首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DCs) and natural killer (NK) cells have central roles in antiviral immunity by shaping the quality of the adaptive immune response to viruses and by mediating direct antiviral activity. HIV-1 infection is characterized by a severe dysregulation of the antiviral immune response that starts during early infection. This Review describes recent insights into how HIV-1 infection affects DC and NK cell function, and the roles of these innate immune cells in HIV-1 pathogenesis. The importance of understanding DC and NK cell crosstalk during HIV infection for the development of effective antiviral strategies is also discussed.  相似文献   

2.
Dendritic cells (DCs) were recently found to be innate immunity effectors against tumoral cells and viruses. (i) In response to most viruses, including HIV, plasmacytoid DCs are responsible for most of the type I IFN secretion, which is strongly anti-viral and induces TH1 type responses. Myeloid DCs secrete IL-12, which is also important for TH1-type and cytotoxic responses. In HIV patient blood, both DC population numbers decrease as early as the primary stage. Plasmacytoid DC numbers correlate with type I IFN secretion, which is a prognosis predictor, particularly under treatment. IL-12 secretion is also defective. Immunotherapies to replace the defective cytokines or to restore a potentially defective DC-T lymphocyte feed-back might help patients restore their immune responses under antiviral therapy. (ii) After measles and other viral infections, or incubation with dsRNA, DCs become cytotoxic and consequently exhibit natural killer function, through upregulation of type I IFN secretion which enhances TRAIL expression. In HIV infection, this mechanism was not demonstrated yet, but it might a) be responsible for the massive apoptosis of uninfected lymphocytes, and b) increase specific immunity through cross-presentation of antigens from infected cells killed by DCs. (iii) DCs direct expansion and effector functions of NK cells in the absence of adaptive-type cytokines and modulate NKT cell IFN-gamma production. Reciprocally, NK activation triggers DC maturation. HIV-1 Tat inhibits NK cell cytotoxicity directly and probably through inhibition of IL-12 secretion by DC. Therefore, understanding the functions of DCs in innate immune responses and in pathogenesis will help obtain better HIV replication control.  相似文献   

3.
Early stages of Human Immunodeficiency Virus-1 (HIV-1) infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK) cells and dendritic cells (DCs). Immature DCs (iDCs) capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them (“editing process”) at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL)-Death Receptor 4 (DR4) pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DCHIV become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DCHIV. The escape of DCHIV from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP) and the cellular inhibitor of apoptosis 2 (c-IAP2), induced by NK-DCHIV cognate interaction. High-mobility group box 1 (HMGB1), an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DCHIV. Finally, we demonstrate that restoration of DCHIV susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific siRNA, or by inhibiting HMGB1 with blocking antibodies or glycyrrhizin, arguing for a key role of HMGB1 in TRAIL resistance and DCHIV survival. These findings provide evidence for a new strategy developed by HIV to escape immune attack, they challenge the question of the involvement of HMGB1 in the establishment of viral reservoirs in DCs, and they identify potential therapeutic targets to eliminate infected DCs.  相似文献   

4.
Wang JH  Janas AM  Olson WJ  Wu L 《Journal of virology》2007,81(17):8933-8943
Dendritic cells (DCs) potently stimulate the transmission of human immunodeficiency virus type 1 (HIV-1) to CD4(+) T cells. Immature DCs (iDCs) located in submucosal tissues can capture HIV-1 and migrate to lymphoid tissues, where they become mature DCs (mDCs) for effective antigen presentation. DC maturation promotes HIV-1 transmission; however, the underlying mechanisms remain unclear. Here we have compared monocyte-derived iDCs and mDCs for their efficiencies and mechanisms of HIV-1 transmission. We have found that mDCs significantly facilitate HIV-1 endocytosis and efficiently concentrate HIV-1 at virological synapses, which contributes to mDC-enhanced viral transmission, at least in part. mDCs were more efficient than iDCs in transferring HIV-1 to various types of target cells independently of C-type lectins, which partially accounted for iDC-mediated HIV-1 transmission. Efficient HIV-1 trans-infection mediated by iDCs and mDCs required contact between DCs and target cells. Moreover, rapid HIV-1 degradation occurred in both iDCs and mDCs, which correlated with the lack of HIV-1 retention-mediated long-term viral transmission. Our results provide new insights into the mechanisms underlying DC-mediated HIV-1 transmission, suggesting that HIV-1 exploits mDCs to facilitate its dissemination within lymphoid tissues.  相似文献   

5.
Saïdi H  Melki MT  Gougeon ML 《PloS one》2008,3(10):e3601

Background

HIV-1 has evolved ways to exploit DCs, thereby facilitating viral dissemination and allowing evasion of antiviral immunity. Recently, the fate of DCs has been found to be extremely dependent on the interaction with autologous NK cells, but the mechanisms by which NK-DC interaction controls viral infections remain unclear. Here, we investigate the impact of NK-DC cross-talk on maturation and functions of HIV-infected immature DCs.

Methodology/Principal Findings

Immature DCs were derived from primary monocytes, cultured in the presence of IL-4 and GM-CSF. In some experiments, DCs were infected with R5-HIV-1BaL or X4-HIV-1NDK, and viral replication, proviral HIV-DNA and the frequency of infected DCs were measured. Autologous NK cells were sorted and either kept unstimulated in the presence of suboptimal concentration of IL-2, or activated by a combination of PHA and IL-2. The impact of 24 h NK-DC cross-talk on the fate of HIV-1-infected DCs was analyzed. We report that activated NK cells were required for the induction of maturation of DCs, whether uninfected or HIV-1-infected, and this process involved HMGB1. However, the cross-talk between HIV-1-infected DCs and activated NK cells was functionally defective, as demonstrated by the strong impairment of DCs to induce Th1 polarization of naïve CD4 T cells. This was associated with the defective production of IL-12 and IL-18 by infected DCs. Moreover, the crosstalk between activated NK cells and HIV-infected DCs resulted in a dramatic increase in viral replication and proviral DNA expression in DCs. HMGB1, produced both by NK cells and DCs, was found to play a pivotal role in this process, and inhibition of HMGB1 activity by glycyrrhizin, known to bind specifically to HMGB1, or blocking anti-HMGB1 antibodies, abrogated NK-dependent HIV-1 replication in DCs.

Conclusion

These observations provide evidence for the crucial role of NK-DC cross-talk in promoting viral dissemination, and challenge the question of the in vivo involvement of HMGB1 in the triggering of HIV-1 replication and replenishment of viral reservoirs in AIDS.  相似文献   

6.
During HIV-1 infection, dendritic cells (DC) facilitate dissemination of HIV-1 while trying to trigger adaptive antiviral immune responses. We examined whether increased HIV-1 capture in DC matured with LPS results in more efficient Ag presentation to HIV-1-specific CD4(+) and CD8(+) T cells. To block the DC-mediated trans-infection of HIV-1 and maximize Ag loading, we also evaluated a noninfectious integrase-deficient HIV-1 isolate, HIV(NL4-3ΔIN). We showed that higher viral capture of DC did not guarantee better Ag presentation or T cell activation. Greater HIV(NL4-3) uptake by fully LPS-matured DC resulted in higher viral transmission to target cells but poorer stimulation of HIV-1-specific CD4(+) and CD8(+) T cells. Conversely, maturation of DC with LPS during, but not before, viral loading enhanced both HLA-I and HLA-II HIV-1-derived Ag presentation. In contrast, DC maturation with the clinical-grade mixture consisting of IL-1β, TNF-α, IL-6, and PGE(2) during viral uptake only stimulated HIV-1-specific CD8(+) T cells. Hence, DC maturation state, activation stimulus, and time lag between DC maturation and Ag loading impact HIV-1 capture and virus Ag presentation. Our results demonstrate a dissociation between the capacity to capture HIV-1 and to present viral Ags. Integrase-deficient HIV(NL4-3ΔIN) was also efficiently captured and presented by DC through the HLA-I and HLA-II pathways but in the absence of viral dissemination. HIV(NL4-3ΔIN) seems to be an attractive candidate to be explored. These results provide new insights into DC biology and have implications in the optimization of DC-based immunotherapy against HIV-1 infection.  相似文献   

7.
Dendritic cells (DCs) are crucial for the generation and the regulation of adaptive immunity. Because DCs have a pivotal role in marshalling immune responses, HIV has evolved ways to exploit DCs, thereby facilitating viral dissemination and allowing evasion of antiviral immunity. Defining the mechanisms that underlie cell-cell transmission of HIV and understanding the role of DCs in this process should help us in the fight against HIV infection. This Review highlights the latest advances in our understanding of the interactions between DCs and HIV, focusing on the mechanisms of DC-mediated viral dissemination.  相似文献   

8.
Dendritic cells (DCs) regulate both innate and adaptive immune responses. In this article, we exploit the unique avascularity of the cornea to examine a role for local or very early infiltrating DCs in regulating the migration of blood-derived innate immune cells toward HSV-1 lesions. A single systemic diphtheria toxin treatment 2 d before HSV-1 corneal infection transiently depleted CD11c(+) DCs from both the cornea and lymphoid organs of CD11c-DTR bone marrow chimeric mice for up to 24 h postinfection. Transient DC depletion significantly delayed HSV-1 clearance from the cornea through 6 d postinfection. No further compromise of viral clearance was observed when DCs were continuously depleted throughout the first week of infection. DC depletion did not influence extravasation of NK cells, inflammatory monocytes, or neutrophils into the peripheral cornea, but it did significantly reduce migration of NK cells and inflammatory monocytes, but not neutrophils, toward the HSV-1 lesion in the central cornea. Depletion of NK cells resulted in similar loss of viral control to transient DC ablation. Our findings demonstrate that resident corneal DCs and/or those that infiltrate the cornea during the first 24 h after HSV-1 infection contribute to the migration of NK cells and inflammatory monocytes into the central cornea, and are consistent with a role for NK cells and possibly inflammatory monocytes, but not polymorphonuclear neutrophils, in clearing HSV-1 from the infected cornea.  相似文献   

9.
From the site of transmission at mucosal surfaces, HIV is thought to be transported by DCs to lymphoid tissues. To initiate migration, HIV needs to activate DCs. This activation, reflected by intra- and extracellular changes in cell phenotype, is investigated in the present study. In two-thirds of the donors, R5- and X4-tropic HIV-1 strains induced partial up-regulation of DC activation markers such as CD83 and CD86. In addition, CCR7 expression was increased. HIV-1 initiated a transient phosphorylation of p44/p42 ERK1/2 in iDCs, whereas p38 MAPK was activated in both iDCs and mDCs. Up-regulation of CD83 and CD86 on DCs was blocked when cells were incubated with specific p38 MAPK inhibitors before HIV-1-addition. CCR7 expression induced by HIV-1 was sufficient to initiate migration of DCs in the presence of secondary lymphoid tissue chemokine (CCL21) and MIP-3beta (CCL19). Preincubation of DCs with a p38 MAPK inhibitor blocked CCR7-dependent DC migration. Migrating DCs were able to induce infection of autologous unstimulated PBLs in the Transwell system. These data indicate that HIV-1 triggers a cell-specific signaling machinery, thereby manipulating DCs to migrate along a chemokine gradient, which results in productive infection of nonstimulated CD4(+) cells.  相似文献   

10.
Natural killer (NK) cells and dendritic cells (DCs) are two types of specialized cell of the innate immune system, the reciprocal interaction of which results in a potent, activating cross-talk. For example, DCs can prime resting NK cells, which, in turn, after activation, might induce DC maturation. However, NK cells negatively regulate the function of DCs also by killing immature DCs in peripheral tissues. Moreover, a subset of NK cells, after migration to secondary lymphoid tissues, might have a role in the editing of mature DCs based on the selective killing of mature DCs that do not express optimal surface densities of MHC class I molecules. So, cognate interactions between NK cells and DCs provide a coordinated mechanism that is involved not only in the regulation of innate immunity, but also in the promotion of appropriate downstream adaptive responses for defence against pathogens.  相似文献   

11.
Dendritic cells (DCs) are vital in the defense against pathogens. However, it is becoming increasingly clear that some pathogens subvert DC functions to escape immune surveillance. For example, HIV-1 targets the DC-specific C-type lectin DC-SIGN (DC-specific intercellular-adhesion-molecule-3-grabbing nonintegrin) to hijack DCs for viral dissemination. Binding to DC-SIGN protects HIV-1 from antigen processing and facilitates its transport to lymphoid tissues, where DC-SIGN promotes HIV-1 infection of T cells. Recent studies demonstrate that DC-SIGN is a universal pathogen receptor that also recognizes Ebola, cytomegalovirus and mycobacteria. Mycobacterium tuberculosis targets DC-SIGN by a mechanism that is distinct from that of HIV-1, leading to inhibition of the immunostimulatory function of DC and, hence, promotion of pathogen survival. A better understanding of DC-SIGN-pathogen interactions and their effects on DC function should help to combat infections.  相似文献   

12.
A vaccine to protect human immunodeficiency virus (HIV)-exposed infants is an important goal in the global fight against the HIV pandemic. Two major challenges in pediatric HIV vaccine design are the competence of the neonatal/infant immune system in comparison to the adult immune system and the frequent exposure to HIV via breast-feeding. Based on the hypothesis that an effective vaccine needs to elicit antiviral immune responses directly at the site of virus entry, the pattern of virus dissemination in relation to host immune responses was determined in mucosal and lymphoid tissues of infant macaques at 1 week after multiple oral exposures to simian immunodeficiency virus (SIV). The results show that SIV disseminates systemically by 1 week. Infant macaques can respond rapidly to virus challenge and mount strong innate immune responses. However, despite systemic infection, these responses are most pronounced in tissues close to the viral entry site, with the tonsil being the primary site of virus replication and induction of immune responses. Thus, distinct anatomic compartments are characterized by unique cytokine gene expression patterns. Importantly, the early response at mucosal entry sites is dominated by the induction of proinflammatory cytokines, while cytokines with direct antiviral activity, alpha/beta interferons, are only minimally induced. In contrast, both antiviral and proinflammatory cytokines are induced in lymphoid tissues. Thus, although infant macaques can respond quickly to oral viral challenge, the locally elicited immune responses at mucosal entry sites are likely to favor immune activation and thereby virus replication and are insufficient to limit virus replication and dissemination.  相似文献   

13.
Cells of the innate immune system act in synergy to provide a first line of defense against pathogens. Here we describe that dendritic cells (DCs), matured with viral products or mimics thereof, including Epstein-Barr virus (EBV), activated natural killer (NK) cells more efficiently than other mature DC preparations. CD56(bright)CD16(-) NK cells, which are enriched in human secondary lymphoid tissues, responded primarily to this DC activation. DCs elicited 50-fold stronger interferon-gamma (IFN-gamma) secretion from tonsilar NK cells than from peripheral blood NK cells, reaching levels that inhibited B cell transformation by EBV. In fact, 100- to 1,000-fold less tonsilar than peripheral blood NK cells were required to achieve the same protection in vitro, indicating that innate immune control of EBV by NK cells is most efficient at this primary site of EBV infection. The high IFN-gamma concentrations, produced by tonsilar NK cells, delayed latent EBV antigen expression, resulting in decreased B cell proliferation during the first week after EBV infection in vitro. These results suggest that NK cell activation by DCs can limit primary EBV infection in tonsils until adaptive immunity establishes immune control of this persistent and oncogenic human pathogen.  相似文献   

14.

Background

Dendritic cells (DCs) are among the first cells to encounter HIV-1 and play important roles in viral transmission and pathogenesis. Immature DCs allow productive HIV-1 replication and long-term viral dissemination. The pro-inflammatory factor lipopolysaccharide (LPS) induces DC maturation and enhances the efficiency of DC-mediated HIV-1 transmission. Type I interferon (IFN) partially inhibits HIV-1 replication and cell-cell transmission in CD4+ T cells and macrophages. Tetherin is a type I IFN-inducible restriction factor that blocks HIV-1 release and modulates CD4+ T cell-mediated cell-to-cell transmission of HIV-1. However, the role of type I IFN and tetherin in HIV-1 infection of DCs and DC-mediated viral transmission remains unknown.

Results

We demonstrated that IFN-alpha (IFNα)-induced mature DCs restricted HIV-1 replication and trans-infection of CD4+ T cells. Tetherin expression in monocyte-derived immature DCs was undetectable or very low. High levels of tetherin were transiently expressed in LPS- and IFNα-induced mature DCs, while HIV-1 localized into distinct patches in these DCs. Knockdown of induced tetherin in LPS- or IFNα-matured DCs modestly enhanced HIV-1 transmission to CD4+ T cells, but had no significant effect on wild-type HIV-1 replication in mature DCs. Intriguingly, we found that HIV-1 replication in immature DCs induced significant tetherin expression in a Nef-dependent manner.

Conclusions

The restriction of HIV-1 replication and transmission in IFNα-induced mature DCs indicates a potent anti-HIV-1 response; however, high levels of tetherin induced in mature DCs cannot significantly restrict wild-type HIV-1 release and DC-mediated HIV-1 transmission. Nef-dependent tetherin induction in HIV-1-infected immature DCs suggests an innate immune response of DCs to HIV-1 infection.  相似文献   

15.
Dendritic cells (DC) capture microorganisms that enter peripheral mucosal tissues and then migrate to secondary lymphoid organs, where they present these in antigenic form to resting T cells and thus initiate adaptive immune responses. Here, we describe the properties of a DC-specific C-type lectin, DC-SIGN, that is highly expressed on DC present in mucosal tissues and binds to the HIV-1 envelope glycoprotein gp120. DC-SIGN does not function as a receptor for viral entry into DC but instead promotes efficient infection in trans of cells that express CD4 and chemokine receptors. We propose that DC-SIGN efficiently captures HIV-1 in the periphery and facilitates its transport to secondary lymphoid organs rich in T cells, to enhance infection in trans of these target cells.  相似文献   

16.
Cells of the innate immune system act in synergy to provide a first line of defense against pathogens. Here we describe that dendritic cells (DCs), matured with viral products or mimics thereof, including Epstein-Barr virus (EBV), activated natural killer (NK) cells more efficiently than other mature DC preparations. CD56brightCD16 NK cells, which are enriched in human secondary lymphoid tissues, responded primarily to this DC activation. DCs elicited 50-fold stronger interferon-γ (IFN-γ) secretion from tonsilar NK cells than from peripheral blood NK cells, reaching levels that inhibited B cell transformation by EBV. In fact, 100- to 1,000-fold less tonsilar than peripheral blood NK cells were required to achieve the same protection in vitro, indicating that innate immune control of EBV by NK cells is most efficient at this primary site of EBV infection. The high IFN-γ concentrations, produced by tonsilar NK cells, delayed latent EBV antigen expression, resulting in decreased B cell proliferation during the first week after EBV infection in vitro. These results suggest that NK cell activation by DCs can limit primary EBV infection in tonsils until adaptive immunity establishes immune control of this persistent and oncogenic human pathogen.  相似文献   

17.
Dendritic cells (DCs) are essential in order to combat invading viruses and trigger antiviral responses. Paradoxically, in the case of HIV-1, DCs might contribute to viral pathogenesis through trans-infection, a mechanism that promotes viral capture and transmission to target cells, especially after DC maturation. In this review, we highlight recent evidence identifying sialyllactose-containing gangliosides in the viral membrane and the cellular lectin Siglec-1 as critical determinants for HIV-1 capture and storage by mature DCs and for DC-mediated trans-infection of T cells. In contrast, DC-SIGN, long considered to be the main receptor for DC capture of HIV-1, plays a minor role in mature DC-mediated HIV-1 capture and trans-infection.  相似文献   

18.
The importance of innate immune cells in HIV-1 pathogenesis and protection has been highlighted by the role of natural killer (NK) cells in the containment of viral replication. Use of peripheral blood mononuclear cells (PBMC) in immunologic studies provides both HIV-1 target cells (ie. CD4+ T cells), as well as anti-HIV-1 effector cells, such as NK cells. In this study, NK and other immune cell populations were analyzed in HIV-negative donor PBMC for an impact on the anti-HIV activity of polyclonal and monoclonal antibodies. NK cell percentages were significantly higher in donor PBMC that supported lower levels of viral replication. While the percentage of NK cells was not directly associated with neutralization titers, NK cell-depletion significantly diminished the antiviral antibody activity by up to three logs, and polymorphisms in NK killer immunoglobulin receptor (KIR) and FcγRIIIa alleles appear to be associated with this affect. These findings demonstrate that NK cells and NK cell receptor polymorphisms may influence assessment of traditional HIV-1 neutralization in a platform where antibody is continuously present. This format appears to simultaneously assess conventional entry inhibition (neutralization) and non-neutralizing antibody-dependent HIV inhibition, which may provide the opportunity to delineate the dominant antibody function(s) in polyclonal vaccine responses.  相似文献   

19.
Natural killer (NK) cells and dendritic cells (DCs) are recruited to inflammatory tissues in response to infection. Following priming by pathogen-derived products, their reciprocal interactions result in a potent activating crosstalk that regulates both the quality and the intensity of innate immune responses. Thus, pathogen-primed NK cells, in the presence of cytokines released by DCs, become activated. At this stage they favor DC maturation and also select the most suitable DCs for subsequent migration to lymph nodes and priming of T cells. In addition, a specialized subset of NK cells might directly participate in the process of T-cell priming via the release of interferon (IFN)gamma. Thus, the reciprocal crosstalk between NK cells and DCs that is induced by microbial products not only promotes rapid innate responses against pathogens but also favor the generation of appropriate downstream adaptive responses.  相似文献   

20.
Vaccination of Mauritian cynomolgus macaques with the attenuated nef-truncated C8 variant of SIVmac251/32H (SIVmacC8) induces early, potent protection against pathogenic, heterologous challenge before the maturation of cognate immunity. To identify processes that contribute to early protection in this model the pathogenesis, anatomical distribution and viral vaccine kinetics were determined in relation to localised innate responses triggered by vaccination. The early biodistribution of SIVmacC8 was defined by rapid, widespread dissemination amongst multiple lymphoid tissues, detectable after 3 days. Cell-associated viral RNA dynamics identified mesenteric lymph nodes (MLN) and spleen, as well as the gut mucosae, as early major contributors of systemic virus burden. Rapid, localised infection was populated by discrete foci of persisting virus-infected cells. Localised productive infection triggered a broad innate response, with type-1 interferon sensitive IRF-7, STAT-1, TRIM5α and ApoBEC3G genes all upregulated during the acute phase but induction did not prevent viral persistence. Profound changes in vaccine-induced cell-surface markers of immune activation were detected on macrophages, B-cells and dendritic cells (DC-SIGN, S-100, CD40, CD11c, CD123 and CD86). Notably, high DC-SIGN and S100 staining for follicular and interdigitating DCs respectively, in MLN and spleen were detected by 3 days, persisting 20 weeks post-vaccination. Although not formally evaluated, the early biodistribution of SIVmacC8 simultaneously targets multiple lymphoid tissues to induce strong innate immune responses coincident at the same sites critical for early protection from wild-type viruses. HIV vaccines which stimulate appropriate innate, as well as adaptive responses, akin to those generated by live attenuated SIV vaccines, may prove the most efficacious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号