首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 729 毫秒
1.
Biosynthetically radiolabelled heparan sulphate proteoglycans have been isolated from the growth medium and the cell lysate of a human neuroblastoma cell line (CHP100). Chromatography on Sepharose CL-4B identified two heparan sulphate proteoglycans in the medium (Kav 0.220 and 0.389), whereas in the cell lysate the major proteoglycan species were more heterogenous and of a smaller overall molecular size (Kav 0.407) than the medium-derived counterparts. Chromatography on Sepharose CL-6B of free heparan sulphate glycosaminoglycan chains showed that the majority of cell-layer-derived material heparan sulphate 2, Kav = 0.509) was smaller than medium heparan sulphates (heparan sulphate 1 and heparan sulphate 2, Kav 0.230 and 0.317). Analysis of the patterns of polymer sulphation by nitrous acid treatment, gel chromatography and high-voltage electrophoresis established that in each heparan sulphate fraction there was on average 1.1 sulphate residues per disaccharide with an N:O sulphate ratio of 1.1. Heparan sulphate in the medium had a high proportion of di-O-sulphated disaccharides in regions of the chain with repeat disaccharide sequences of structure GlcA-GlcNSO3, whereas cell-associated material was enriched in di-O-sulphated tetrasaccharides of alternating sequences GlcA-GlcNAc-GlcA-GlcNSO3. The identification of several populations of heparan sulphate proteoglycans differing in molecular size and glycosaminoglycan fine structure may reflect the functional diversity of this family of macromolecules in the nervous system.  相似文献   

2.
Confluent cultures of a human neuroblastoma cell line (CHP100) were incubated for 48 h with d-[1-3H]glucosamine and sodium [35S]sulphate. Radioactive glycosaminoglycans were analysed in the growth medium, rapid trypsin digest of the cell monolayer and a 1% (w/v) Triton/0.5 M NaOH extract of the final cell pellet. Sulphated glycosaminoglycans co-chromatographed when eluted by NaCL gradient from DEAE-cellulose. The medium contained mainly chondroitin sulphates, whereas the cell surface was enriched in heparan sulphate. Heparan sulphate was isolated as chondroitinase ABC-resistant material and treated with nitrous acid. Analysis of the scission products on Bio-Gel P-10 yielded fragments varying in size from single disaccharides to glycans consisting of nine disaccharide units. Cell-surface and medium heparan sulphate had respectively 52% and 54% N-sulphated glucosamine residues distributed in similar patterns along the polymer chain. The N:O-sulphate ratio of neuroblastoma heparan sulphate was 1.1:1. Analysis by high-voltage electrophoresis of di- and tetrasaccharide products produced by nitrous acid treatment showed that the distribution of ‘O’-sulphate groups differed strikingly between heparan sulphates from the medium and cell-surface compartments. A di-O-sulphated tetrasaccharide was identified in both heparan sulphate species. The absence of detectable amounts of 35[S]sulphate associated with fragments larger than tetrasaccharide supports the close topographical association of N-sulphate and O-sulphate groups.  相似文献   

3.
Aortic proteoglycans, from the growth medium of cultured smooth muscle cells and from sequential associative and dissociative extracts of the tissue of origin, the pig aorta, were isolated and purified by precipitation with cetylpiridinium chloride. After isopycnic CsCl gradient centrifugation under associative conditions 94% of the cell-secreted proteoglycans were recuperated in the bottom one fifth (?av = 1.62 g/ml) fraction. In contrast 80% of the tissue proteoglycans of both extracts, fractionated into two fractions: the bottom one fifth (?av = 1.60 g/ml) fraction and three fifths (?av = 1.42 g/ml) fraction. Fractionated tissue proteoglycans were composed predominantly of chondroitin sulfate-dermatan sulfate (83–90%) with lower proportions of heparan sulfate (5–11%) and hyaluronic acid (3–6%) whilst cell-secreted proteoglycans showed a similar glycosaminoglycan composition but with a higher proportion of hyaluronic acid (11–13%). Sepharose 2B and C1-2B chromatography of tissue proteoglycans of high buoyant density showed the presence of only subunit proteoglycans whilst those of intermediate density contained a complex species, partially dissociable in 4 M guanidinium chloride, along with Kav 0.50 subunit species. The latter was also observed for cell-secreted proteoglycans although obtained at high buoyant density. The cell-secreted subunit proteoglycans became separated into two distinct populations when chromatographed on Sepharose 4B and C1-4B, half of which eluted in the column Vo and the rest at a Kav of 0.34.. The majority of subunit macromolecules eluted at the Vo fractions of Sepharose 6B and C1-6B columns. Unlike the major species of cartilage proteoglycans, only approx. 20% of purified arterial proteoglycans formed complexes. This proportion could be increased by only 4–7% by interaction, of a mixture of subunit cell-secreted and tissue-extracted proteoglycans, with hyaluronic acid. These results suggest that proteoglycans secreted by cultured aortic smooth muscle cells and present in the aortic tissue possess certain similar physicochemical properties and are present in the form of complex and several subunit species.  相似文献   

4.
The cellular distribution and nature of proteoglycans synthesised by human breast cancer cells in culture were studied. Proteoglycans were labelled with [35S] sulfate, purified, and characterised after ion-exchange chromatography followed by gel-filtration chromatography and treatment with glycosaminoglycan degrading enzymes. Proteoglycans were isolated from the culture medium and from cell layers of the hormono-dependent well-differentiated MCF-7 cell line, the hormono-independent poorly-differentiated MDA-MB-231 and the HBL-100 cell line which is derived from non malignant breast epithelium. HBL-100 and MDA-MB-231 cells produced larger amounts of proteoglycans which had a lower degree of sulfation than MCF-7 cells. Gel-filtration chromatography on Sepharose CL-6B indicated that HBL-100 and MDA-MB-231 cells accumulated cell surface heparan sulfate proteoglycans (HSPG), with a high apparent molecular weight (Kav 0.1). In contrast, the MCF-7 cell monolayers synthesised small sulfated macromolecules (Kav 0.4) which possessed mostly chondroitin sulfate chains. Moreover, considerable differences in the nature of the sulfated proteoglycans released into the culture medium of these breast epithelial cell lines were observed. MCF-7 cells released into the culture medium HSPG as the main proteoglycan component while MDA-MB-231 and HBL-100 cells released mainly chondroitin sulfate proteoglycans. In these three cell lines, medium-released sulfated macromolecules have a higher hydrodynamic size than cell-associated ones. Proteoglycans purified by ion-exchange chromatography were tested for their ability to bind 125I FGF-2. We demonstrated that HBL-100 and MDA-MB-231 cells bind more FGF-2 to their heparan sulfate proteoglycans than MCF-7 cells. Taken together, these results suggest that differences in proteoglycan synthesis of human breast epithelial cells could be responsible for differences in their proliferative and/or invasive properties. J. Cell. Biochem. 64:605–617. © 1997 Wiley-Liss, Inc.  相似文献   

5.
From cultures of human umbilical vein endothelial cells incubated with3H-glucosamine or35S-sulphate, we have purified three heparan sulphate proteoglycans: 1) a low density (1.31 g/ml) proteoglycan from the cell extract, 2) a low density proteoglycan from the medium, and 3) a high density (>1.4 g/ml) proteoglycan from the medium. The disaccharide composition of heparan sulphate chains from the low density proteoglycan of the medium was examined, using specific chemical and enzymic degradations followed by gel chromatography and strong anion exchange HPLC. Chains released from each of the different proteoglycan populations were then compared by gel chromatography and gradient polyacrylamide gel electrophoresis before and after various specific degradations. The results indicate that heparan sulphate from human endothelial cells are large polymers (MW>50,000) of low overall sulphation (32–35%N-sulphated glucosamine and an N/O-linked sulphate ratio of 2.0) with rare and solitary heparin-like disaccharides. Heparan sulphate from the different proteoglycan populations appeared to have similar structure except that chains from the high density fraction were larger polymers.Abbreviations HSPG heparan sulphate proteoglycan - DSPG dermatan sulphate proteoglycan - GlcNAc(6S) N-acetylglucosamine 6-sulphate - GlcNAc6R glucosamine with either-OH or-OSO3 at C-6 - GlcNR glucosamine with either-SO3 or-COCH3 as N-substituent - GlcNSO3 N-sulphated glucosamine - GlcNSO3(3S) N-sulphated glucosamine 3-sulphate - GlcA d-glucuronic acid - IdoA l-iduronic acid - IdoA(2S) iduronic acid 2-sulphate - HexA hexuronic acid - DHexA hexuronic acid with a 4,5-double bond - Xyl xylose - SAX strong anion exchange - d.p. degree of polymerization (a disaccharide has d.p.=1 etc) - AUFS absorbance units full scale The codes used for proteoglycans denote in turn: C 2, low-density (1.35–1.28 g/ml) HSPG from the cell extract; M 1a, high density (>1.4 g/ml) HSPG fraction from the spent medium; M 2a, low-density (1.31 g/ml) HSPG from the spent medium [6].  相似文献   

6.
Macrophages were obtained from the mouse peritoneal cavity and culturedin vitro. The cells were exposed to35S-sulphate for 20 h, and labelled proteoglycans were recovered from both medium and cell fractions by sodium dodecylsulphate solubilization. The cell fraction contained both proteoglycans and glycosaminoglycans, whereas only intact proteoglycans could be recovered from the medium fraction. 35S-Glycosaminoglycans isolated from cell and medium fractions by papain digestion were shown to contain approximately 25% heparan sulphate and 75% galactosaminoglycans comprising 55% chondroitin sulphate and 20% dermatan sulphate. The galactosaminoglycans were shown by paper chromatography to contain more than 95% 4-sulphated units. Pulse-chase experiments showed that approximately 80% of the cell-associated material was released within 6 h of incubation.35S-Proteoglycans released did not bind to the macrophages, but were recovered in a soluble form from the culture medium.Abbreviations CSPG chondroitin sulphate proteoglycan - HSPG heparan sulphate proteoglycan - SDS sodium dodecylsulphate - DME Dulbecco's Minimum Essential Medium - GAG glycosaminoglycan  相似文献   

7.
The proteoglycans synthesized by fibroblasts derived from healthy human gingivae were isolated and characterized. The largest medium proteoglycan was excluded from Sepharose CL-4B but not from Sepharose CL-2B; it was recovered in the most-dense density gradient fraction and identified as a chondroitin sulfate proteoglycan. The medium contained two smaller proteoglycans; one contained predominantly chondroitin sulfate proteoglycan, while the other was comprised predominantly of dermatan sulfate proteoglycan and was quantitatively the major species. The largest proteoglycan in the cell layer fraction, excluded from both Sepharose CL-2B and Sepharose CL-4B, was found in the least-dense density gradient fraction and contained heparan sulfate and chondroitin sulfate proteoglycan. It could be further dissociated by treatment with detergent, suggesting an intimate association with cell membranes. Two other proteoglycan populations of intermediate size were identified in the cell layer extracts which contained variable proportions of heparan sulfate, dermatan sulfate, or chondroitin sulfate proteoglycan. Some small molecular weight material indicative of free glycosaminoglycan chains was also associated with the cell layer fraction. Carbohydrate analysis of the proteoglycans demonstrated the glycosaminoglycan chains to have approximate average molecular weights of 25,000. In addition, N- and O-linked oligosaccharides which were associated with the proteoglycans appeared to be sulfated in varying degrees.  相似文献   

8.
Mouse neuroblastoma Neuro 2a cells are known to extend neurite-like processes in response to gangliosides added to the culture medium. We compared the structural features of proteoglycans (PG) synthesized by conventional Neuro 2a cells with those of neurite-bearing cells. Two different proteoglycans labeled with [35S]sulfate, namely, chondroitin sulfate proteoglycan (CS-PG) and heparan sulfate proteoglycan (HS-PG), were found both in the cell layer and in the culture medium of the conventional cells. CS-PG isolated from the cell layer had a Kav value of 0.38 on Sepharose CL-6B, and had CS side chains with Mr of 27,000. HS-PG in the cell layer was slightly larger (Kav of 0.33) in terms of hydrodynamic size than CS-PG, and the apparent Mr of the heparan sulfate side chains was 10,000. The structural parameters of CS-PG and HS-PG isolated from the medium were almost identical to those of the PGs in the cell layer. In addition to these PGs, single-chain HS, with an average Mr of 2,500, was observed only in the cell layer and this component was the major sulfated component in the cell layers of both control and ganglioside treated cells. The neurite-bearing cells also synthesized both CS-PG and HS-PG which were very similar in hydrodynamic size to those synthesized by the conventional cells, but the size of HS side chains was greater. Radioactivity, as35S, of each sulfated component from the gangliosideteated culture seemed to be slightly less than that of the corresponding component from the control culture. These findings indicate that the marked morphological change in Neuro 2a cells, induced by gangliosides is not accompanied by major changes in the synthesis of PGs.  相似文献   

9.
Cultured smooth muscle cells from pig aorta arrested in G0 phase by serum deprivation were stimulated to proliferate by replacing the medium with one containing 10% serum. Studies in DNA replication and proliferation of cells showed a relatively good synchrony: 90% of the cells were in G1 phase for 16 h after addition of serum; they entered S phase between 18 and 24 h, completed S phase and traversed G2 phase between 24 and 30–32 h; 75% of these cells multiplied after 30–32 h and the remainder were blocked at the end of G2 phase. The synthesis and secretion of sulfated proteoglycans were examined throughout a full cell cycle using metabolic labelling with [35S]sulfate. Smooth muscle cells in G1 or G2 phase synthesized and secreted sulfated proteoglycans with a possible pause at the end of the G2 phase but at the beginning of the S phase and during mitosis the incorporation of [35S]sulfate into these macromolecules stopped entirely. Structural characteristics of sulfated proteoglycans secreted into the medium during G1 phase and an entire cell cycle were investigated. The proportion of proteoglycan complexes and the relative hydrodynamic size of monomers and of constituent subunits of complexes were determined after chromatography on Sepharose CL-2B and CL-6B columns run under both associative and dissociative conditions. No significant differences were observed for the periods of the cell cycle that were studied:
1. 1. [35S]Proteoglycan complexes represented at the end of G1 phase and of the cell cycle respectively 19 and 16% of the total [35S]proteoglycans secreted into the medium.
2. 2. More than 90% of the subunits, obtained after dissociation of complexes, were characterized by a similar kav after chromatography on Sepharose CL-2B columns eluted under dissociative conditions (kav 0.68 at the end of G1 phase and 0.65 at the end of full cell cycle).
3. 3. About 95% of monomers synthesized at the two stages of the cell cycle were eluted at kav 0.25 after chromatography on Sepharose CL-6B column run under associative conditions and were characterized by a similar glycosaminoglycan distribution. These results suggest that smooth muscle cells in culture liberate similar populations of proteoglycans into the medium during the G1 and G2 phases.
  相似文献   

10.
Chondroitin sulphate proteoglycans were isolated from the culture medium of rat mammary gland fibroblast (Rama 27) and myoepithelial (Rama 401) cell lines which had been labelled with [35S]sulphate. Chromatography on Sepharose CL-4B indicated that the Rama 401 proteoglycan was larger than the Rama 27 proteoglycan (Kav values 0.47 and 0.56, respectively). Treatment of the proteoglycans with alkaline NaBH4 yielded chondroitin sulphate chains with average M(r) values of 37,000 (Rama 401) and 21,000 (Rama 27). Structural analysis of the glycosaminoglycan chains indicated that both were co-polymers of chondroitin and dermatan sulphate although there were differences in the amounts and distribution of the disaccharide repeating units. The M(r) values of the core proteins, determined by immunoblotting, were about 43,000 and 46,000 (Rama 27) and 44,500 (Rama 401). Using an antibody to chondroitin sulphate proteoglycan in immunofluorescence experiments, the proteoglycan was demonstrated on the surface of both cell lines. Rama 27 cells additionally possessed an extensive fibrous extracellular matrix which also stained with the antibody. Staining of sections of lactating mammary gland suggested that the proteoglycan was present in the basement membrane as well as the stromal connective tissue. The presence of chondroitin sulphate proteoglycan in the basement membrane was confirmed by ultrastructural immunolocalisation.  相似文献   

11.
Pancreatic islet amyloid deposits in type 2 diabetes are associated with decreased islet beta-cell function. They contain both amylin (islet amyloid polypeptide), the beta-cell-derived unique fibrillogenic component, and heparan sulfate proteoglycans (HSPGs). We hypothesized that beta-cell HSPGs contribute to islet amyloidogenesis. [35S]Sulfate-labeled proteoglycans from islet-derived beta-TC3 cell cultures eluted from diethylaminoethyl Sephacel at 0.35M NaCl. Chromatography on Sepharose CL-4B and SDS-PAGE analysis revealed distinct populations of proteoglycans. Medium HSPGs eluted at K(av) approximately 0.18 and 0.50 with glycosaminoglycan chains of approximately 28 and 19 kDa, respectively. A third population containing chondroitin/dermatan sulfate eluted at K(av) approximately 0.70 with glycosaminoglycan chains of approximately 10 kDa. A single size class of heparan and chondroitin/dermatan sulfate proteoglycans in the cell layer eluted at K(av) approximately 0.40 with glycosaminoglycan chains of approximately 19 kDa. Medium and cell layer proteoglycans bound exclusively to fibrillogenic amylin, as determined by gel mobility shift assays, indicating a possible role for beta-cell-derived proteoglycans in islet amyloid formation.  相似文献   

12.
13.
Heterogeneity of heparan sulfate proteoglycans synthesized by PYS-2 cells   总被引:5,自引:0,他引:5  
Antibodies to the basement membrane proteoglycan produced by the EHS tumor were used to immunoprecipitate [35S]sulfate-labeled protoglycans produced by PYS-2 cells. The immunoprecipitated proteoglycans were subsequently fractionated by CsCl density gradient centrifugation and Sepharose CL-4B chromatography. The culture medium contained a low-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.18, containing heparan sulfate side chains of Mr = 35-40,000. The medium also contained a high-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.23, containing heparan sulfate side chains of Mr = 30,000. The corresponding proteoglycans of the cell layer were all smaller than those in the medium. Since the antibodies used to precipitate those proteoglycans were directed against the protein core, this suggests that these proteoglycans share common antigenic features, and may be derived from a common precursor which undergoes modification by the removal of protein segments and a portion of each heparan sulfate chain.  相似文献   

14.
Metabolism of rat bone proteoglycans in vivo.   总被引:2,自引:2,他引:0       下载免费PDF全文
Former evaluations of the role of proteoglycans in mineralization have neglected to address the possibility that the metabolism of proteoglycans may be of significance in this regard. This problem was studied by using radiolabeling in vivo of rat calvaria with [35Sulphate for 2-72 h and a sequential extraction procedure to yield two pools of newly synthesized proteoglycans: one obtained from non-mineralized tissue by extraction with guanidinium chloride (GdmCl) and another obtained only after demineralization with EDTA. Total radioactivity in calvaria was maximal after 12 h of incorporation, but by 36 h had declined to a level that was about 55-65% of maximum. Radioactivity in the GdmCl extract declined steadily after 12 h, whereas that in the EDTA extract remained constant until 36 h, when it began to increase. Each extract contained a minor proteoglycan that eluted at the void volume (Vo) of a Sepharose CL-6B column. Unlike in the EDTA extract, this proteoglycan gradually disappeared from the GdmCl extract. Each extract also contained a major, smaller proteoglycan, with a Kav. of 0.24 and 0.36 in the GdmCl and EDTA extracts respectively. Papain digestion of each extract yielded glycosaminoglycan chains with Kav. values of 0.32 and 0.50 on CL-6B in the GdmCl and EDTA extracts respectively. Digestion of each extract with chondroitinase ABC and chondroitinase AC showed that the glycosaminoglycans were of similar disaccharide composition, with about 85% being 4-sulphated and the remainder 6-sulphated and/or iduronic acid-containing. These data suggest that about 45% of the newly synthesized proteoglycans are removed from the tissue during the course of mineralization.  相似文献   

15.
We studied the effect of low-density lipoproteins (LDL) on the synthesis and secretion of proteoglycans by cultured human umbilical-vein endothelial cells. Confluent cultures were incubated with [35S]sulphate or [3H]glucosamine in lipoprotein-deficient serum in the presence and in the absence (control) of LDL (100-400 micrograms/ml), and metabolically labelled proteoglycans in culture medium and cell layer were analysed. LDL increased accumulation of labelled proteoglycans in medium and cell fractions up to a concentration of 200 micrograms/ml. At this concentration of LDL the accumulations of proteoglycans in medium and cell layer were 65% and 32% respectively above control for 35S-labelled proteoglycans, and 55% and 28% respectively above control for 3H-labelled proteoglycans. At concentrations above this LDL was found to depress the accumulation of proteoglycans in medium and cell layer. Gel filtration on Sepharose CL-4B showed that in both control and LDL-treated cultures the cell layer contained a large (Kav. = 0) and a small (Kav. = 0.35) heparan sulphate proteoglycan, whereas the culture medium contained a large heparan sulphate proteoglycan (Kav. = 0) and a smaller isomeric chondroitin sulphate proteoglycan (control, Kav. = 0.35; LDL-treated, Kav. = 0.17). The relative increase in hydrodynamic size of the isomeric chondroitin sulphate proteoglycan (Mr 150,000 compared with 90,000) in the medium of cultures exposed to LDL was partly attributable to the larger size of the glycosaminoglycan side chains (Mr 39,000 compared with 21,000). The isomeric chondroitin sulphate proteoglycan in LDL-treated culture was relatively enriched in chondroitin 6-sulphate compared with that in control cultures (39% compared with 29%). Pulse-chase studies showed that LDL treatment did not alter the turnover rate of proteoglycans as compared with controls, implying that the elevation in proteoglycan accumulation in LDL-treated cultures was due to enhanced synthesis. These results demonstrate that LDL can modulate proteoglycan synthesis by cultured vascular endothelial cells, resulting in the secretion of a larger isomeric chondroitin sulphate proteoglycan enriched in chondroitin 6-sulphate.  相似文献   

16.
The properties of aortic proteoglycans synthesized in vitro were examined to demonstrate synthesis of intact proteoglycans by aortic tissue in culture and to compare labeling and synthetic rates of two different populations of proteoglycan. Following 3, 6, or 9 h of incubation in medium containing [35S]sodium sulfate and [3H]serine, the tissue was extracted with 4.0 M guanidine hydrochloride containing protease inhibitors. Extracts were chromatographed on Sepharose CL-4B and subjected to buoyant density centrifugation under dissociative conditions. Radioactive precursors were incorporated into two major populations of aortic proteoglycan, one of high molecular weight eluting near the void volume of Sepharose CL-4B (Protooglycan I) and one of lower molecular weight (Proteoglycan II) having a Kav of 0.40–0.44. The radioactively labeled proteoglycans were localized at densities 1.50–1.56 g/ml (Preparation 1) and 1.43–1.49 g/ml (Preparation 2) following CsCl buoyant density centrifugation. Both proteoglycan populations had increased incorporation of 35S and 3H over time. At all times the lower molecular weight proteoglycan had a higher specific activity (dpm 35S and 3H/μg hexuronic acid). At 3, 6, and 9 h, the specific activity of Proteoglycan II was 8.2-, 6.7- and 3.0-fold higher than Proteoglycan I using 35S and 13.0-, 8.1- and 2.7-fold higher using 3H, suggesting different synthetic rates for the two proteoglycans. The results illustrate synthesis of intact proteoglycans during short-term artery culture. The proteoglycan types have size and buoyant density characteristics as described for artery, but based upon changes in specific activity ratios, the two proteoglycan populations differ in rates of synthesis.  相似文献   

17.
Developmental and Age-Related Changes in Rat Brain Glycosaminoglycans   总被引:2,自引:1,他引:1  
The quantities of each major class of glycosaminoglycan were determined in rat cerebrum from postnatal day 5 to 30 months of age. Chondroitin sulphate, dermatan sulphate, heparan sulphate, heparin, and hyaluronate were found, but no keratan sulphate was detected. Large and rapid changes in glycosaminoglycan content were observed during the period of brain maturation, and thereafter relatively steady levels were maintained until after the age of 12 months. The most remarkable change in the aged rat cerebrum was the ratio by weight of hyaluronate to chondroitin sulphate, which was approximately 1:1 from postnatal day 10 to 18 months but increased to 2.6:1 by the age of 30 months. In immature rats, the proportion of nonsulphated and 6-sulphated disaccharides derived from chondroitinase AC digests of brain glycosaminoglycans was much greater than in adults. In mature rats, chondroitin sulphate was composed almost entirely of 4-sulphated disaccharide subunits. The possibility that these changes could affect the permeability properties of the cerebral extracellular space and ionic equilibria in the brain is discussed.  相似文献   

18.
Rabbit lens epithelial cells synthesize and secrete a variety of [35S]sulphate-labeled glycoconjugates in vitro. Associated with the cell layer, and with the medium, was a high molecular weight glycoconjugate(s) that contained heparan sulphate which was apparently covalently linked to sulphated glycoprotein. This component(s) was eluted in the void volume of a Sepharose CL-2B column and could not be fractionated by detergent treatment or extraction with lipid solvents. The cell layer also contained glycosaminoglycans (72% heparan sulphate, 28% chondroitin sulphate), as well as a small proportion of a low molecular weight sulphated glycoprotein. The major 35S-labeled species secreted into the medium were sulphated glycoproteins with approximate molecular weights of 120,000 and 35,000 together with a heparan sulphate proteoglycan. This proteoglycan could be precipitated from the culture medium with 30% saturated (NH4)2SO4 and eluted from Sepharose CL-4B columns at approximately the same position (Kav = 0.15) as heparan sulphate proteoglycans described in the basement membrane of the EHS "sarcoma" (Hassell, J. R., P. G. Robey, H. J. Barrach, J. Wilczek, S. I. Rennard, and G. R. Martin, 1980, Proc. Natl. Acad. Sci. USA, 77:4494-4498) and of the mouse mammary epithelium (David, G., and M. Bernfield, 1981, J. Cell Biol., 91:281-286). Its presence in the culture medium was unanticipated but may be explained by the inability of these cultures to deposit a basement membrane when grown on a plastic surface. The relationship of this heparan sulphate proteoglycan to the lens epithelial basement membrane is the subject of the following paper.  相似文献   

19.
Proteoglycans were extracted from nuclease-digested sonicates of 10(9) rat basophilic leukemia (RBL-1) cells by the addition of 0.1% Zwittergent 3-12 and 4 M guanidine hydrochloride and were purified by sequential CsCl density gradient ultracentrifugation, DE52 ion exchange chromatography, and Sepharose CL-6B gel filtration chromatography under dissociative conditions. Between 0.3 and 0.8 mg of purified proteoglycan was obtained from approximately 1 g initial dry weight of cells with a purification of 200-800-fold. The purified proteoglycans had a hydrodynamic size range of Mr 100,000-150,000 and were resistant to degradation by a molar excess of trypsin, alpha-chymotrypsin, Pronase, papain, chymopapain, collagenase, and elastase. Amino acid analysis of the peptide core revealed a preponderance of Gly (35.4%), Ser (22.5%), and Ala (9.5%). Approximately 70% of the glycosaminoglycan side chains of RBL-1 proteoglycans were digested by chondroitinase ABC and 27% were hydrolyzed by treatment with nitrous acid. Sephadex G-200 chromatography of glycosaminoglycans liberated from the intact molecule by beta-elimination demonstrated that both the nitrous acid-resistant (chondroitin sulfate) and the chondroitinase ABC-resistant (heparin/heparan sulfate) glycosaminoglycans were of approximately Mr 12,000. Analysis of the chondroitin sulfate disaccharides in different preparations by amino-cyano high performance liquid chromatography revealed that 9-29% were the unusual disulfated disaccharide chondroitin sulfate di-B (IdUA-2-SO4----GalNAc-4-SO4); the remainder were the monosulfated disaccharide GlcUA----GalNAc-4-SO4. Subpopulations of proteoglycans in one preparation were separated by anion exchange high performance liquid chromatography and were found to contain chondroitin sulfate glycosaminoglycans whose disulfated disaccharides ranged from 9-49%. However, no segregation of subpopulations without both chondroitin sulfate di-B and heparin/heparan sulfate glycosaminoglycans was achieved, suggesting that RBL-1 proteoglycans might be hybrids containing both classes of glycosaminoglycans. Sepharose CL-6B chromatography of RBL-1 proteoglycans digested with chondroitinase ABC revealed that less than 7% of the molecules in the digest chromatographed with the hydrodynamic size of undigested proteoglycans, suggesting that at most 7% of the proteoglycans lack chondroitin sulfate glycosaminoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The extractability of squid skin proteoglycans with solutions of varying concentrations of guanidine-HCl, urea and SDS was studied; 4 M guanidine-HCl, being the best extractant, removed 95% of the tissue proteoglycans (glycosaminoglycan uronic acid). The proteoglycans in the 4 M guanidine-HCl extract were fractionated by repeated ion exchange and gel chromatography on Sepharose CL-4B to give three main populations, all being present in about equal proportions. Two populations (Kd 0.34 and 0.56) contained only chondroitin (proteochondroitin) and the other (Kd 0.50) only oversulphated chondroitin sulphate (oversulphated proteochondroitin sulphate). Two minor populations, one containing chondroitin and chondroitin sulphate and the other chondroitin sulphate and oversulphated chondroitin sulphate, were also identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号