首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenine nucleotides promote dissociation of pertussis toxin subunits   总被引:11,自引:0,他引:11  
Pertussis toxin is composed of an enzymatically active A subunit and a binding component (B oligomer). Both the holotoxin and the isolated A subunit have previously been shown to exhibit NAD glycohydrolase activity although the A subunit is more active on a molar basis than the holotoxin. We have investigated the mechanism by which ATP stimulates the activity of this toxin. Since dissociation of pertussis toxin subunits would result in increased NAD glycohydrolase activity, the ability of ATP to promote release of the A subunit from the B oligomer was examined. In the presence of the zwitterionic detergent 3-(3-cholamidopropyldimethyl)-1-ammonio)-propanesulfonate, concentrations of ATP as low as 1 microM promoted subunit dissociation. The concentration of ATP required for release of the A subunit was similar to that required for stimulation of NAD glycohydrolase activity. Both ATP and ADP promoted subunit dissociation and stimulated NAD glycohydrolase activity. In contrast, AMP and adenosine did not alter NAD glycohydrolase activity or affect subunit structure. The ability of ATP to decrease the affinity of the A subunit for the B oligomer may play a role in nucleotide stimulation of pertussis toxin activity.  相似文献   

2.
The S1 subunit of pertussis toxin catalyses the hydrolysis of NAD+ (NAD+ glycohydrolysis) and the NAD(+)-dependent ADP-ribosylation of guanine-nucleotide-binding proteins. Recently, the S1 subunit of pertussis toxin was shown to be photolabelled by using radiolabelled NAD+ and u.v.; the primary labelled residue was Glu-129, thereby implicating this residue in the binding of NAD+. Studies from various laboratories have shown that the N-terminal portion of the S1 subunit, which shows sequence similarity to cholera toxin and Escherichia coli heat-labile toxin, is important to the maintenance of both glycohydrolase and transferase activity. In the present study the photolabelling technique was applied to the analysis of a series of recombinant-derived S1 molecules that possessed deletions or substitutions near the N-terminus of the S1 molecule. The results revealed a positive correlation between the extent of photolabelling with NAD+ and the magnitude of specific NAD+ glycohydrolase activity exhibited by the mutants. Enzyme kinetic analyses of the N-terminal mutants also identified a mutant with substantially reduced activity, a depressed photolabelling efficiency and a markedly increased Km for NAD+. The results support a direct role for the N-terminal region of the S1 subunit in the binding of NAD+, thereby providing a rationale for the effect of mutations in this region on enzymic activity.  相似文献   

3.
H R Kaslow  D D Lesikar 《Biochemistry》1987,26(14):4397-4402
The combination of ATP, CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate), and DTT (dithiothreitol) is known to promote the expression of the NAD glycohydrolase activity of pertussis toxin, which resides in the toxin's S1 subunit. By monitoring changes in electrophoretic mobility, we have found that ATP and CHAPS act by promoting the reduction of the disulfide bond of the S1 subunit. In addition, ATP, CHAPS, and DTT allowed sulfhydryl-alkylating reagents to inactivate the NAD glycohydrolase activity. In the presence of iodo[14C]acetate, the combination of ATP, CHAPS, and DTT increased 14C incorporation into only the S1 subunit of the toxin, indicating that alkylation of this subunit was responsible for the loss of activity. If iodoacetate is used as the alkylating reagent, alkylation can be monitored by an acidic shift in the isoelectric point of the S1 peptide. Including NAD in alkylation reactions promoted the accumulation of a form of the S1 peptide with an isoelectric point intermediate between that of native S1 and that of S1 alkylated in the absence of NAD. This result suggests that NAD interacts with one of the two cysteines of the S1 subunit. In addition, we found the pH optimum for the NAD glycohydrolase activity of pertussis toxin is 8, which may reflect the participation of a cysteine in the catalytic mechanism of the toxin.  相似文献   

4.
Role of cysteine 41 of the A subunit of pertussis toxin   总被引:2,自引:0,他引:2  
The 2 cysteine residues present in the A subunit of pertussis toxin form a disulfide bond in the conformation of the toxin secreted from the bacteria. Previous studies have shown that reduction of this bond is necessary for activation of the enzyme. We have found that reduction of this bond also alters the conformation of the A subunit such that it no longer readily associates with the B oligomer of the toxin, a finding which may have implications concerning the form of the toxin found within the eukaryotic cell. In addition, we have demonstrated that reduction of the disulfide bond of the purified A subunit followed by treatment with sulfhydryl-modifying reagents such as N-ethylmaleimide or 5,5'-dithiobis-(2-nitrobenzoic acid) results in inhibition of the NAD glycohydrolase activity of the protein. When a tryptic fragment of the A subunit which contains only 1 of the cysteine residues (Cys-41) of the native protein was reacted with N-ethylmaleimide, the NAD glycohydrolase activity of this fragment was substantially reduced. These data indicate that Cys-41 may be in a region of the molecule which is critical for the enzymatic activity of the toxin.  相似文献   

5.
Sulfhydryl-alkylating reagents are known to inactivate the NAD glycohydrolase and ADP-ribosyltransferase activities of the S1 subunit of pertussis toxin, a protein which contains two cysteines at positions 41 and 200. It has been proposed that NAD can retard alkylation of one of the two cysteines of this protein (Kaslow, H.R., and Lesikar, D.D. (1987) Biochemistry 26, 4397-4402). We now report that NAD retards the ability of these alkylating reagents to inactivate the S1 subunit. In order to determine which cysteine is protected by NAD, we used site-directed mutagenesis to construct analogs of the toxin with serines at positions 41 and/or 200. Sulfhydryl-alkylating reagents reduced the ADP-ribosyltransferase activity of the analog with a single cysteine at position 41; NAD retarded this inactivation. In contrast, sulfhydryl-alkylating reagents did not inactivate analogs with serine at position 41. An analog with alanine at position 41 possessed substantial ADP-ribosyltransferase activity. We conclude that alkylation of cysteine 41, and not cysteine 200, inactivates the S1 subunit of pertussis toxin, but that the sulfhydryl group of cysteine 41 is not essential for the ADP-ribosyltransferase activity of the toxin. These results suggest that the region near cysteine 41 contributes to features of the S1 subunit important for ADP-ribosyltransferase activity. Using site-directed mutagenesis, we found that changing aspartate 34 to asparagine, arginine 39 to lysine, and glutamine 42 to glutamate had little effect on ADP-ribosyltransferase activity. However, substituting an asparagine for the histidine at position 35 markedly decreased, but did not eliminate, ADP-ribosyltransferase activity. Chou-Fasman analysis predicted no significant modifications in secondary structure of the S1 peptide with the change of histidine 35 to asparagine. Thus, histidine 35 may interact with a substrate of the S1 subunit without being essential for catalysis.  相似文献   

6.
Purified recombinant S1 subunit of pertussis toxin (rS1) possessed similar NAD glycohydrolase and ADP-ribosyltransferase activities as S1 subunit purified from pertussis toxin. Purified rS1 and C180 peptide, a deletion peptide which contains amino acids 1-180 of rS1, had Km values for NAD of 24 and 13 microM and kcat values of 22 and 24 h-1, respectively, in the NAD glycohydrolase reaction. In contrast, under linear velocity conditions, the C180 peptide possessed less than 1% of the ADP-ribosyltransferase activity of rS1 using transducin as target. Radiolabeled tryptic peptides of transducin that had been ADP-ribosylated by either rS1 or C180 peptide were identical which suggested that both rS1 and C180 peptide ADP-ribosylated the same amino acid within transducin. To extend the functional primary amino acid map of the S1 subunit, two carboxyl-terminal deletions were constructed. One deletion, C195, removed the 40 carboxyl-terminal amino acids and the other, C219, removed the 16 carboxyl-terminal amino acids of the S1 subunit. Both C195 and C219 migrated in reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis with apparent molecular masses of 22,000 and 27,500 Da, respectively. Relative to the C180 peptide C195 possessed 10-20-fold increase and C219 possessed 100-150-fold increase in ADP-ribosyltransferase activities. In addition, C219 appeared to have the same ADP-ribosyltransferase activity as rS1. These studies indicate that (i) rS1, purified from Escherichia coli, possesses biochemical properties similar to S1 subunit purified from pertussis toxin, (ii) amino acids 1-180 of the S1 subunit contain residues required for NAD binding, N-glycosidic cleavage, and transfer of ADP-ribose to transducin, and (iii) residues between 181 and 219 of the S1 subunit are required for efficient ADP-ribosyltransferase activity.  相似文献   

7.
Incubation of FRTL-5 rat thyroid cell membranes with [32P]NAD and pertussis toxin results in the specific ADP-ribosylation of a protein of about 40 kDa. This protein has the same molecular mass of the alpha i subunit of the adenylate cyclase regulatory protein Ni and is distinct from proteins ADP-ribosylated by cholera toxin in the same membranes. Prior treatment of FRTL-5 cells with pertussis toxin results in the ADP-ribosylation of Ni, as indicated by the loss of the toxin substrate in the ADP-ribosylation assay performed with membranes prepared from such cells. Preincubation of FRTL-5 cells with thyrotropin causes the same loss; cholera toxin has no such effect. Pertussis toxin, as do thyrotropin and cholera toxin, increases cAMP levels in FRTL-5 cells. Forskolin together with thyrotropin, cholera toxin or pertussis toxin causes a further increase in cAMP levels. Pertussis toxin and thyrotropin are not additive in their ability to increase adenylate cyclase activity, whereas both substances are additive with cholera toxin. A role of Ni in the thyrotropin regulation of the adenylate cyclase activity in thyroid cells is proposed.  相似文献   

8.
The gene encoding a catalytically active deletion peptide, the C180 peptide, of the S-1 subunit of pertussis toxin was engineered to facilitate mutagenesis at the Trp-26 (wild-type) coding sequence. A synthetic double-stranded oligonucleotide was inserted into the C180 gene such that all possible codons would be introduced into position 26. Seven individual mutants of the C180 peptide which possessed amino acid substitutions at residue 26 (collectively termed C180W26n peptides) were purified from periplasmic extracts of Escherichia coli. Each C180W26n peptide was present as a single major peptide that had an apparent molecular mass of between 20.9 and 24.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and each showed similar immunoreactivity relative to the C180 peptide. The C180W26n peptides demonstrated marked reduction of both ADP-ribosyltransferase and NAD glycohydrolase activities at 25 nM and 10 microM NAD, respectively. Kinetic analysis of the two most active mutants, C180W26F and C180W26Y, revealed that the major perturbation of NAD glycohydrolase activity was due to an increase (approximately 20-fold) in the Km for NAD between these mutants and the C180 peptide.  相似文献   

9.
ADP-ribosylation by cholera toxin of the guanine nucleotide binding regulatory protein (Gs) of rat liver membrane adenylate cyclase was inhibited by 0.1-1 mM MDL 12330A or 0.1-1 mM chlorpromazine. Basal as well as cholera toxin activated adenylate cyclase activity in liver membranes was also inhibited by the two drugs. NAD glycohydrolase activity and self-ADP-ribosylation of cholera toxin were also inhibited by MDL 12330A and chlorpromazine. These effects of MDL 12330A and chlorpromazine may be related to their effects on cholera toxin-induced fluid secretion in vivo.  相似文献   

10.
Structure-activity analysis of the activation of pertussis toxin   总被引:7,自引:0,他引:7  
Bordetella pertussis, the causative agent of whooping cough, releases pertussis toxin in an inactive form. The toxin consists of an A protomer containing one S1 peptide subunit and a B oligomer containing several other peptide subunits. The toxin binds to cells via the B oligomer, and the S1 subunit is activated and expresses ADP-ribosyltransferase and NAD glycohydrolase activities. Treatment of purified toxin with dithiothreitol (DTT) in vitro increases both activities. ATP and the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) synergistically reduce the A0.5 (activation constant) for DTT from greater than 100 mM to 200 microM. We studied the structure-activity relationships of activators of the toxin. In the presence of CHAPS (1%) and DTT (10 mM) the following compounds increased the NAD glycohydrolase activity of the toxin with the following A0.5's in microM and fraction of the ATP effect in parentheses: ATP, 0.2 (1.0); ADP, 6 (0.8); UTP, 15 (0.7); GTP, 35 (0.6); pyrophosphate, 45 (0.7); triphosphate, 60 (0.6); tetraphosphate, greater than or equal to 170 (greater than or equal to 0.4). Thus, the polyphosphate moiety is sufficient to stimulate the toxin, and the adenosine moiety confers upon ATP its extraordinary affinity for the toxin. Phospholipid and detergents could substitute for CHAPS in the activation of the toxin. Glutathione substituted for DTT with an A0.5 of 2 mM, a concentration within the range found in eucaryotic cells. Thus, membrane lipids and cellular concentrations of glutathione and ATP are sufficient to activate pertussis toxin without the need for a eucaryotic enzymatic process.  相似文献   

11.
Five ADP-ribosylating bacterial toxins, pertussis toxin, cholera toxin, diphtheria toxin, Escherichia LT toxin and Pseudomonas exotoxin A, show significant homology in selected segments of their sequence. Site-directed mutagenesis and chemical modification of residues within these regions cause loss of catalytic activity and of NAD binding. On the basis of these results and of molecular modelling based on the three-dimensional structure of exotoxin A, the geometry of an NAD binding site common to all the toxins is deduced and described in the paper. For diphtheria toxin, sequence similarity with exotoxin A is such that its preliminary structure can be computed by molecular modelling, whereas for the other toxins similarity appears to be restricted to the NAD binding site. Moreover, an analysis of molecular fitting of the NAD molecule into its binding cavity suggests a new model for the conformation of the bound NAD that better accounts for all available experimental information.  相似文献   

12.
Cholera toxin was found to stimulate adenylate cyclase activity in washed membrane of pigeon erythrocytes in the presence of dithiothreitol and NAD. When tested with isolated cholera toxin components, the stimulatory activity was found with subunit A or polypeptide A1 derived from this subunit, but not with A2 or subunit B. On a molar basis, polypeptide A1 was approximately four times more active than cholera toxin. Dithiothreitol was not required in the action of polypeptide A1, suggesting that the reagent was needed only to release A1 from subunit A or the holotoxin for their action on adenylate cyclase. The single SH group in polypeptide A1 was not involved in the activity of the peptide, since chemical modification of the thiol group did not alter the stimulatory activity of the peptide. The presence of NAD was, however, essential for the activation of adenylate cyclase with cholera toxin, subunit A, or polypeptide A1. Elevation of the adenylate cyclase activity was also observed when the intact pigeon erythrocytes were incubated with polypeptide A1, although a 30-fold molar excess of A1 over that of holotoxin was required for the same level of activation.  相似文献   

13.
ADP-ribosyl cyclase activities in cultured rat astrocytes were examined by using TLC for separation of enzymatic products. A relatively high rate of [3H]cyclic ADP-ribose production converted from [3H]NAD+ by ADP-ribosyl cyclase (2.015+/-0.554 nmol/min/mg of protein) was detected in the crude membrane fraction of astrocytes, which contained approximately 50% of the total cyclase activity in astrocytes. The formation rate of [3H]ADP-ribose from cyclic ADP-ribose by cyclic ADP-ribose hydrolase and/or from NAD+ by NAD glycohydrolase was low and enriched in the cytosolic fraction. Although NAD+ in the extracellular medium was metabolized to cyclic ADP-ribose by incubating cultures of intact astrocytes, the presence of Triton X-100 in the medium for permeabilizing cells increased cyclic ADP-ribose production three times as much. Isoproterenol and GTP increased [3H]cyclic ADP-ribose formation in crude membrane-associated cyclase activity. This isoproterenol-induced stimulation of membrane-associated ADP-ribosyl cyclase activity was confirmed by cyclic GDP-ribose formation fluorometrically. This stimulatory action was blocked by prior treatment of cells with cholera toxin but not with pertussis toxin. These results suggest that ADP-ribosyl cyclase in astrocytes has both extracellular and intracellular actions and that signals of beta-adrenergic stimulation are transduced to membrane-bound ADP-ribosyl cyclase via G proteins within cell surface membranes of astrocytes.  相似文献   

14.
Adenine nucleotides directly stimulate pertussis toxin   总被引:6,自引:0,他引:6  
Both cholera toxin and pertussis toxin catalyzed ADP-ribosylation of purified bovine brain tubulin. The effect of cholera toxin was evident in the absence or presence of nucleotides. In contrast, pertussis toxin required adenine nucleotides for its ADP-ribosylating activity. ATP, ATP gamma S, App(NH)p, deoxy-ATP, and ADP all supported pertussis toxin-catalyzed ADP-ribosylations in the absence or presence of EDTA, suggesting that nucleotide hydrolysis was not involved. Adenine nucleotides also promoted pertussis toxin-catalyzed ADP-ribosylation of heat-treated bovine serum albumin. This result suggests that adenine nucleotides directly affect pertussis toxin. ATP stimulation of pertussis toxin-catalyzed hydrolysis of NAD to ADP-ribose supports this hypothesis.  相似文献   

15.
Antisera were raised to a synthetic peptide which represents the predicted C-terminal decapeptide of the alpha subunit of the G-proteins Gq and G11. Competitive ELISA indicated that antiserum CQ2 displayed strong reactivity against this peptide. Antiserum CQ2 identified an apparently single polypeptide of 42 kDa which was expressed widely. The mobility of this polypeptide in SDS-PAGE was not modified by pretreatment of cells with pertussis toxin, indicating that it was not a substrate for this toxin. Furthermore, the levels and mobility of this polypeptide were unaltered by treatment of cells with cholera toxin, defining that it was not related to Gs alpha.  相似文献   

16.
Extracts of Vibrio cholerae were assayed for various enzymatic activities associated with pyridine nucleotide cycle metabolism. The activities measured include NAD glycohydrolase, nicotinamide deamidase, nicotinamide mononucleotide deamidase, and nicotinic acid phosphoribosyltransferase. The results obtained demonstrate the existence in V. cholerae of the five-membered pyridine nucleotide cycle and the potential for a four-membered pyridine nucleotide cycle. The data presented also suggest that most of the NAD glycohydrolase in V. cholerae extracts is not directly related to cholera toxin.  相似文献   

17.
The A subunit of cholera toxin contains the ADP-ribosyltransferase activity in its major constituent polypeptide A1 (Mr 23,000) which is responsible for the elevation of cAMP typically observed with most mammalian cell types after exposure to the toxin. The primary structure of the A subunit, recently established by sequence analyses, is presented and used as the basis for the secondary structure prediction according to the method of Chou and Fasman. The results indicated the presence of 27% alpha-helix, 25% beta-structure, 12% beta-turn, and 36% random coil. The majority of the beta-structure consisted of six strands located in the NH2-terminal portion of the molecule (residues 33-106) covering one-half of the region corresponding to the A1 polypeptide portion. The beta-sheet domain led immediately into the active site region characterized by the alternating structures of beta-pleated sheet and alpha-helix (residues 95-140) similar to that reported for other NAD+ binding proteins. The presence of this structural feature in the region was confirmed by the use of another predictive method (J. Garnier et al., J. Mol. Biol. 1978, 120, 97-120). In addition, two regions (residues 14-18 and 200-214), previously identified to contain binding sites for the B subunit as evidenced by chemical modification and monoclonal antibody studies, were found to be in alpha-helix configuration.  相似文献   

18.
Bovine thyroid membranes possess both ADP ribosyltransferase and NAD glycohydrolase activities with the same Km values for NAD and the same pH optima. In intact membranes, the ADP ribosyltransferase is limited in its extent by the amount of available membrane acceptor which can be ADP-ribosylated; in membranes solubilized with lithium diiodosalicylate, an artificial acceptor, L-arginine methyl ester, can be substituted to eliminate this limitation. The product of the ADP ribosyltransferase is a mono-ADP-ribosylated acceptor whether the intact or solubilized membrane provides the enzyme activity and whether membrane or exogenous acceptor, L-arginine methyl ester, is utilized. The intact membranes and the solubilized preparation also have an enzyme activity which can release AMP from the mono-ADP-ribosylated acceptor whether formed by the action of the membrane ADP ribosyltransferase or the A promoter of cholera toxin. The NAD glycohydrolase activity appears to represent the half-reaction of the ADP ribosyltransferase, i.e. an activity measurable substituting water for a membrane acceptor or L-arginine methyl ester. Membranes from functional rat thyroid cells in culture, i.e. cells chronically stimulated by thyrotropin and unresponsive to further additions of thyrotropin, have low ADP-ribosylation but high NAD glycohydrolase activities. In contrast, membranes from nonfunctional rat thyroid cells, i.e. cells unresponsive to thyrotropin, have high ADP-ribosylation and low NAD glycohydrolase activities. NAD hydrolysis by the NAD glycohydrolase activity cannot account for the low ADP-ribosylation activity in membranes from the functioning cells, and its low level of ADP-ribosylation can be eliminated by solubilizing the membranes and substituting an artificial acceptor, L-arginine methyl ester. The ADP ribosyltransferase activity of rat thyroid cell membrane preparations can be enhanced by thyrotropin in a dose-dependent manner but not by insulin, glucagon, hydrocortisone, adrenocorticotropin, or its glycoprotein hormone analog, human chorionic gonadotropin. It is thus suggested (i) that, in analogy to cholera toxin, thyrotropin-stimulated ADP-ribosylation may be important in the regulation of the adenylate cyclase response and (ii) that the level of membrane acceptor available for ADP-ribosylation may relate both to a stable "'activated" state of the adenylate cyclase system in cells chronically stimulated with thyrotropin and/or to a desensitized state with regard to a failure of more thyrotropin to elicit additional functional responses.  相似文献   

19.
Thiols such as cysteine and dithiothreitol are substrates for the ADP-ribosyltransferase activity of pertussis toxin. When cysteine was incubated with NAD+ and toxin at pH 7.5, a product containing ADP-ribose and cysteine (presumably ADP-ribosylcysteine) was isolated by high-performance liquid chromatography, and characterized by its composition and release of AMP with phosphodiesterase. Cysteine has a Km of 105 mM at saturating NAD+ concentration. The ability of thiols to act as a substrate is one explanation for the very high concentrations (250 mM or greater) that have been observed to enhance the apparent NAD glycohydrolase activity of the toxin.  相似文献   

20.
ADP-ribosylation of bovine S-antigen by cholera toxin   总被引:2,自引:0,他引:2  
The S-antigen (alias 48K protein or arrestin) of bovine rod photoreceptors contains two stretches of amino acid sequence homologous to the ADP-ribosylation sites of the alpha subunit of transducin (Ta). We have found that cholera toxin transfers the ADP-ribosyl group from NAD to purified bovine S-antigen as well as to S-antigen in rod outer segment membranes, while Bordetella pertussis toxin is unable to catalyze the transfer reaction efficiently. Under the same conditions, both toxins catalyzed ADP-ribosylation of Ta in rod outer segments. The ADP-ribosylation of S-antigen by cholera toxin indicates that S-antigen not only exhibits sequence homology with the ADP-ribosylation sites of Ta, but it must also resemble Ta in the tertiary structure of the domain which determines the susceptibility of S-antigen to the catalytic action of cholera toxin. These results suggest that S-antigen may function as a competitor of Ta in some stage of the cGMP cascade of visual transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号