首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Rice blast disease is a major constraint for rice breeding. Nevertheless, the genetic basis of resistance remains poorly understood for most rice varieties, and new resistance genes remain to be identified. We identified the resistance gene corresponding to the cloned avirulence gene ACE1 using pairs of isogenic strains of Magnaporthe grisea differing only by their ACE1 allele. This resistance gene was mapped on the short arm of rice chromosome 8 using progenies from the crosses IR64 (resistant) × Azucena (susceptible) and Azucena × Bala (resistant). The isogenic strains also permitted the detection of this resistance gene in several rice varieties, including the differential isogenic line C101LAC. Allelism tests permitted us to distinguish this gene from two other resistance genes [Pi11 and Pi-29(t)] that are present on the short arm of chromosome 8. Segregation analysis in F2 populations was in agreement with the existence of a single dominant gene, designated as Pi33. Finally, Pi33 was finely mapped between two molecular markers of the rice genetic map that are separated by a distance of 1.6 cM. Detection of Pi33 in different semi-dwarf indica varieties indicated that this gene could originate from either one or a few varieties.Communicated by D.J. Mackill  相似文献   

2.
Monogenic lines, which carried 23 genes for blast resistance were tested and used donors to transfer resistance genes by crossing method. The results under blast nursery revealed that 9 genes from 23 genes were susceptible to highly susceptible under the three locations (Sakha, Gemmeza, and Zarzoura in Egypt); Pia, Pik, Pik-p, Piz-t, Pita, Pi b, Pi, Pi 19 and Pi 20. While, the genes Pii, Pik-s, Pik-h, Pi z, Piz-5, Pi sh, Pi 3, Pi 1, Pi 5, Pi 7, Pi 9, Pi 12, Pikm and Pita-2 were highly resistant at the same locations. Clustering analysis confirmed the results, which divided into two groups; the first one included all the susceptible genes, while the second one included the resistance genes. In the greenhouse test, the reaction pattern of five races produced 100% resistance under artificial inoculation with eight genes showing complete resistance to all isolates. The completely resistant genes: Pii, Pik-s, Piz, Piz-5 (=bi2) (t), Pita (=Pi4) (t), Pita, Pi b and Pi1 as well as clustering analysis confirmed the results. In the F1 crosses, the results showed all the 25 crosses were resistant for leaf blast disease under field conditions. While, the results in F2 population showed seven crosses with segregation ratio of 15 (R):1 (S), two cross gave segregated ratio of 3 R:1 S and one gave 13:3. For the identi- fication of blast resistance genes in the parental lines, the marker K3959, linked to Pik-s gene and the variety IRBLKS-F5 carry this gene, which was from the monogenic line. The results showed that four genotypes; Sakha 105, Sakha 103, Sakha 106 and IRBLKS-F5 were carrying Pik-s gene, while was absent in the Sakha 101, Sakha 104, IRBL5-M, IRBL9-W, IRBLTACP1 and IRBL9-W(R) genotypes. As for Pi 5 gene, the results showed that it was present in Sakha 103 and Sakha 104 varieties and absent in the rest of the genotypes. In addition, Pita-Pita- 2 gene was found in the three Egyptian genotypes (Sakha 105, Sakha 101 and Sakha 104) plus IRBLTACP1 monogenetic. In F2 generation, six populations were used to study the inheritance of blast resistance and specific primers to confirm the ratio and identify the resistance genes. However, the ratios in molecular markers were the same of the ratio under field evaluation in the most population studies. These findings would facilitate in breeding programs for gene pyramiding and gene accumulation to produce durable resistance for blast using those genotypes.  相似文献   

3.
The identification and utilization of broad-spectrum resistance genes have been proven the most effective and economical approach to control rice blast disease. To understand the molecular mechanism of broad-spectrum resistance to rice blast, we conducted genetic and fine mapping analysis of the blast resistance gene in a Chinese rice variety: Gumei 4 (GM4) identified with broad-spectrum resistance and used in rice breeding for blast resistance for more than 20 years. Genetic and mapping analysis indicated that blast resistance to nine isolates of different Chinese races in GM4 was controlled by the same dominant locus designated as Pigm(t) that was finely mapped to an approximately 70-kb interval between markers C5483 and C0428 on chromosome 6, which contains five candidate NBS--LRR disease resistance genes. The allelism test showed that Pigm(t) was either tightly linked or allelic to Pi2 and Pi9, two known blast resistance genes. Mapping information also indicated that another blast resistance gene Pi26(t) might also be located at the same region. Candidate genes were identified by sequence analysis of the Nipponbare and Pi9 locus and the corresponding region in GM4. Sequence divergence of candidate genes was observed between GM4 and model varieties Nipponbare and 9311, and Pi9. Our current study provides essential information and new genetic resource for the cloning of functional resistance gene(s) and for marker-assisted selection in rice breeding for broad-spectrum blast resistance.Yiwen Deng and Xudong Zhu contributed equally to this work.  相似文献   

4.
Rice blast is one of the most destructive diseases of rice. The most effective way of managing this disease is to develop resistant cultivars by introducing resistance genes into elite rice recipients. In this study, the near-isogenic lines (NILs) of six resistance alleles of the Piz locus (Pizt, Pi2, Pigm, Pi40, Pi9 and Piz) were constructed with Yangdao 6 as genetic background. Seedling inoculation tests showed that most of the NILs, namely NIL-Pi2, NIL-Pigm, NIL-Pi9, NIL-Pizt and NIL-Pi40, exhibited good resistance to blast with resistance frequencies (RFs) of over 82.50 %, execpt NIL-Piz which showed lower resistance with a RF of only 36.13 %. Furthermore, the improved-resistance NILs exhibited high similarity of their resistance spectra, with overlapping degrees of resistance spectrum (OD) of more than 75.83 %. However, the RF of panicle blast for all NILs decreased significantly compared with seedling blast in an artificial inoculation test. Although NIL-Pigm showed a higher panicle blast RF of 80 %, other NILs with outstanding performance in seedling blast resistance, namely NIL-Pizt, NIL-Pi2, NIL-Pi9 and NIL-Pi40, exhibited middle or low RFs of panicle blast with values from 56.67 to 33.30 %. Natural induction in a disease nursery showed a consistent trend in artificial inoculation results at seedling and heading stages. While NIL-Pigm was found to exhibit good resistance to leaf blast and panicle blast, NIL-Pi9 and NIL-Pizt were further demonstrated to show excellent resistance in Suichuan, Jiangxi province and Enshi, Hubei province, respectively, because of the race–region specificity. Agronomic traits of NILs were also investigated in order to evaluate the linkage drag effect of different alleles of the Piz locus. The resistance effects of the different alleles of the Piz locus under identical genetic background against seedling blast and panicle blast was first reported in this study, and the above results are expected to provide a theoretical support for the rational utilization of broad-spectrum resistance genes in breeding practice.  相似文献   

5.
To understand the molecular basis of broad-spectrum resistance to rice blast, fine-scale mapping of the two blast resistance (R) genes, Pi9( t) and Pi2( t), was conducted. These two genes were introgressed from different resistance donors, previously reported to confer resistance to many blast isolates in the Philippines, and were mapped to an approximately 10-cM interval on chromosome 6. To further test their resistance spectrum, 43 blast isolates collected from 13 countries were used to inoculate the Pi2( t) and Pi9( t) plants. Pi9( t)-bearing lines were highly resistant to all isolates tested, and lines carrying Pi2( t) were resistant to 36 isolates, confirming the broad-spectrum resistance of these two genes to diverse blast isolates. Three RAPD markers tightly linked to Pi9( t) were identified using the bulk segregant analysis technique. Twelve positive bacterial artificial chromosome (BAC) clones were identified and a BAC contig covering about 100 kb was constructed when the Pi9( t) BAC library was screened with one of the markers. A high-resolution map of Pi9( t) was constructed using BAC ends. The Pi2( t) gene was tightly linked to all of the Pi9( t) markers in 450 F(2) plants. These data suggest that Pi9( t) and Pi2( t) are either allelic or tightly linked in an approximately 100-kb region. The mapping results for Pi9( t) and Pi2( t) provide essential information for the positional cloning of these two important blast resistance genes in rice.  相似文献   

6.
To further our understanding of the genetic control of blast resistance in rice cultivar Gumei 2 and, consequently, to facilitate the utilization of this durably blast-resistant cultivar, we studied 304 recombinant inbred lines of indica rice cross Zhong 156/Gumei 2 and a linkage map comprising 181 markers. An analysis of segregation for resistance against five isolates of rice blast suggested that one gene cluster and three additional major genes that are independently inherited are responsible for the complete resistance of Gumei 2. The gene cluster was located to chromosome 6 and includes two genes mapped previously, Pi25(t), against Chinese rice blast isolate 92-183 (race ZC15) and Pi26(t) against Philippine rice blast isolate Ca89 (lineage 4), and a gene for resistance against Philippine rice blast isolate 92330-5 (lineage 17). Of the two genes conferring resistance against the Philippine isolates V86013 (lineage 15) and C923-39 (lineage 46), we identified one as Pi26(t) and mapped the other onto the distal end of chromosome 2 where Pib is located. We used three components of partial blast resistance, percentage diseased leaf area (DLA), lesion number and lesion size, all measured in the greenhouse, to measure the degree of susceptibility to isolates Ca89 and C923-39 and subsequently identified nine and eight quantitative trait loci (QTLs), respectively. Epistasis was determined to play an important role in partial resistance against Ca89. Using DLA measured on lines susceptible in a blast nursery, we detected six QTLs. While different QTLs were detected for partial resistance to Ca89 and C923-39, respectively, most were involved in the partial resistance in the field. Our results suggest that the blast resistance in Gumei 2 is controlled by multiple major genes and minor genes with epistatic effects.  相似文献   

7.
The use of broad-spectrum R genes is an effective way to achieve durable resistance against rice blast (Magnaporthe oryzae Couch, anamorph: Pyricularia oryzae Cavara) in rice (Oryza sativa L.). We previously surveyed the diversity of blast resistance in 948 rice varieties and found a Myanmar rice landrace, Haoru (International Rice Research Institute genebank acc. no. IRGC33090), with broad-spectrum resistance against the standard differential blast isolates. Here, we examined the genetic basis of Haoru’s broad-spectrum resistance by using the standard blast differential system consisting of the standard isolates and differential varieties. For genetic analysis, we used a BC1F1 population and BC1F2 lines derived from crosses of Haoru with a susceptible variety, US-2. Co-segregation analysis of the reaction pattern in the BC1F1 population against the 20 standard isolates suggested that Haoru harbors three R genes. By using bulk-segregant and linkage analysis, we mapped two of the three R genes on chromosomes 12 and 6, and designated them as Pi58(t) and Pi59(t), respectively. Pi58(t) and Pi59(t) were differentiated from other reported R genes using the standard differential system. The estimated resistance spectrum of Pi58(t) corresponded with that of Haoru, suggesting that Pi58(t) is primarily responsible for Haoru’s broad-spectrum resistance. In addition, Pi59(t) and the third gene were also proven to be new and useful genetic resources for studying and improving blast resistance in rice.  相似文献   

8.
Pi-z is a disease resistance gene that has been effectively used to combat a broad-spectrum of races of the rice blast fungus Magnaporthe grisea. Although DNA markers have been reported for selection of the Pi2(t) and Pi-z resistance genes at the Pi-z locus, markers that are more tightly linked to the Pi-z locus would benefit rapid and effective cultivar development. Analysis of the publicly available genome sequence of Nipponbare near the Pi-z locus revealed numerous SSRs that could be converted into markers. Three SSRs on rice PAC AP005659 were found to be very tightly linked to the Pi-z locus, with one marker, AP5659-3, co-segregating with the Pi-z resistance reaction. The Pi-z factor conferring resistance to two races of blast was mapped to a 57 kb region on the physical map of Nipponbare in a location where the Pi2(t) gene was physically mapped. Two SSR marker haplotypes were unique for cultivars carrying the Pi-z gene, which indicates these markers are useful for selection of resistance genes at the Pi-z locus in rice germplasm.  相似文献   

9.
Abstract

Allelic variants of the broad-spectrum blast resistance gene, Piz-t, have been analyzed in 48 rice lines selected after phenotyping across three blast hot-spot regions of India. Single Nucleotide Polymorhisms in the form of transitions were more frequent than the transversions in the alleles. On the basis of nucleotide polymorphism, 46 haplotypes have been identified, with major haplotypes forming three main haplogroups. The Piz-t alleles formed mostly region-specific clusters. Resistant and susceptible Piz-t alleles were grouped into separate sub-clusters. The value of Tajima's D was negative indicating positive selection on Piz-t locus. Sequence variations were more abundant in the leucine rich repeats (LRR) region than in the NB-ARC (nucleotide-binding adaptor shared by APAF-1,R proteins, and CED-4) region, indicating that the LRR region has played a more important role in the evolution of this allele. The detailed molecular analysis of the Piz-t locus provide insights to high degree of inter-and intra-specific relationship among the Indian land races of rice which will help in the selection of better alleles for future rice breeding programs.  相似文献   

10.
Finding novel sources of resistance (R) to rice blast disease should facilitate breeding for improved resistance. The objectives of the present study were to evaluate reactions to blast and identify in a space-induced mutant an R gene to a representative isolate of rice blast pathogen. The mutant H4, its parent and twelve monogenic lines were evaluated for their responses to 35 isolates collected from Guangdong Province, China. H4 was found to be resistant to more isolates than its parent and the twelve monogenic lines, suggesting newly acquired resistance may be a function of one or more R genes. A representative isolate GD0193 was used to identify and map the R gene from H4. Genetic analysis revealed that resistance to the isolate GD0193 was controlled by a single dominant gene, designated Pi46(t). Linkage analysis using susceptible F2 individuals showed that Pi46(t) was mapped between the markers RM224 and RM27360 within 1.04 and 1.2 cM on the long arm of chromosome 11. Subsequently, Pi46(t) was delimited to an interval of approximately 183.7 kb flanked by the markers K67 and T94. These results provide essential information for the cloning of the Pi46(t) gene and will facilitate marker-assisted selection in rice breeding.  相似文献   

11.
Blast resistance in the indica cultivar (cv.) Q61 was inherited as a single dominant gene in two F2 populations, F2-1 and F2-2, derived from crosses between the donor cv. and two susceptible japonica cvs. Aichi Asahi and Lijiangxintuanheigu (LTH), respectively. To rapidly determine the chromosomal location of the resistance (R) gene detected in Q61, random amplified polymorphic DNA (RAPD) analysis was performed in the F2-1 population using bulked-segregant analysis (BSA) in combination with recessive-class analysis (RCA). One of the three linked markers identified, BA1126550, was cloned and sequenced. The R gene locus was roughly mapped on rice chromosome 8 by comparison of the BA1126550 sequence with rice sequences in the databases (chromosome landing). To confirm this finding, seven known markers, including four sequence-tagged-site (STS) markers and three simple-sequence repeat (SSR) markers flanking BA1126550 on chromosome 8, were subjected to linkage analysis in the two F2 populations. The locus was mapped to a 5.8 cM interval bounded by RM5647 and RM8018 on the short arm of chromosome 8. This novel R gene is therefore tentatively designated as Pi36(t). For fine mapping of the Pi36(t) locus, five additional markers including one STS marker and four candidate resistance gene (CRG) markers were developed in the target region, based on the genomic sequence of the corresponding region of the reference japonica cv. Nipponbare. The Pi36(t) locus was finally localized to an interval of about 0.6 cM flanked by the markers RM5647 and CRG2, and co-segregated with the markers CRG3 and CRG4. To physically map this locus, the Pi36(t)-linked markers were mapped by electronic hybridization to bacterial artificial chromosome (BAC) or P1 artificial chromosome (PAC) clones of Nipponbare, and a contig map was constructed in silico through Pairwise BLAST analysis. The Pi36(t) locus was physically delimited to an interval of about 17.0 kb, based on the genomic sequence of Nipponbare.  相似文献   

12.
Rice blast is a serious disease caused by the filamentous ascomycetous fungus Magnaporthe oryzae. Incorporating disease resistance genes in rice varieties and characterizing the distribution of M. oryzae isolates form the foundation for enhancing rice blast resistance. In this study, the blast resistance gene Pish was observed to be differentially distributed in the genomes of rice sub-species. Specifically, Pish was present in 80.5% of Geng varieties, but in only 2.3% of Xian varieties. Moreover, Pish conferred resistance against only 23.5% of the M. oryzae isolates from the Geng-planting regions, but against up to 63.2% of the isolates from the Xian-planting regions. Thus, Pish may be an elite resistance gene for improving rice blast resistance in Xian varieties. Therefore, near-isogenic lines (NILs) with Pish and the polygene pyramid lines (PPLs) PPLPish/Pi1, PPLPish/Pi54, and PPLPish/Pi33 in the Xian background Yangdao 6 were generated using a molecular marker-assisted selection method. The results suggested that (1) Pish significantly improved rice blast resistance in Xian varieties, which exhibited considerably improved seedling and panicle blast resistance after Pish was introduced; (2) PPLs with Pish were more effective than the NILs with Pish regarding seedling and panicle blast resistance; (3) the PPL seedling and panicle blast resistance was improved by the complementary and overlapping effects of different resistance genes; and (4) the stability of NIL and PPL resistance varied under different environmental conditions, with only PPLPish/Pi54 exhibiting highly stable resistance in three natural disease nurseries (Jianyang, Jinggangshan, and Huangshan). This study provides new blast resistance germplasm resources and describes a novel molecular strategy for enhancing rice blast resistance.  相似文献   

13.
Rice blast, caused by the fungal pathogen Magnaporthe oryzae (Moryzae), is one of the most destructive and widespread plant diseases in the world. Utilization of resistance genes in rice breeding is considered to be an effective and economical method to control this disease. To identify new sources of blast resistance, a set of 1160 introgression lines (ILs) containing chromosome segments of Chaling common wild rice (Oryza rufipogon Griff.) in the genetic background of an elite indica rice variety 93-11 were developed and phenotyped in the blast nursery. Thirty-three ILs displaying stable blast resistance in three consecutive years were obtained. Among them, one line, IL1043, was subsequently found to be resistant to all of the 28 M. oryzae isolates from different regions through artificial inoculation in greenhouse. By combining bulk segregant analysis coupled with next-generation sequencing (BSA-seq) and recessive class analysis (RCA), a major blast resistance gene in IL1043, designated Picl(t), was mapped on rice chromosome 6 flanked by the markers RM527 and Indel6 with an interval of approximately 925 kb, which covers the Pi2/9 locus. These results will facilitate fine mapping and cloning of Picl(t), and the linked markers will further provide a useful tool for rice blast resistance breeding.  相似文献   

14.
Identification of Two Blast Resistance Genes in a Rice Variety, Digu   总被引:10,自引:0,他引:10  
Blast, caused by Magnaporthe grisea is one of most serious diseases of rice worldwide. A Chinese local rice variety, Digu, with durable blast resistance, is one of the important resources for rice breeding for resistance to blast (M. grisea) in China. The objectives of the current study were to assess the identity of the resistance genes in Digu and to determine the chromosomal location by molecular marker tagging. Two susceptible varieties to blast, Lijiangxintuanheigu (LTH) and Jiangnanxiangnuo (JNXN), a number of different varieties, each containing one blast resistance gene, Piks, Pia, Pik, Pib, Pikp, Pita2, Pita, Piz, Pii, Pikm, Pizt, Pit and Pi‐11, and the progeny populations from the crosses between Digu and each of these varieties were analysed with Chinese blast isolates. We found that the resistance of Digu to each of the two Chinese blast isolates, ZB13 and ZB15, were controlled by two single dominant genes, separately. The two genes are different from the known blast resistance genes and, therefore, designated as Pi‐d(t)1 and Pi‐d(t)2. By using bulked segregation method and molecular marker analysis in corresponding F2 populations, Pi‐d(t)1 was located on chromosome 2 with a distance of 1.2 and 10.6 cM to restriction fragment length polymorphism (RFLP) markers G1314A and G45, respectively. And Pi‐d(t)2 was located on chromosome 6 with a distance of 3.2 and 3.4 cM to simple sequence repeat markers RM527 and RM3, respectively. We also developed a novel strategy of resistance gene analogue (RGA) assay with uneven polymerase chain reaction (PCR) to further tag the two genes and successfully identified two RGA markers, SPO01 and SPO03, which were co‐segregated toPi‐d(t)1 and Pi‐d(t)2, respectively, in their corresponding F2 populations. These results provide essential information for further utilization of the Digu's blast resistance genes in rice disease resistance breeding and positional cloning of these genes.  相似文献   

15.
Identification of the PCR markers tightly linked to genes that encode important agronomic traits is useful for marker-assisted selection (MAS). The rice Pi5(t) locus confers broad-spectrum resistance to Magnaporthe grisea, the causal agent of rice blast disease. It has been hypothesized that the Pi5(t) locus carries the same gene as that encoded by the Pi3(t) and Pii(t) loci. We developed three PCR-based dominant markers (JJ80-T3, JJ81-T3, and JJ113-T3) from three previously identified BIBAC clones—JJ80, JJ81, and JJ113—that are linked to the Pi5(t) locus. PCR analysis of 24 monogenic lines revealed that these markers are present only in lines that carry Pi5(t), Pi3(t), and Pii(t). PCR and DNA gel-blot analysis of candidate resistance lines using JJ80-T3, JJ81-T3, and JJ113-T3 indicated that Tetep is the likely donor of Pi5(t). Of the 184 rice varieties tested, 34 carried the JJ80-T3-, JJ81-T3-, and JJ113-T3-specific bands. Disease evaluation of those 34 varieties revealed that all conferred resistance to PO6-6. The genomic structure of three of these resistant varieties (i.e., IR72, Taebaeg, Jahyangdo) is most similar to that of Pi5(t). Our results demonstrate the usefulness of the JJ80-T3, JJ81-T3, and JJ113-T3 markers for MAS for M. grisea resistance.G.Yi and S.-K. Lee contributed equally to this work.  相似文献   

16.
Rice production and grain quality are severely affected by blast disease caused by the ascomycetous fungus Magnaporthe oryzae. Incorporation of genes that confer broad-spectrum resistance to blast has been a priority area in rice breeding programs. The blast resistance gene Pi9 sourced from Oryza minuta has shown broad spectrum and durable resistance to blast world-wide. In the present study co-dominant gene-based markers were developed for the precise marker-assisted tracking of Pi9 in breeding programs. The developed markers were validated across a diverse set of cultivars including basmati, indica and japonica varieties. Two markers, Pi9STS-1 and Pi9STS-2, effectively differentiated Pi9 donors from all the indicas and commercial basmati varieties tested. However, these markers were monomorphic between Pi-9 donors (IRBL9-W and Pusa 1637) and japonica type varieties. An additional gene-derived CAPS marker Pi91F_ 2R was developed to differentiate Pi9 donors from japonicas and traditional basmati lines. The co-dominant markers developed in the present study will be of immense utility to rice breeders for precise and speedy incorporation of Pi-9 into susceptible rice varieties through marker-assisted selection.  相似文献   

17.
The major quantitative trait locus qBR9.1 confers broad-spectrum resistance to rice blast, and was mapped to a ~69.1 kb region on chromosome 9 that was inherited from resistant variety Sanhuangzhan No 2 (SHZ-2). Within this region, only one predicted disease resistance gene with nucleotide binding site and leucine-rich repeat (NBS-LRR) domains was found. Specific markers corresponding to this gene cosegregated with blast resistance in F2 and F3 populations derived from crosses of susceptible variety Texianzhan 13 (TXZ-13) to SHZ-2 and the resistant backcross line BC-10. We tentatively designate the gene as Pi56(t). Sequence analysis revealed that Pi56(t) encodes an NBS-LRR protein composed of 743 amino acids. Pi56(t) was highly induced by blast infection in resistant lines SHZ-2 and BC-10. The corresponding allele of Pi56(t) in the susceptible line TXZ-13 encodes a protein with an NBS domain but without LRR domain, and it was not induced by Magnaporthe oryzae infection. Three new cosegregating gene-specific markers, CRG4-1, CRG4-2 and CRG4-3, were developed. In addition, we evaluated polymorphism of the gene-based markers among popular varieties from national breeding programs in Asia and Africa. The presence of the CRG4-2 SHZ-2 allele cosegregated with a blast-resistant phenotype in two BC2F1 families of SHZ-2 crossed to recurrent parents IR64-Sub1 and Swarna-Sub1. CRG4-1 and CRG4-3 showed clear polymorphism among 19 varieties, suggesting that they can be used in marker-assisted breeding to combine Pi56(t) with other target genes in breeding lines.  相似文献   

18.
Because of the frequent breakdown of major resistance (R) genes, identification of new partial R genes against rice blast disease is an important goal of rice breeding. In this study, we used a core collection of the Rice Diversity Panel II (C‐RDP‐II), which contains 584 rice accessions and are genotyped with 700 000 single‐nucleotide polymorphism (SNP) markers. The C‐RDP‐II accessions were inoculated with three blast strains collected from different rice‐growing regions in China. Genome‐wide association study identified 27 loci associated with rice blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide‐binding site leucine‐rich repeat (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up‐regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR‐Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non‐strain specific partial R gene, tentatively named rice blast Partial Resistance gene 1 (PiPR1), provides genetic material that will be useful for understanding the partial resistance mechanism and for breeding durably resistant cultivars against blast disease of rice.  相似文献   

19.
Rice blast is one of the most devastating diseases affecting the rice crop throughout the world. In molecular breeding for host plant resistance, functional markers are very useful for enhancing the precision and accuracy in marker-assisted selection (MAS) of target gene(s) with minimum effort, time and cost. Pi54 (which was earlier known as Pik h ) is one of the major blast resistance genes and has been observed to show resistance against many isolates of the blast pathogen in India. The gene has been cloned through map-based strategy and encodes a nucleotide-binding site?Cleucine-rich repeat (NBS?CLRR) domain-containing protein. In the present study, we carried out allele mining for this gene and identified a 144-bp insertion/deletion (InDel) polymorphism in the exonic region of the gene. A PCR-based co-dominant molecular marker targeting this InDel, named Pi54 MAS, was developed. Pi54 MAS was observed to perfectly co-segregate with blast resistance in a mapping population with no recombinants. Validation of this marker in 105 genotypes which are either susceptible or resistant to rice blast disease showed that the marker is polymorphic in most of the resistant?Csusceptible genotype combinations and is more accurate than the earlier reported markers for Pi54. Hence this functional, co-dominant marker is suggested for routine deployment in MAS of Pi54 in breeding programs.  相似文献   

20.
Identification of R genes and development of associated molecular markers will facilitate their application in the development of crop cultivars resistant to disease. We evaluated the resistance of a resistant germplasm ??D69??, 10 monogenic lines, and model cultivar ??Nipponbare?? to 56 M. oryzae isolates of blast disease in rice. The results demonstrated that only D69 exhibited full-spectrum resistance among the 12 investigated materials. Resistance inheritance in D69 was analyzed using a stable isolate GD08T13 with strong pathogenicity, collected from diseased panicles. A single dominant R gene was revealed and designated as Pi51(t). Through linkage analysis and the development of new markers, Pi51(t) was subsequently delimited to an interval of ~100.8?kb flanked by markers Ind306 and RM19818, where Pi2, Pi9, Piz, Piz-t, Pigm(t), and Pi40(t) reside. Different genotypes identified by linked markers pB8, Pi9-2, zt56591, and T845, and different pathotypes to the same set of isolates, distinguished Pi51(t) from Pi2, Pi9, Piz, and Piz-t. The origin of Pi40(t) in wild rice suggests that Pi51(t) and Pi40(t) are different. Comparison of resistance spectra suggests multiple R genes in D69, making its resistance durable and valuable in breeding programs. The results of this work will facilitate future studies on cloning and functional analysis of blast resistance genes for rice improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号