首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Despite the great potential of RNAi, ectopic expression of shRNA or siRNAs holds the inherent risk of competition for critical RNAi components, thus altering the regulatory functions of some cellular microRNAs. In addition, specific siRNA sequences can potentially hinder incorporation of other siRNAs when used in a combinatorial approach. We show that both synthetic siRNAs and expressed shRNAs compete against each other and with the endogenous microRNAs for transport and for incorporation into the RNA induced silencing complex (RISC). The same siRNA sequences do not display competition when expressed from a microRNA backbone. We also show that TAR RNA binding protein (TRBP) is one of the sensors for selection and incorporation of the guide sequence of interfering RNAs. These findings reveal that combinatorial siRNA approaches can be problematic and have important implications for the methodology of expression and use of therapeutic interfering RNAs.  相似文献   

3.
Uncoupling of RNAi from active translation in mammalian cells   总被引:1,自引:0,他引:1       下载免费PDF全文
Small inhibitory RNAs (siRNAs) are produced from longer RNA duplexes by the RNAse III family member Dicer. The siRNAs function as sequence-specific guides for RNA cleavage or translational inhibition. The precise mechanism by which siRNAs direct the RNA-induced silencing complex (RISC) to find the complementary target mRNA remains a mystery. Some biochemical evidence connects RNAi with translation making attractive the hypothesis that RISC is coupled with the translational apparatus for scanning mRNAs. Such coupling would facilitate rapid alignment of the siRNA antisense with the complementary target sequence. To test this hypothesis we took advantage of a well-characterized translational switch afforded by the ferritin IRE-IRP to analyze RNAi mediated cleavage of a target mRNA in the presence and absence of translation. Our results demonstrate that neither active translation nor unidirectional scanning is required for siRNA mediated target degradation. Our findings demonstrate that nontranslated mRNAs are highly susceptible to RNAi, and blocking scanning from both the 5' and 3' ends of an mRNA does not impede RNAi. Interestingly, RNAi is about threefold more active in the absence of translation.  相似文献   

4.
siRNA function in RNAi: a chemical modification analysis   总被引:39,自引:4,他引:35  
Various chemical modifications were created in short-interfering RNAs (siRNAs) to determine the biochemical properties required for RNA interference (RNAi). Remarkably, modifications at the 2'-position of pentose sugars in siRNAs showed the 2'-OHs were not required for RNAi, indicating that RNAi machinery does not require the 2'-OH for recognition of siRNAs and catalytic ribonuclease activity of RNA-induced silencing complexes (RISCs) does not involve the 2'-OH of guide antisense RNA. In addition, 2' modifications predicted to stabilize siRNA increased the persistence of RNAi as compared with wild-type siRNAs. RNAi was also induced with chemical modifications that stabilized interactions between A-U base pairs, demonstrating that these types of modifications may enhance mRNA targeting efficiency in allele-specific RNAi. Modifications altering the structure of the A-form major groove of antisense siRNA-mRNA duplexes abolished RNAi, suggesting that the major groove of these duplexes was required for recognition by activated RISC*. Comparative analysis of the stability and RNAi activities of chemically modified single-stranded antisense RNA and duplex siRNA suggested that some catalytic mechanism(s) other than siRNA stability were linked to RNAi efficiency. Modified or mismatched ribonucleotides incorporated at internal positions in the 5' or 3' half of the siRNA duplex, as defined by the antisense strand, indicated that the integrity of the 5' and not the 3' half of the siRNA structure was important for RNAi, highlighting the asymmetric nature of siRNA recognition for initiation of unwinding. Collectively, this study defines the mechanisms of RNAi in human cells and provides new rules for designing effective and stable siRNAs for RNAi-mediated gene-silencing applications.  相似文献   

5.
6.
Contradictory reports in the literature have emphasised either the sequence of small interfering RNAs (siRNA) or the structure of their target molecules to be the major determinant of the efficiency of RNA interference (RNAi) approaches. In the present study, we analyse systematically the contributions of these parameters to siRNA activity by using deliberately designed mRNA constructs. The siRNA target sites were included in well-defined structural elements rendering them either highly accessible or completely involved in stable base-pairing. Furthermore, complementary sequence elements and various hairpins with different stem lengths and designs were used as target sites. Only one of the strands of the siRNA duplex was found to be capable of silencing via its respective target site, indicating that thermodynamic characteristics intrinsic to the siRNA strands are a basic determinant of siRNA activity. A significant obstruction of gene silencing by the same siRNA, however, was observed to be caused by structural features of the substrate RNA. Bioinformatic analysis of the mRNA structures suggests a direct correlation between the extent of gene-knockdown and the local free energy in the target region. Our findings indicate that, although a favourable siRNA sequence is a necessary prerequisite for efficient RNAi, complex target structures may limit the applicability even of carefully chosen siRNAs.  相似文献   

7.
A Nyk?nen  B Haley  P D Zamore 《Cell》2001,107(3):309-321
We examined the role of ATP in the RNA interference (RNAi) pathway. Our data reveal two ATP-dependent steps and suggest that the RNAi reaction comprises at least four sequential steps: ATP-dependent processing of double-stranded RNA into small interfering RNAs (siRNAs), incorporation of siRNAs into an inactive approximately 360 kDa protein/RNA complex, ATP-dependent unwinding of the siRNA duplex to generate an active complex, and ATP-independent recognition and cleavage of the RNA target. Furthermore, ATP is used to maintain 5' phosphates on siRNAs. A 5' phosphate on the target-complementary strand of the siRNA duplex is required for siRNA function, suggesting that cells check the authenticity of siRNAs and license only bona fide siRNAs to direct target RNA destruction.  相似文献   

8.
Short interfering RNAs (siRNAs) directed against poliovirus and other viruses effectively inhibit viral replication. Although RNA interference (RNAi) may provide the basis for specific antiviral therapies, the limitations of RNAi antiviral strategies are ill defined. Here, we show that poliovirus readily escapes highly effective siRNAs through unique point mutations within the targeted regions. Competitive analysis of the escape mutants provides insights into the basis of siRNA recognition. The RNAi machinery can tolerate mismatches but is exquisitely sensitive to mutations within the central region and the 3' end of the target sequence. Indeed, specific mutations in the target sequence resulting in G:U mismatches are sufficient for the virus to escape siRNA inhibition. However, using a pool of siRNAs to simultaneously target multiple sites in the viral genome prevents the emergence of resistant viruses. Our study uncovers the elegant precision of target recognition by the RNAi machinery and provides the basis for the development of effective RNAi-based therapies that prevent viral escape.  相似文献   

9.
10.
11.
Walton SP  Wu M  Gredell JA  Chan C 《The FEBS journal》2010,277(23):4806-4813
The discovery of RNA interference (RNAi) generated considerable interest in developing short interfering RNAs (siRNAs) for understanding basic biology and as the active agents in a new variety of therapeutics. Early studies showed that selecting an active siRNA was not as straightforward as simply picking a sequence on the target mRNA and synthesizing the siRNA complementary to that sequence. As interest in applying RNAi has increased, the methods for identifying active siRNA sequences have evolved from focusing on the simplicity of synthesis and purification, to identifying preferred target sequences and secondary structures, to predicting the thermodynamic stability of the siRNA. As more specific details of the RNAi mechanism have been defined, these have been incorporated into more complex siRNA selection algorithms, increasing the reliability of selecting active siRNAs against a single target. Ultimately, design of the best siRNA therapeutics will require design of the siRNA itself, in addition to design of the vehicle and other components necessary for it to function in vivo. In this minireview, we summarize the evolution of siRNA selection techniques with a particular focus on one issue of current importance to the field, how best to identify those siRNA sequences likely to have high activity. Approaches to designing active siRNAs through chemical and structural modifications will also be highlighted. As the understanding of how to control the activity and specificity of siRNAs improves, the potential utility of siRNAs as human therapeutics will concomitantly grow.  相似文献   

12.
13.
The human TAR RNA-binding protein (hTRBP) and protein activator of protein kinase R (hPACT) are important players in RNA interference (RNAi). Together with hArgonaute2 (hAgo2) and hDicer they have been reported to form the RISC-loading complex (RLC). Among other functions, hTRBP was suggested to assist the loading of hAgo2 with small interfering RNAs (siRNAs) within the RLC. Although several studies have been conducted to evaluate the specific functions of hTRBP and hPACT in RNAi, exact mechanisms and modes of action are still unknown. Here, we present a biochemical study further evaluating the role of hTRBP and hPACT in hAgo2-loading. We found that both proteins enhance hAgo2-mediated RNA cleavage significantly; even a hAgo2 mutant impaired in siRNA binding shows full cleavage activity in the presence of hTRBP or hPACT. Pre-steady state binding studies reveal that the assembly of wildtype-hAgo2 (wt-hAgo2) and siRNAs remains largely unaffected, whereas the binding of mutant hAgo2-PAZ9 to siRNA is restored by adding either hTRBP or hPACT. We conclude that both proteins assist in positioning the siRNA within hAgo2 to ensure optimal binding and cleavage. Overall, our data indicate that hTRBP and hPACT are part of a regulative system of RNAi that is important for efficient target RNA cleavage.  相似文献   

14.
R2D2 leads the silencing trigger to mRNA's death star   总被引:5,自引:0,他引:5  
Pellino JL  Sontheimer EJ 《Cell》2003,115(2):132-133
During RNA interference (RNAi), Dicer generates short interfering RNAs (siRNAs), which then guide target mRNA cleavage by the RISC complex. Now, Liu et al. identify R2D2, a Dicer-associated protein that is important for siRNA incorporation into RISC, thus linking the initiation and execution phases of RNAi.  相似文献   

15.
Short interfering RNAs (siRNAs) are mediators of RNA interference (RNAi), a commonly used technique for selective down-regulation of target gene expression. Using an equimolar mixture of A, G, C, and U phosphoramidites during solid-phase synthesis, we introduced degenerate positions into RNA guide and passenger strands so that, when annealed, a large pool of distinct siRNA duplexes with randomized base pairs at defined sites was created. We assessed the randomization efficiency by deep sequencing one of the RNAs. All possible individual sequences were present in the pool with generally an excellent distribution of bases. Melting temperature analyses suggested that pools of randomized guide and passenger strands RNAs with up to eight degenerate positions annealed so that mismatched base-pairing was minimized. Transfections of randomized siRNAs (rnd-siRNAs) into cells led to inhibition of luciferase reporters by a miRNA-like mechanism when the seed regions of rnd-siRNA guide strands were devoid of degenerate positions. Furthermore, the mRNA levels of a select set of genes associated with siRNA off-target effects were measured and indicated that rnd-siRNAs with degenerate positions in the seed likely show typical non-sequence-specific effects, but not miRNA-like off-target effects. In the wake of recent reports showing the preponderance of miRNA-like off-target effects of siRNAs, our findings are of value for the design of a novel class of easily prepared and universally applicable negative siRNA controls.  相似文献   

16.
小干扰RNAs(siRNAs)能够有效降解具有互补序列的RNA.在SARS-CoV的基因组RNA和所有亚基因组RNA的5′端均有一段共同的leader序列,而且该leader序列在不同的病毒分离物中高度保守,因此leader序列可作为一个用于抑制SARS-CoV复制的有效靶点.研究表明,针对leader序列化学合成的siRNA和DNA载体表达的shRNA都可以有效抑制SARS-CoV mRNA的表达.Leader序列特异的siRNA或shRNA不仅可以有效抑制leader与报告基因EGFP融合基因的表达,而且还可以有效抑制leader与刺突蛋白(spikeprotein)、膜蛋白(membrane protein)和核衣壳蛋白(nucleocapsid protein)基因的融合转录产物的表达.结果表明,针对leader序列的RNA干扰可以发展成为一种抗SARS-CoV治疗的有效策略.  相似文献   

17.
RNA interference (RNAi) offers great potential not only for in vitro target validation, but also as a novel therapeutic strategy based on the highly specific and efficient silencing of a target gene, e.g. in tumor therapy. Since it relies on small interfering RNAs (siRNAs), which are the mediators of RNAi-induced specific mRNA degradation, a major issue is the delivery of therapeutically active siRNAs into the target tissue/target cells in vivo. For safety reasons, strategies based on (viral) vector delivery may be of only limited clinical use. The more desirable approach is to directly apply catalytically active siRNAs. This review highlights the recent knowledge on the guidelines for the selection of siRNAs which show high activity in the absence of non-specific siRNA effects. It then focuses on approaches to directly use siRNA molecules in vivo and gives a comprehensive overview of in vivo studies based on the direct application of siRNAs to induce RNAi. One promising approach is the in vivo siRNA delivery through complexation of chemically unmodified siRNAs with polyethylenimine (PEI). The anti-tumoral effects of PEI/siRNA-based targeting of tumor-relevant genes in vivo are described.  相似文献   

18.
Gene silencing by RNA interference (RNAi) operates at the level of mRNA that is targeted for destruction with exquisite sequence specificity. In principle, any disease-related mRNA sequence is a putative target for RNAi-based therapeutics. To develop this therapeutic potential, it is necessary to develop ways of inducing RNAi by clinically acceptable delivery procedures. Here, we ask if inducers of RNAi can be delivered to human cells via a gel-based medium. RNAi was induced using synthetic small interfering RNAs (siRNAs), which bypass the need for expression vectors and carry the added bonus of high potency and immediate efficacy. Established cultures of human cells of normal and tumor origin were overlaid with an agarose/liposome/siRNA gel formulation without adverse effects on cell viability or proliferation. Epithelial cancer cells (but not normal human fibroblasts) proved vulnerable to specific siRNAs delivered via the agarose/liposome/siRNA formulation. Moreover, proapoptotic siRNAs induced apoptosis of cervical carcinoma cells (treated with human papillomavirus [HPV] E7 siRNA) and of colorectal carcinoma cells (treated with Bcl-2 siRNA). Thus, we demonstrate successful topical gel-based delivery of inducers of RNAi to human epithelial cancer cells. Topical induction of RNAi opens an important new therapeutic approach for treatment of human diseases, including cervical cancer and other accessible disorders.  相似文献   

19.
Small-interfering RNAs (siRNAs) assemble into RISC, the RNA-induced silencing complex, which cleaves complementary mRNAs. Despite their fluctuating efficacy, siRNAs are widely used to assess gene function. Although this limitation could be ascribed, in part, to variations in the assembly and activation of RISC, downstream events in the RNA interference (RNAi) pathway, such as target site accessibility, have so far not been investigated extensively. In this study we present a comprehensive analysis of target RNA structure effects on RNAi by computing the accessibility of the target site for interaction with the siRNA. Based on our observations, we developed a novel siRNA design tool, RNAxs, by combining known siRNA functionality criteria with target site accessibility. We calibrated our method on two data sets comprising 573 siRNAs for 38 genes, and tested it on an independent set of 360 siRNAs targeting four additional genes. Overall, RNAxs proves to be a robust siRNA selection tool that substantially improves the prediction of highly efficient siRNAs.  相似文献   

20.
Rational siRNA design for RNA interference   总被引:166,自引:0,他引:166  
Short-interfering RNAs suppress gene expression through a highly regulated enzyme-mediated process called RNA interference (RNAi). RNAi involves multiple RNA-protein interactions characterized by four major steps: assembly of siRNA with the RNA-induced silencing complex (RISC), activation of the RISC, target recognition and target cleavage. These interactions may bias strand selection during siRNA-RISC assembly and activation, and contribute to the overall efficiency of RNAi. To identify siRNA-specific features likely to contribute to efficient processing at each step, we performed a systematic analysis of 180 siRNAs targeting the mRNA of two genes. Eight characteristics associated with siRNA functionality were identified: low G/C content, a bias towards low internal stability at the sense strand 3'-terminus, lack of inverted repeats, and sense strand base preferences (positions 3, 10, 13 and 19). Further analyses revealed that application of an algorithm incorporating all eight criteria significantly improves potent siRNA selection. This highlights the utility of rational design for selecting potent siRNAs and facilitating functional gene knockdown studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号