首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The aim of this study was to determine whether changes in the circulating thyroid hormone (TH) and brain synaptosomal TH content affected the relative levels of mRNA encoding different thyroid hormone receptor (TR) isoforms in adult rat brain. Northern analysis of polyA+RNA from cerebral cortex, hippocampus and cerebellum of control and hypothyroid adult rats was performed in order to determine the relative expression of all TR isoforms. Circulating and synaptosomal TH concentrations were determined by radioimmunoassay. Region-specific quantitative differences in the expression pattern of all TR isoforms in euthyroid animals and hypothyroid animals were recorded. In hypothyroidism, the levels of TRα2 mRNA (non-T3-binding isoform) were decreased in all brain regions examined. In contrast the relative expression of TRα1 was increased in cerebral cortex and hippocampus, whereas in cerebellum remained unaffected. The TRβ1 relative expression in cerebral cortex and hippocampus of hypothyroid animals was not affected, whereas this TR isoform was not detectable in cerebellum. The TR isoform mRNA levels returned to control values following T4 intraperitoneal administration to the hypothyroid rats. The obtained results show that in vivo depletion of TH regulates TR gene expression in adult rat brain in a region-specific manner. (Mol Cell Biochem 278: 93–100, 2005)  相似文献   

3.
Neurons with similar functions including neuronal connectivity and gene expression form discrete condensed structures within the vertebrate brain. This is exemplified within the circuitry formed by the cortical layers and the neuronal nuclei. It is well known that the Reelin protein is required for development of these neuronal structures in rodents and human, but the function of Reelin remains controversial. In this report, we used “layer‐specific markers” of the cerebral cortex to carry out detailed observations of spatial distribution of the neuronal subpopulations in the brain of the Reelin deficient mouse, reeler. We observed a spatially dispersed expression of the markers in the reeler cerebral cortex. These markers are expressed also in other laminated and non‐laminated structures of brain, in which we observed similar abnormal gene expression. Our observations suggest that neurons within the brain structures (such as the layers and the nuclei), which normally exhibit condensed distribution of marker expressions, loosen their segregation or scatter by a lack of Reelin.  相似文献   

4.
Metabotrophic glutamate receptors (mGluRs) modulate cellular activities involved in the processes of differentiation and degeneration. In this study, we have analysed the expression pattern of group-I metabotropic glutamate receptor (mGlu-5) in cerebral cortex, corpus striatum, brainstem and hippocampus of streptozotocin induced and insulin treated diabetic rats (D+I) as a function of age. Also, the functional role of glutamate receptors in intra cellular calcium release from the pancreatic islets was studied in vitro. The gene expression studies showed that mGlu-5 mRNA in the cerebral cortex increased siginficantly in 7 weeks old diabetic rats whereas decreased expression was observed in brainstem, corpus striatum and hippocampus when compared to control. 90 weeks old diabetic rats showed decreased expression in cerebral cortex, corpus striatum and hippocampus whereas in brainstem the expression increased significantly compared to their respective controls. In 7 weeks old D+I group, mGlu-5 mRNA expression was significantly decreased in cerebral cortex and corpus striatum whereas the expression increased significantly in brainstem and hippocampus. 90 weeks old D+I group showed an increased expression in cerebral cortex, while it was decreased significantly in corpus striatum, brainstem and hippocampus compared to their respective controls. In vitro studies showed that glutamate at lower concentration (10-7 M) stimulated calcium release from the pancreatic islets. Our results suggest that mGlu-5 receptors have differential expression in brain regions of diabetes and D+I groups as a function of age. This will have clinical significance in management of degeneration in brain function and memory enhancement through glutamate receptors. Also, the regulatory role of glutamate receptors in calcium release has immense therapeutic application in insulin secretion and function.  相似文献   

5.
Cerebral cavernous malformations are vascular defects of the central nervous system consisting of clusters of dilated vessels that are subject to frequent hemorrhaging. The genes mutated in three forms of autosomal dominant cerebral cavernous malformations have been cloned, but it remains unclear which cell type is ultimately responsible for the lesion. In this article we describe mice with a gene trap insertion in the Ccm2 gene. Consistent with the human phenotype, heterozygous animals develop cerebral vascular malformations, although penetrance is low. β-galactosidase activity in heterozygous brain and in situ hybridization in wild-type brain revealed Ccm2 expression in neurons and choroid plexus but not in vascular endothelium of small vessels in the brain. The expression pattern of Ccm2 is similar to that of the Ccm1 gene and its interacting protein ICAP1 (Itgb1bp1). These data suggest that cerebral cavernous malformations arise as a result of defects in the neural parenchyma surrounding the vascular endothelial cells in the brain. Nicholas W. Plummer, Teresa L. Squire and Sudha Srinivasan contributed equally to this work.  相似文献   

6.
Abstract: Previous research has shown that chronic ethanol consumption dramatically alters GABAA receptor α1 and α4 subunit gene expression in the cerebral cortex and GABAA receptor α1 and α6 subunit gene expression in the cerebellum. However, it is not yet known if chronic ethanol consumption produces similar alterations in GABAA receptor gene expression in other brain regions. One brain region of interest is the hippocampus because it has recently been shown that a subset of GABAA receptors in the hippocampus is responsive to pharmacologically relevant concentrations of ethanol. Therefore, we directly compared the effects of chronic ethanol consumption on GABAA receptor subunit gene expression in the hippocampus and cerebral cortex. Furthermore, we investigated whether the duration of ethanol consumption (14 or 40 days) would influence regulation of GABAA receptor gene expression in these two brain regions. Chronic ethanol consumption produced a significant increase in the level of GABAA receptor α4 subunit peptide in the hippocampus following 40 days but not 14 days. The relative expression of hippocampal GABAA receptor α1, α2, α3, α2/3, or γ2 was not altered by either period of chronic ethanol exposure. In marked contrast, chronic ethanol consumption for 40 days significantly increased the relative expression of cerebral cortical GABAA receptor α4 subunits and significantly decreased the relative expression of cerebral cortical GABAA receptor α1 subunits. This finding is consistent with previous results following 14 days of chronic ethanol consumption. Hence, chronic ethanol consumption alters GABAA receptor gene expression in the hippocampus but in a different manner from that in either the cerebral cortex or the cerebellum. Furthermore, these alterations are dependent on the duration of ethanol exposure.  相似文献   

7.
Periostin (POSTN or osteoblast specific factor) is an extracellular matrix protein originally identified as a protein highly expressed in osteoblasts. Recently, periostin has been reported to function in axon regeneration and neuroprotection. In the present study, we focused on periostin function in cortical evolution. We performed a comparative gene expression analysis of periostin between rodents (mice) and primates (marmosets and macaques). Periostin was expressed at higher levels in the primate cerebral cortex compared to the mouse cerebral cortex. Furthermore, we performed overexpression experiments of periostin in vivo and in vitro. Periostin exhibited neurite outgrowth activity in cortical neurons. These results suggested the possibility that prolonged and increased periostin expression in the primate cerebral cortex enhances the cortical plasticity of the mammalian cerebral cortex.  相似文献   

8.
1. c-fos mRNA expression and Fos protein expression were investigated by in situ hybridization and immunohistochemistry after 30 min of forced restraint stress or pentylenetetrazol (PTZ; 64 mg/kg, i.p.)-induced seizures.2. Forced restraint stress and PTZ-induced seizures generated c-fos mRNA expression of distinct intensities, but in similar brain regions, including the hippocampus, the amygdala, the piriform cortex, the paraventricular hypothalamic nucleus, the habenula, and parts of the cerebral cortex.3. The distribution of Fos-like immunoreactivity induced by stress or seizures only partially overlap. No Fos-like expression was found in the hippocampus or the habenula after restraint stress. Nevertheless, both areas presented Fos-like expression after PTZ-induced seizures.4. Our results support the suggestion that immediate early gene expression in vivo may exhibit both region- and stimulus-specific expression.  相似文献   

9.
Here, we studied the effect of the mitochondria-targeted antioxidant SkQ1 (plastoquinone cationic derivative) on the CASP3 gene expression and caspase-3 activity in rat cerebral cortex and brain mitochondria under normal conditions and in oxidative stress induced by hyperbaric oxygenation (HBO). Under physiological conditions, SkQ1 administration (50 nmol/kg, 5 days) did not affect the CASP3 gene expression and caspase-3-like activity in the cortical cells, as well as caspase-3-like activity in brain mitochondria, but caused a moderate decrease in the content of primary products of lipid peroxidation (LPO) and an increase in the reduced glutathione (GSH) level. HBO-induced oxidative stress (0.5 MPa, 90 min) was accompanied by significant upregulation of CASP3 mRNA and caspase-3-like activity in the cerebral cortex, activation of the mitochondrial enzyme with simultaneous decrease in the GSH content, increase in the glutathione reductase activity, and stimulation of LPO. Administration of SkQ1 before the HBO session maintained the basal levels of the CASP3 gene expression and enzyme activity in the cerebral cortex cells and led to the normalization of caspase-3-like activity and redox parameters in brain mitochondria. We hypothesize that SkQ1 protects brain cells from the HBO-induced oxidative stress due to its antioxidant activity and stimulation of antiapoptotic mechanisms.  相似文献   

10.
Recent human and animal studies indicate that oxidative and nitrosative stress may play a role in the aetiology and pathogenesis of depression. This study investigates the effect of chronic administration of the serotonin-norepinephrine reuptake inhibitor, venlafaxine, on the expression and methylation status of SOD1, SOD2, GPx1, GPx4, CAT, NOS1 and NOS2 in the brain and blood of rats exposed to a chronic mild stress (CMS) model of depression. Separate groups of animals were exposed to CMS for 2 or 7 weeks; the second group received saline or venlafaxine (10 mg/kg/d, IP) for 5 weeks. After completion of both stress conditions and drug administration, the mRNA and protein expression of selected genes and the methylation status of their promoters were measured in peripheral mononuclear blood cells (PBMCs) and in brain structures (hippocampus, amygdala, hypothalamus, midbrain, cortex, basal ganglia) with the use of TaqMan Gene Expression Assay, Western blot and methylation-sensitive high-resolution melting techniques. CMS caused a decrease in sucrose consumption, and this effect was normalized by fluoxetine. In PBMCs, SOD1, SOD2 and NOS2 mRNA expression changed only after venlafaxine administration. In brain, CAT, Gpx1, Gpx4 and NOS1 gene expression changed following CMS or venlafaxine exposure, most prominently in the hippocampus, midbrain and basal ganglia. CMS increased the methylation of the Gpx1 promoter in PBMCs, the second Gpx4 promoter in midbrain and basal ganglia, and SOD1 and SOD2 in hippocampus. The CMS animals treated with venlafaxine displayed a significantly higher CAT level in midbrain and cerebral cortex. CMS caused an elevation of Gpx4 in the hippocampus, which was lowered in cerebral cortex by venlafaxine. The results indicate that CMS and venlafaxine administration affect the methylation of promoters of genes involved in oxidative and nitrosative stress. They also indicate that peripheral and central tissue differ in their response to stress or antidepressant treatments. It is possible that that apart from DNA methylation, a crucial role of expression level of genes may be played by other forms of epigenetic regulation, such as histone modification or microRNA interference. These findings provide strong evidence for thesis that analysis of the level of mRNA and protein expression as well as the status of promoter methylation can help in understanding the pathomechanisms of mental diseases, including depression, and the mechanisms of action of drugs effective in their therapy.  相似文献   

11.
The olfactory bulb (OB) of rodents has been suggested to possess a self-sustaining circadian oscillator which functions independent from the master circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus. However, neither histology nor physiology of this extra-SCN clock is studied yet. In the present study, we examined circadian variation of major clock gene expressions in the OB and responsiveness to single photic stimuli. Here we show significant circadian variation in the expression of clock genes, Per1, Per2 and Bmal1 in the OB. Per1 and PER2 were mainly expressed in the mitral cell and granular cell layers of the OB. Light responsiveness of Per1 and Per2 expression was different in the OB from that in the parietal cortex. Both Per1 and Per2 are expressed in the OB only by l000 lux light pulse, whereas 100 lux light was enough to induce Per1 mRNA in the parietal cortex. Interestingly, even 1000 lux light failed to induce Per2 mRNA in the parietal cortex. These clock gene-specific and brain region-dependent responses to lights in the OB and parietal cortex suggest that single light stimulus induces various physiological functions in different brain areas via specific clock gene.  相似文献   

12.
The gene encoding the neural cell adhesion molecule Contactin-6 (Cntn6 a.k.a. NB-3) has been implicated as an autism risk gene, suggesting that its mutation is deleterious to brain development. Due to its GPI-anchor at Cntn6 may exert cell adhesion/receptor functions in complex with other membrane proteins, or serve as a ligand. We aimed to uncover novel phenotypes related to Cntn6 functions during development in the cerebral cortex of adult Cntn6?/? mice. We first determined Cntn6 protein and mRNA expression in the cortex, thalamic nuclei and the hippocampus at P14, which decreased specifically in the cortex at adult stages. Neuroanatomical analysis demonstrated a significant decrease of Cux1+ projection neurons in layers II-IV and an increase of FoxP2+ projection neurons in layer VI in the visual cortex of adult Cntn6?/? mice compared to wild-type controls. Furthermore, the number of parvalbumin+ (PV) interneurons was decreased in Cntn6?/? mice, while the amount of NPY+ interneurons remained unchanged. In the hippocampus the delineation and outgrowth of mossy fibers remained largely unchanged, except for the observation of a larger suprapyramidal bundle. The observed abnormalities in the cerebral cortex and hippocampus of Cntn6?/? mice suggests that Cntn6 serves developmental functions involving cell survival, migration and fasciculation. Furthermore, these data suggest that Cntn6 engages in both trans- and cis-interactions and may be involved in larger protein interaction networks.  相似文献   

13.
The present study was to investigate the role of central 5-HT and 5-HT1A receptor binding and gene expression in a rat model of pancreatic regeneration using 60% pancreatectomy. The pancreatic regeneration was evaluated by 5-HT content and 5-HT1A receptor gene expression in the cerebral cortex (CC) and brain stem (BS) of sham operated, 72 h and 7 days pancreatectomised rats. 5-HT content significantly increased in the CC (P < 0.01) and BS (P < 0.05) of 72 h pancreatectomised rats. Sympathetic activity was decreased as indicated by the significantly decreased norepinephrine (NE) and epinephrine (EPI) level (P < 0.001 and P < 0.05) in the plasma of 72 h pancreatectomised rats. 5-HT1A receptor density and affinity was decreased in the CC (P < 0.01) and BS (P < 0.01). These changes correlated with a diminished 5-HT1Areceptor mRNA expression in the brain regions studied. Our results suggest that the brain 5-HT through 5-HT1A receptor has a functional role in the pancreatic regeneration through the sympathetic regulation.  相似文献   

14.
15.
UbcH7 is an ubiquitin‐conjugating enzyme that interacts with parkin, an E3 ligase. The UbcH7–parkin complex promotes the ubiquitination and degradation of several proteins via the 26S proteasome. Cellular accumulation of the UbcH7–parkin targets alpha‐synuclein and synphilin‐1 has been associated with Parkinson disease. In mouse liver, 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin, an aryl hydrocarbon receptor ligand, induces UbcH7 expression. Therefore, the aim of the present study was to determine whether 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin induces Ubch7 mRNA and UbcH7 protein expression in the mouse brain, to characterize the molecular mechanism, and the effect on synphilin‐1 half‐life. We found that 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin promotes the aryl hydrocarbon receptor binding to Ubch7 gene promoter as well as its transactivation, resulting in an induction of UbcH7 levels in the olfactory bulb, ventral midbrain, hippocampus, striatum, cerebral cortex, brain stem, and medulla oblongata. In parallel, 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin promoted synphilin‐1 degradation in an aryl hydrocarbon receptor‐dependent way.  相似文献   

16.
Bioassay screening of Bacillus thuringiensis culture supernatants identified strain EG2158 as having larvicidal activity against Colorado potato beetle (Leptinotarsa decemlineata) larvae. Ion-exchange fractionation of the EG2158 culture supernatant resulted in the identification of a protein designated Sip1A (secreted insecticidal protein) of approximately 38 kDa having activity against Colorado potato beetle (CPB). An oligonucleotide probe based on the N-terminal sequence of the purified Sip1A protein was used to isolate the sip1A gene. The sequence of the Sip1A protein, as deduced from the sequence of the cloned sip1A gene, contained 367 residues (41,492 Da). Recombinant B. thuringiensis and Escherichia coli harboring cloned sip1A produced Sip1A protein which had insecticidal activity against larvae of CPB, southern corn rootworm (Diabrotica undecimpunctata howardi), and western corn rootworm (Diabrotica virgifera virgifera).  相似文献   

17.
Formation of our highly structured human brain involves a cascade of events, including differentiation, fate determination, and migration of neural precursors. In humans, unlike many other organisms, the cerebral cortex is the largest component of the brain. As in other mammals, the human cerebral cortex is located on the surface of the telencephalon and generally consists of six layers that are formed in an orderly fashion. During neuronal development, newly born neurons, moving in a radial direction, must migrate through previously formed layers to reach their proper cortical position. This is one of several neuronal migration routes that takes place in the developing brain; other modes of migration are tangential. Abnormal neuronal migration may in turn result in abnormal development of the cortical layers and deleterious consequences, such as Lissencephaly. Lissencephaly, a severe brain malformation, can be caused by mutations in one of two known genes:LIS1 anddoublecortin (DCX). Recent in vitro and in vivo studies, report on possible functions for these gene products.  相似文献   

18.
19.
Vascular endothelial growth factor (VEGF-A) is hypoxia-inducible signal glycoprotein. VEGF-A induces vascular endothelial cell proliferation, which leads to the reconstitution of the vascular network in brain regions damaged by ischemia. However, this protein is also involved in the processes of inflammation and edema in early stages of ischemia. The synthetic peptide Semax has neuroprotective and anti-inflammatory properties and is actively used in the treatment of cerebral ischemia. We have previously shown that Semax reduces vascular injury and activates the mRNA synthesis of neurotrophins and their receptors during global cerebral ischemia in rats. In this work, we studied the effect of Semax and its C-terminal Pro-Gly-Pro tripeptide on Vegfa mRNA expression in different regions of the rat brain after 0.5, 1, 2, 4, 8, 12 and 24 h, which is the irreversible occlusion of the common carotid arteries. It was shown that ischemia increases the levels of Vegfa mRNA in rat brains (4 h after occlusion in cerebellum, cerebral cortex, and hippocampus; 8 h after occlusion in the cortex and hippocampus; and 24 h after occlusion in the cortex). Treatment with Semax reduces the levels of Vegfa mRNA in the frontal cortex (4, 8 and 12 h after occlusion) and the hippocampus (2 and 4 h after occlusion). The effect of PGP on the Vegfa gene expression was almost negligible. It was shown that Semax prevents the activating effect of hypoxia on the expression of the Vegfa gene at early stages of global cerebral ischemia. In turn, an increase in the level of Vegfa mRNA in the hippocampus 24 h after occlusion and Semax administration apparently reflects the neuroprotective properties of the drug.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号