diseases. We have investigated knipholone, isolated from the roots of Kniphofia foliosa, Hochst (Asphodelaceae), for inhibition of leukotriene biosynthesis in an ex vivo bioassay using activated human neutrophile granulocytes. Moreover, activities on 12-lipoxygenase from human platelets and cycloxygenase (COX)-1 and -2 from sheep cotyledons and seminal vesicles, respectively, have been evaluated. Knipholone was found to be a selective inhibitor of leukotriene metabolism in a human blood assay with an IC(50) value of 4.2microM. However, at a concentration of 10microg/ml, the compound showed weak inhibition of 12(S)-HETE production in human platelets and at a concentration of 50microM it produced no inhibition of COX-1 and -2. In our attempt to explain the mechanism of inhibition, we examined the antioxidant activity of knipholone using various in vitro assay systems including free radical scavenging, non-enzymatic lipid peroxidation, and metal chelation. Knipholone was found to be a weak dose-independent free radical scavenger and lipid peroxidation inhibitor, but not a metal chelator. Therefore, the leukotriene biosynthesis inhibitory effect of knipholone was evident by its ability either to inhibit the 5-lipoxygenase activating protein (FLAP) or as a competitive (non-redox) inhibitor of the enzyme. Cytotoxicity results also provided evidence that knipholone exhibits less toxicity for a mammalian host cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号