首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylene favors carposporogenesis in the red seaweed Grateloupia imbricata. Analyses of cystocarp development in vitro in thalli treated with ethylene suggest an interconnection between polyamine and ethylene biosynthesis pathways. Yet, little is known about molecular mechanisms underlying carposporogenesis. Here, we used droplet digital PCR to analyze genes encoding enzymes related to polyamine (Spermidine [Spd] synthase) and ethylene (ACC synthase) synthesis; a pivotal compound of both pathways (S‐adenosyl methionine synthase, SAMS); the gene that encodes amine oxidase, which is involved in polyamine degradation, and a candidate gene involved in seaweed reproduction (ornithine decarboxylase, ODC). In addition, we analyzed genes encoding proteins related to stress and reactive oxygen species, ascorbate peroxidase (APX), cytochrome P450 and WD 40. We characterized gene expression in fertilized and fertile thalli from G. imbricata that were exposed to ethylene for 15 min at two time points after treatment (1 and 7 d). The differential gene expression of SAMS, Spd synthase, ACC synthase, and cytochrome P450 was related to disclosure and development of cystocarps in fertilized thalli that transitioned from having no visible cystocarps at 1 d to developing cystocarps at 7 d. Likewise, cytochrome P450 was associated with cystocarp disclosure and maturation. In addition, amine oxidase and APX were involved in fine‐tuning polyamine and reactive oxygen species during carposporogenesis, respectively, whereas WD 40 did so in relation to ethylene signaling. Expression of the candidate gene ODC was increased when cystocarps were not visible (fertilized thalli, 1d), as previously described. This analysis suggests developmental stage‐specific roles for these genes during carposporogenesis.  相似文献   

2.
In this study, we highlight the effects of methyl jasmonate (MeJa) on cystocarp development in the red macroscopic alga Grateloupia imbricata. In G. imbricata, jasmonate release is related to the reproductive state, as fertile thalli (i.e., those that have cystocarps) released significant amounts of this volatile compound (1.27 ± 0.20 mM · mg fw?1 · h?1) compared with infertile thalli (0.95 ± 0.12 mM · mg fw?1 · h?1). Treating G. imbricata thalli with MeJa revealed a significant increase in cystocarp number (1.5 ± 0.27 cystocarps · mm?2), which was ~7.5‐fold greater than in untreated thalli (0.2 ± 0.07 cystocarps · mm?2). Maturation was completed within 48 h with MeJa treatment, a shortening of the typical >3‐week maturation period, and included the opening of cystocarps and the presence of dehiscent cavities. Release rates of jasmonates after exogenous MeJa treatment were also modified based on the cystocarp maturation level. All of these effects were reduced in the presence of phenidone, which blocks MeJa production, indicating that the MeJa action is genuine. The effects of MeJa during cystocarp maturation were not replicated by derivatives of reactive oxygen species from the same jasmonic acid biosynthetic pathway, as the activities of scavenger enzymes and lipid peroxidation were unchanged between infertile and fertile thalli. Therefore, a reactive oxygen species–based mechanism is not involved during cystocarp development. We conclude that MeJa has an independent function as a growth regulator during G. imbricata reproduction.  相似文献   

3.
Physiological and biochemical changes related to methyl jasmonate (MeJA)-induced chilling tolerance of rice (Oryza sativa L. cv. Taichung Native 1) seedlings were investigated. Treatment of whole plants with 10 mmol m?3 MeJA for 48 h before chilling (5 °C) was optimal for the induction of chilling tolerance. MeJA greatly improved the survival ratio of chilled seedlings and ameliorated chilling injury such as demolition of membrane structure (estimated by electrolyte leakage). MeJA also prevented water loss in chilled seedlings by reducing the opening of stomata and decreasing the root bleeding rate. Putrescine and spermine levels in shoots increased but spermidine levels decreased on exposure to MeJA. In roots, putrescine levels also increased and spermidine levels increased transiently on exposure to MeJA. Activities of arginine decarboxylase (ADC; EC 4.1.1.19) and S-adenosylmethionine decarboxylase (SAMDC; EC 4.1.1.50) in both shoots and roots increased on exposure to MeJA, while the activity of ornithine decarboxylase (ODC; EC 4.1.1.17) remained unchanged. The MeJA-induced putrescine increase was inhibited by 50 mmol m?3α-difluoromethylarginine (DFMA), an irreversible inhibitor of ADC, but not by 50 mmol m?3α-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC. The effect of MeJA on the induction of chilling tolerance was also reduced by 50 mmol m?3 DFMA. The effects of DFMA were partly prevented by 1 mol m?3 putrescine. This indicates that putrescine accumulation is required for the induction of chilling tolerance of rice seedlings by MeJA.  相似文献   

4.
Polyamines (PAs) such as putrescine (PUT), spermidine (SPD), and spermine (SPM) are ubiquitous aliphatic amines involved in widely varying physiological behavior, but particularly they are actively involved in cell growth, division, and differentiation during reproductive events in plants. The contents of PUT, SPD, and SPM in infertile and fertile thalli of the red macroalga Grateloupia sp. were compared, and the results revealed a significant decrease in quantity from infertile to fertile status. At the enzymatic level, l ‐ornithine decarboxylase (ODC) was mainly detected, and l ‐arginine decarboxylase activity was not diminished by the inhibition of ODC. The maximum enzymatic activities, within the range of activities observed, correlated with the lower levels of polyamines in fertile thalli. In culture, SPM promoted the maturation of cystocarps to the eventual liberation of spores from aseptic fertile explants. PAs accumulated in cultivated explants as compared with noncultivated, but exogenous SPM addition further increased the endogenous SPM. The addition of berenyl, cordycepin, cyclohexylamine, dicyclohexylamine, and aurintricarboxylic acid blocked the synthesis in culture at the level of PUT, and partially at SPD and SPM synthesis, but the addition of SPM restored the levels of SPD and SPM as SPM accumulated, and they appeared to interconvert each other. The results obtained suggest that the culture in presence of SPM restored a deficient SPM situation in fertile explants, thus promoting sporulation.  相似文献   

5.
The effect of glucocorticoids on polyamine metabolism has been elucidated further by measuring putrescine, spermidine, and spermine levels as well as ornithine decarboxylase, S-adenosylmethionine decarboxylase, and N1-acetylspermidine transferase activities in the hippocampus, cerebellar cortex, vermis, and deep nuclei of adrenalectomized rats. At 6 h after corticosterone or dexamethasone administration, the specific activities of ornithine decarboxylase and N1-acetylspermidine transferase showed the greatest increases in all brain tissues examined, and at 12 h, S-adenosylmethionine decarboxylase activity was not increased significantly. The hippocampus and cerebellar regions displayed different responses to corticosterone and dexamethasone, corresponding to the distribution of glucocorticoid and mineralocorticoid receptors. Corticosterone and dexamethasone increased ornithine decarboxylase and N1-acetylspermidine transferase activities in a dose-dependent manner, with dexamethasone being more active than corticosterone in all tissues. However, estradiol, progesterone, testosterone, and aldosterone were only active at doses greater than 5 mg/kg. The great increases in ornithine decarboxylase and N1-acetylspermidine transferase activities were accompanied by a marked increase in putrescine level and a small decrease in spermidine level. Our data confirm that the hippocampus and cerebellum are glucocorticoid target tissues and suggest that the increase in the content of putrescine, following acute treatment with glucocorticoids, is dependent on ornithine decarboxylase as well as N1-acetylspermidine transferase induction.  相似文献   

6.
A cDNA of tobacco BY-2 cells corresponding to an mRNA species which was rapidly induced by methyl jasmonate (MeJA) in the presence of cycloheximide (CHX) was found to encode ornithine decarboxylase (ODC). Another cDNA from a MeJA-inducible mRNA encoded S-adenosylmethionine synthase (SAMS). Although these enzymes could be involved in the biosynthesis of polyamines, the level of putrescine, a reaction product of ODC, increased slowly and while the levels of spermidine and spermine did not change following treatment of cells with MeJA. However, N-methylputrescine, which is a precursor of pyrrolidine ring of nicotine, started to increase shortly after MeJA-treatment of cells and the production of nicotine occured thereafter. The levels of mRNA for arginine decarboxylase (ADC), an alternative enzyme for putrescine synthesis, and that for S-adenosylmethionine decarboxylase (SAMDC), required for polyamine synthesis, were not affected by MeJA. In addition to mRNAs for ODC and SAMS, mRNA for putrescine N-methyltransferase (PMT) was also induced by MeJA. Unlike the MeJA-induction of ODC mRNA, MeJA-induction of SAMS and PMT mRNAs were blocked by CHX. The level of ODC mRNA declined after 1 to 4 h following MeJA treatment, while the levels of mRNAs for SAMS and PMT continued to increase. Auxin significantly reduced the MeJA-inducible accumulation of mRNAs for ODC, SAMS and PMT. These results indicate that MeJA sequentially induces expression of a series of genes involved in nicotine biosynthesis by multiple regulatory mechanisms.p>  相似文献   

7.
The activities of ornithine decarboxylase and spermidine N1-acetyltransferase started to rise in normal rat liver 4 h after the intraperitoneal injection of methylglyoxal bis(guanylhydrazone) (MGBG; 80 mg/kg). Ornithine decarboxylase had its greatest activity 24 h after a single injection of MGBG and the acetyltransferase peaked 8 h after the injection. Measurement of the apparent half-life of ornithine decarboxylase after MGBG treatment revealed a clear decrease in the decay rate of the enzyme in both normal and regenerating rat liver. MGBG slowed the decay of the transferase also in normal rat liver, as well as inhibiting its activity in vitro. The stabilization by MGBG of these two short-lived proteins involved in metabolism of polyamines should lead to their accumulation in liver, thus explaining their increased activities. In the case of ornithine decarboxylase, studies with a specific antibody against mouse kidney ornithine decarboxylase showed that the rise in ornithine decarboxylase activity after MGBG application was not due to the appearance of an immunologically different isozyme.  相似文献   

8.
Inducible promoters are important in regulating the expression of resistance genes when plants are attacked by insects or pathogens. Evaluation of the Shpx6b peroxidase promoter from the tropical forage legume Stylosanthes humilis[ Curtis MD, Rae AL, Rusu AG, Harrison SJ & Manners JM (1997) A peroxidase gene promoter induced by phytopathogens and methyl jasmonates in transgenic plants. Molecular Plant Microbial Interactions 10: 326–338] in transgenic tobacco plants Nicotiana tabacum L. (Solanaceae) demonstrated that this promoter could drive expression of both the β‐glucuronidase (GUS uidA gene of E. coli) and green fluorescent protein (GFP) reporter genes in leaf tissues during attack by chewing insects – larvae of potato tuber moth (PTM) Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae) and sucking insects – green peach aphids Myzus persicae Sulzer (Homoptera: Aphididae). Strong GUS expression was present in tissues next to cells damaged by PTM larvae 24 h after infestation. With aphid infestation, GUS expression was limited to sites of feeding, and was observed 48 h after infestation. The expression of GFP mirrored that of GUS expression for both treatments, but was normally detected 48 h after infestation. Similarly, the exogenous application of methyl jasmonate (MeJa) induced GUS uniformly across leaf tissue, and mechanical wounding activated GUS expression at wound sites, similar to PTM larvae. GFP expression was observed 48 h after treatment, and for mechanical wounding GFP was localised in a manner similar to PTM damage. For MeJa treatment, GFP expression was more pronounced in cells around the midrib, and it was not uniformly induced across the leaf tissue. GUS reporter gene levels were also assayed to quantify expression, and the results were consistent with the observed histological patterns of expression. The results presented here show that the Shpx6b promoter switches on the expression of linked genes after damage by insect herbivores, and could be useful in regulating the expression of heterologous genes for insect and/or pathogen resistance in transgenic plants.  相似文献   

9.
10.
11.
Ornithine decarboxylase activity in insulin-deficient states   总被引:1,自引:1,他引:0       下载免费PDF全文
The activity of ornithine decarboxylase, the rate-controlling enzyme in polyamine biosynthesis, was determined in tissues of normal control rats and rats made diabetic with streptozotocin. In untreated diabetic rats fed ad libitum, ornithine decarboxylase activity was markedly diminished in liver, skeletal muscle, heart and thymus. Ornithine decarboxylase was not diminished in a comparable group of diabetic rats maintained on insulin. Starvation for 48h decreased ornithine decarboxylase activity to very low values in tissues of both normal and diabetic rats. In the normal group, refeeding caused a biphasic increase in liver ornithine decarboxylase; there was a 20-fold increase in activity at 3h followed by a decrease in activity, and a second peak between 9 and 24h. Increases in ornithine decarboxylase in skeletal muscle, heart and thymus were not evident until after 24–48h of refeeding, and only a single increase occurred. The increase in liver ornithine decarboxylase in diabetic rats was greater than in normal rats after 3h of refeeding, but there was no second peak. In peripheral tissues, the increase in ornithine decarboxylase with refeeding was diminished. Skeletal-muscle ornithine decarboxylase is induced more rapidly when meal-fed rats are refed after a period without food. Refeeding these rats after a 48h period without food caused a 5-fold increase in ornithine decarboxylase in skeletal muscle at 3h in control rats but failed to increase activity in diabetic rats. When insulin was administered alone or together with food to the diabetic rats, muscle ornithine decarboxylase increased to activities even higher than in the refed controls. In conclusion, these findings indicate that the regulation of ornithine decarboxylase in many tissues is grossly impaired in diabetes and starvation. They also suggest that polyamine formation in vivo is an integral component of the growth-promoting effect of insulin or some factor dependent on insulin.  相似文献   

12.
The effects of ethylene (C2H4) on tetrasporogenesis of the red seaweed Pterocladiella capillacea (S. G. Gmelin) Bornet were investigated. Ethylene is a gaseous hormone that is involved in a variety of physiological processes (e.g., flowering, fruit abscission) in higher plants. To study the effects of ethylene on the reproduction of the red seaweed P. capillacea, immature tetrasporophytic thalli were exposed to a flow of ethylene for different time periods. Maximum maturation of tetrasporangia was observed at 7 d in thalli exposed to ethylene for 15 min. This maturation was accompanied by a significant increase in the free fraction of putrescine (Put) and a 5‐fold increase in the level of total RNA. These changes were specifically due to ethylene since they were blocked by the presence of the ethylene perception inhibitor silver thiosulphate (STS). Moreover, P. capillacea was determined to produce ethylene at a rate of 1.12 ± 0.06 nmol ethylene · h?1· g?1 fresh weight (fwt) with specific activities for 1‐aminocyclopropane‐1‐acrylic acid (ACC) synthase of 11.21 ± 1.19 nmol ethylene · h?1· mg?1 protein and for ACC oxidase (ACO) of 7.12 ± 0.11 nmol ethylene · h?1· mg?1 protein. We conclude that ethylene may indeed be a physiological regulator of tetrasporogenesis in this red seaweed.  相似文献   

13.
The treatment of Arabidopsis thaliana with methyl jasmonate was used to investigate the reaction of 2467 selected genes of primary and secondary metabolism by macroarray hybridization. Hierarchical cluster analysis allowed distinctions to be made between diurnally and methyl jasmonate regulated genes in a time course from 30 min to 24 h. 97 and 64 genes were identified that were up- or down-regulated more than 2–fold by methyl jasmonate, respectively. These genes belong to 18 functional categories of which sulfur-related genes were by far strongest affected. Gene expression and metabolite patterns of sulfur metabolism were analysed in detail, since numerous defense compounds contain oxidized or reduced sulfur. Genes encoding key reactions of sulfate reduction as well as of cysteine, methionine and glutathione synthesis were rapidly up-regulated, but none of the known sulfur-deficiency induced sulfate transporter genes. In addition, increased expression of genes of sulfur-rich defense proteins and of enzymes involved in glucosinolate metabolism was observed. In contrast, profiling of primary and secondary sulfur metabolites revealed only an increase in the indole glucosinolate glucobrassicin upon methyl jasmonate treatment. The observed rapid mRNA changes were thus regulated by a signal independent of the known sulfur deficiency response. These results document for the first time how comprehensively the regulation of sulfur-related genes and plant defense are connected. This interaction is discussed as a new approach to differentiate between supply- and demand-driven regulation of the sulfate assimilation pathway.  相似文献   

14.
Torulaspora delbrueckii alone and in combination with methyl jasmonate was applied to the control of Penicillium expansum. For evaluation of direct effect of Methyl jasmonate on mycelial growth of pathogen, it was added to potato dextrose agar culture at different concentrations. Effect of methyl jasmonate on population of yeast in nutrient yeast dextrose broth media was determined after 24 and 48 h. Results showed that methyl jasmonate had no significant direct effect on pathogen and yeast. Also, evaluation of methyl jasmonate effect on the population of yeast in apple wounds indicated that methyl jasmonate at different concentrations increased population growth of yeast at 20°C, 8 and 15 days after inoculation in toward the control and it had no significant effect on population dynamics of yeast at 4°C. In vivo, the results indicated that combination of methyl jasmonate with antagonistic yeast reduced the blue mould of apples better than methyl jasmonate and yeast alone.  相似文献   

15.
Polyamines such as putrescine, spermidine and spermine are ubiquitous aliphatic amines involved in reproductive events in plants and algae, and first become evident through changes in endogenous levels during reproductive development. To examine whether the differences observed in polyamines, during carposporogenesis, in the red alga Grateloupia, followed a specific pattern as is seen in other organisms, infertile axes (i.e. not showing cystocarps) were excised from the same holdfast of female fertilized individuals (i.e. showing cystocarps in other axes), and cultivated until the cystocarps became visible. Changes in the endogenous levels of free putrescine, spermidine and spermine were monitored over the 8 days of culture. The activity of enzymes related to polyamine metabolism, such as l-ornithine decarboxylase (ODC), diamine oxidase and polyamine oxidase, was measured at the beginning and end of the experimental period. Up to 50% of the infertile axes became fertile and produced cystocarps at a density of 1.91 ± 0.1 cystocarps mm−2 after 8 days. The endogenous content of spermine increased markedly over the first 5 days of culture, then decreased to the initial level by day 8. Spermidine followed a similar pattern to spermine, whereas putrescine remained at high levels, until day 5 when it decreased abruptly. The activity of ODC was less on day 8 than on day 0, whereas the activities of diamine oxidase and polyamine oxidase increased. In parallel experiments with explants from infertile axes, exogenously added spermine (10−6 M) increased the number of cystocarps, and reversed the effect of cyclohexylamine (CHA), which is known to inhibit polyamine synthesis in Grateloupia. Serial sectioning and microscopic observation of specimens from explants cultivated in 10−6 M spermine indicated that cystocarp development was induced. The results suggest that, during transition from infertile to fertile spermine is accumulated, thus favouring the development of cystocarps, given the presumed role of spermine as an inducing agent.  相似文献   

16.
茉莉酮酸甲酯对水稻化感物质的诱导效应   总被引:18,自引:3,他引:15  
在室内和田间条件下 ,外源茉莉酮酸甲酯均能显著地诱导水稻化感物质的合成 ,而且这种诱导效应与施用茉莉酮酸甲酯的浓度和诱导时间显著相关。 0 .4 m mol/L浓度和处理后 4 8h,茉莉酮酸甲酯对水稻化感物质的诱导效应最强。同样 ,不同的水稻品种对茉莉酮酸甲酯的诱导响应也有显著差异。水稻化感品种 PI312 777和丰华占在茉莉酮酸甲酯的诱导下能很快合成大量的化感物质 ,而水稻非化感品种华粳籼的化感物质的含量虽也有所增加 ,但达不到能显示化感作用的浓度。进一步实验证明 :茉莉酮酸甲酯在处理 4 8h后虽能诱导水稻品种合成大量的化感物质 ,但这一诱导效应并不能长期维持。研究揭示 :水稻化感物质的合成可在外部因子的作用下动态变化 ,这对揭示和充分利用水稻的化感作用机制有重要意义。  相似文献   

17.
18.
19.
20.
Similar to the prostanoid-mediated inflammatory response in mammals, jasmonate-mediated wound response in plant leaves is inhibited by salicylic acid (SA) or acetylsalicylate (aspirin). In tobacco BY-2 cells, expression of the gene for ornithine decarboxylase (ODC) involved in putrescine synthesis is rapidly inducible by methyl jasmonate (MeJA). A nuclear gene for ODC isolated from tobacco, gNtODC-1, was an intron-less gene and MeJA induced the expression of a GUS fusion gene with the gNtODC-1 promoter in transformed tobacco cells. Although SA alone did not induce the expression, 0.2 to 20 microM SA increased the MeJA-induced expression of the fusion gene to about two-fold. A similar increase was observed with aspirin but not with 3- or 4-hydroxybenzoic acids. SA at concentrations up to 200 microM did not inhibit the MeJA-induction of mRNAs for the GUS fusion gene and the endogenous gene for ODC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号