首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Affinity tags as fusions to the N- or C-terminal part of proteins are valuable tools to facilitate the production and purification of proteins. In many cases, there may be the necessity to remove the tag after protein preparation to regain activity. Removal of the tag is accomplished by insertion of a unique amino acid sequence that is recognized and cleaved by a site specific protease. Here, we report the construction of an expression vector set that combines N- or C-terminal fusion to either a hexahistidine tag or Streptag with the possibility of tag removal by factor Xa or recombinant tobacco etch virus protease (rTEV), respectively. The vector set offers the option to produce different variants of the protein of interest by cloning the corresponding gene into four different Escherichia coli expression vectors. Either immobilized metal affinity chromatography or streptactin affinity chromatography can be used for the one-step purification. Furthermore, we show the successful application of the expression vector for C-terminal hexahistidine tagging. The expression and purification of His-tagged L-2-hydroxyisocaproate dehydrogenase yields fully active enzyme. The tag removal is here accomplished by a derivative of rTEV.  相似文献   

2.
Affinity tags as fusions to the N- or C-terminal part of proteins are valuable tools to facilitate the production and purification of proteins. In many cases, there may be the necessity to remove the tag after protein preparation to regain activity. Removal of the tag is accomplished by insertion of a unique amino acid sequence that is recognized and cleaved by a site specific protease. Here, we report the construction of an expression vector set that combines N- or C-terminal fusion to either a hexahistidine tag or Streptag with the possibility of tag removal by factor Xa or recombinant tobacco etch virus protease (rTEV), respectively. The vector set offers the option to produce different variants of the protein of interest by cloning the corresponding gene into four different Escherichia coli expression vectors. Either immobilized metal affinity chromatography or streptactin affinity chromatography can be used for the one-step purification. Furthermore, we show the successful application of the expression vector for C-terminal hexahistidine tagging. The expression and purification of His-tagged L-2-hydroxyisocaproate dehydrogenase yields fully active enzyme. The tag removal is here accomplished by a derivative of rTEV.  相似文献   

3.
Expressing, isolating, and characterizing recombinant proteins is crucial to many disciplines within the biological sciences. Different molecular tagging technologies have been developed to enable each individual step of protein production, from expression through purification and characterization. Monitoring the entire production process requires multiple tags or molecular interactions, because no individual tag has provided the comprehensive breadth of utility. An ideal molecular tag is small and does not interrupt expression, solubility, folding or function of the protein being purified and can be used throughout the production process. We adapted and integrated a split-luciferase system (NanoBiT®, Promega ®) to perform the range of techniques essential to protein production. We developed a simple method to monitor protein expression in real time to optimize expression conditions. We constructed a novel affinity chromatography system using the split-luciferase system to enable purification. We adapted western blot analysis, enzyme-linked immunosorbent assay, and cell-based bioassay to characterize the expressed proteins. Our results demonstrate that a single-tag can fulfill all aspects needed throughout protein production.  相似文献   

4.
The use of protein fusion tag technology greatly facilitates detection, expression and purification of recombinant proteins, and the demands for new and more effective systems are therefore expanding. We have used a soluble truncated form of the third domain of the urokinase receptor as a convenient C-terminal fusion partner for various recombinant extracellular human proteins used in basic cancer research. The stability of this cystein-rich domain, which structure adopts a three-finger fold, provides an important asset for its applicability as a fusion tag for expression of recombinant proteins. Up to 20mg of intact fusion protein were expressed by stably transfected Drosophila S2 cells per liter of culture using this strategy. Purification of these secreted fusion proteins from the conditioned serum free medium of S2 cells was accompanied by an efficient one-step immunoaffinity chromatography procedure using the immobilized anti-uPAR monoclonal antibody R2. An optional enterokinase cleavage site is included between the various recombinant proteins and the linker region of the tag, which enables generation of highly pure preparations of tag-free recombinant proteins. Using this system we successfully produced soluble and intact recombinant forms of extracellular proteins such as CD59, C4.4A and vitronectin, as well as a number of truncated domain constructs of these proteins. In conclusion, the present tagging system offers a convenient general method for the robust expression and efficient purification of a variety of recombinant proteins.  相似文献   

5.
Histidine (His)‐tag is widely used for affinity purification of recombinant proteins, but the yield and purity of expressed proteins are quite different. Little information is available about quantitative evaluation of this procedure. The objective of this study was to evaluate His‐tag procedure quantitatively and to compare it with immunoprecipitation using radiolabeled tristetraprolin (TTP), a zinc finger protein with anti‐inflammatory property. Human embryonic kidney 293 cells were transfected with wild‐type and nine mutant plasmids with single or multiple phosphorylation site mutation(s) in His‐TTP. These proteins were expressed and mainly localized in the cytosol of transfected cells by immunocytochemistry and confocal microscopy. His‐TTP proteins were purified by Ni‐NTA beads with imidazole elution or precipitated by TTP antibodies from transfected cells after being labeled with [32P]‐orthophosphate. The results showed that (1) His‐tag purification was more effective than immunoprecipitation for TTP purification; (2) mutations in TTP increased the yield of His‐TTP by both purification procedures; and (3) mutations in TTP increased the binding affinity of mutant proteins for Ni‐NTA beads. These findings suggest that bioengineering phosphorylation sites in proteins can increase the production of recombinant proteins. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

6.
Affinity tags are highly efficient tools for protein purification. They allow the purification of virtually any protein without any prior knowledge of its biochemical properties. The use of affinity tags has therefore become widespread in several areas of research e.g., high throughput expression studies aimed at finding a biological function to large numbers of yet uncharacterized proteins. In some cases, the presence of the affinity tag in the recombinant protein is unwanted or may represent a disadvantage for the projected application of the protein, like for clinical use. Therefore, an increasing number of approaches are available at present that are designed for the removal of the affinity tag from the recombinant protein. Most of these methods employ recombinant endoproteases that recognize a specific sequence. These process enzymes can subsequently be removed from the process by affinity purification, since they also include a tag. Here, a survey of the most common affinity tags and the current methods for tag removal is presented, with special emphasis on the removal of N-terminal histidine tags using TAGZyme, a system based on exopeptidase cleavage. In the quest to reduce the significant costs associated with protein purification at large scale, relevant aspects involved in the development of downstream processes for pharmaceutical protein production that incorporate a tag removal step are also discussed. A comparison of the yield of standard vs. affinity purification together with an example of tag removal using TAGZyme is also included.  相似文献   

7.
A family of restriction enzyme- and ligation-independent cloning vectors has been developed for producing recombinant His-tagged fusion proteins in Escherichia coli. These are based on pURI2 and pURI3 expression vectors which have been previously used for the successful production of recombinant proteins at the milligram scale. The newly designed vectors combines two different promoters (lpp(p)-5 and T7 RNA polymerase ?10), two different endoprotease recognition sites for the His?-tag removal (enterokinase and tobacco etch virus), different antibiotic selectable markers (ampicillin and erythromycin resistance), and different placements of the His?-tag (N- and C-terminus). A single gene can be cloned and further expressed in the eight pURI vectors by using six nucleotide primers, avoiding the restriction enzyme and ligation steps. A unique NotI site was introduced to facilitate the selection of the recombinant plasmid. As a case study, the new vectors have been used to clone the gene coding for the phenolic acid decarboxylase from Lactobacillus plantarum. Interestingly, the obtained results revealed markedly different production levels of the target protein, emphasizing the relevance of the cloning strategy on soluble protein production yield. Efficient purification and tag removal steps showed that the affinity tag and the protease cleavage sites functioned properly. The novel family of pURI vectors designed for parallel cloning is a useful and versatile tool for the production and purification of a protein of interest.  相似文献   

8.
Protein tagging with a peptide is a commonly used technique to facilitate protein detection and to carry out protein purification. Flexibility with respect to the peptide tag is essential since no single tag suites all purposes. This report describes the usage of two short peptides from the SARS-associated coronavirus nucleocapsid (SARS-N) protein as protein tags. Plasmids for the generation of tagged proteins were generated by ligating synthetic oligonucleotides for the peptide-coding regions downstream of the protein coding sequence. The data show recognition of prokaryotically expressed HIV-1 Gag/p24 fusion protein by Western blot and efficient affinity purification using monoclonal antibodies against the tags. The SARS peptide antibody system described presents an alternative tagging opportunity in the growing field of protein science.  相似文献   

9.
Many proteins that accumulate in the form of insoluble aggregates when they are overproduced in Escherichia coli can be rendered soluble by fusing them to E. coli maltose binding protein (MBP), and this will often enable them to fold in to their biologically active conformations. Yet, although it is an excellent solubility enhancer, MBP is not a particularly good affinity tag for protein purification. To compensate for this shortcoming, we have engineered and successfully tested Gateway destination vectors for the production of dual His6MBP-tagged fusion proteins in the cytoplasm and periplasm of E. coli. The MBP moiety improves the yield and solubility of its fusion partners while the hexahistidine tag (His-tag) serves to facilitate their purification. The availability of a vector that targets His6MBP fusion proteins to the periplasm expands the utility of this dual tagging approach to include proteins that contain disulfide bonds or are toxic in the bacterial cytoplasm.  相似文献   

10.
The cellular slime mold Dictyostelium discoideum is increasingly be used for the overexpression of proteins. Dictyostelium is amenable to classical and molecular genetic approaches and can easily be grown in large quantities. It contains a variety of chaperones and folding enzymes, and is able to perform all kinds of post-translational protein modifications. Here, new expression vectors are presented that have been designed for the production of proteins in large quantities for biochemical and structural studies. The expression cassettes of the most successful vectors are based on a tandem affinity purification tag consisting of an octahistidine tag followed by the myosin motor domain tag. The myosin motor domain not only strongly enhances the production of fused proteins but is also used for a fast affinity purification step through its ATP-dependent binding to actin. The applicability of the new system has been demonstrated for the expression and purification of subunits of the dynein-dynactin motor protein complex from different species.  相似文献   

11.
The immobilization of a protein by covalent attachment to a support matrix should involve only functional groups of the protein that are not essential for its biological activity. A general strategy for obtaining recombinant proteins designed for oriented covalent grafting onto copolymers was investigated. The rationale involves the definition of seven p24-derived recombinant proteins as fused to either distant or adjacent tags comprising primary amine rich tag consisting of six contiguous lysines suitable for oriented covalent immobilization and a hexa-histidine tag suitable for metal chelate affinity purification. High-level expression, efficient affinity purification, and coupling yields onto maleic anhydride-alt-methyl vinyl ether copolymers higher than 95% were obtained for all proteins. Afterwards, an investigation of the biological features of the immobilized vs. nonimmobilized protein onto the copolymer allowed us to select one bioconjugate which was used in a diagnostic context, i.e., as a capture antigen in an ELISA format test. Sera from 107 HIV-seropositive individuals at various stages of HIV infection, including two seroconversion panels and 104 healthy HIV-seronegative controls, were tested using either RH24 or RK24H-copolymer coated onto the microtiter plate. These assays showed that the use of such a protein-copolymer bioconjugate allowed detection of lower antibody titers than the RH24 protein, illustrating the potential of applications of such doubly tagged proteins. Thus, a set of expression vectors was designed containing four different combinations of hexa-lysine and hexa-histidine tags and a multiple cloning site, allowing the production of different recombinant fusion proteins suitable for biological reactivity conservation after immobilization.  相似文献   

12.
Recombinant protein purification with affinity tags is a widely employed technique. One of the most common tags used for protein purification is the histidine tag (Histag). In this work, we use a tandem starch-binding domain (SBDtag) as a tag for protein purification. Four proteins from different sources were fused to the SBDtag, and the resulting fusion proteins were purified by affinity chromatography using the Histag or the SBDtag. The results showed that the SBDtag is superior to the Histag for protein purification. The efficient adsorption of the fusion proteins to raw corn starch was also demonstrated, and two fusions were selected to test purification directly using raw starch from rice, corn, potato, and barley. The two fusion proteins were successfully recovered from crude bacterial extract using raw starch, thus demonstrating that the SBDtag can be used as an efficient affinity tag for recombinant protein purification on an inexpensive matrix.  相似文献   

13.
We present and describe the construction of tagging cassettes and plasmids for tandem affinity purification (TAP) of proteins in Neisseria meningitidis. The tagging cassette is designed for carboxyl-terminal tagging of proteins and it contains only two repeats of IgG-binding units. P64k protein from N. meningitidis was chosen to fuse at these new affinity tags. This protein is well recognized in immunoassays by serum from human convalescent meningococcal disease and it is highly immunogenic in animals. To continue the characterization of this meningococcal antigen, we designed and constructed two vectors for use in TAP purification method. We also carried-out preliminary test to check the correct expression of the protein fused in these vectors.  相似文献   

14.
Streptococcus gordonii (S. gordonii) has been used as a gram-positive bacterial expression vector for secreted or surface-anchored recombinant proteins. Fusion of the gram-positive bacterial N-terminal signal sequence to the target protein is all that is required for efficient export. This system is termed SPEX for Surface Protein EXpression and has been used to express proteins for a variety of uses. In this study, the SPEX system has been further developed by the construction of vectors that express polyhistidine-tagged fusion proteins. SPEX vectors were constructed with an N-terminal or C-terminal histidine tag. The C-repeat region (CRR) from Streptococcus pyogenes M6 protein and the Staphylococcus aureus nuclease A (NucA) enzyme were tested for expression. The fusion proteins were purified using metal affinity chromatography (MAC). Results show that the fusion proteins were expressed and secreted from S. gordonii with the His tag at either the N- or C-terminal position and could be purified using MAC. The M6 fusions retained immunoreactivity after expression and purification as determined by immunoblots and ELISA analyses. In addition, NucA fusions retained functional activity after MAC purification. The M6-His and NucA-His fusions were purified approximately 15- and 10-fold respectively with approximately 30% recovery of protein using MAC. This study shows that the polyhistidine tag in either the N- or C-terminal position is a viable way to purify secreted heterologous proteins from the supernatant of recombinant S. gordonii cultures. This study further illustrates the value of the SPEX system for secreted expression and purification of proteins.  相似文献   

15.
Structural biology places a high demand on proteins both in terms of quality and quantity. Although many protein expression and purification systems have been developed, an efficient and simple system which can be easily adapted is desirable. Here, we report a new system which combines improved expression, solubility screening and purification efficiency. The system is based on two newly constructed vectors, pEHISTEV and pEHISGFPTEV derived from a pET vector. Both vectors generate a construct with an amino-terminal hexahistidine tag (His-tag). In addition, pEHISGFPTEV expresses a protein with an N-terminal His-tagged green fluorescent protein (GFP) fusion to allow rapid quantitation of soluble protein. Both vectors have a tobacco etch virus (TEV) protease cleavage site that allows for production of protein with only two additional N-terminal residues and have the same multiple cloning site which enables parallel cloning. Protein purification is a simple two-stage nickel affinity chromatography based on the His tag removal. A total of seven genes were tested using this system. Expression was optimised using pEHISGFPTEV constructs by monitoring the GFP fluorescence and the soluble target proteins were quantified using spectrophotometric analysis. All the tested proteins were purified with sufficient quantity and quality to attempt structure determination. This system has been proven to be simple and effective for structural biology. The system is easily adapted to include other vectors, tags or fusions and therefore has the potential to be broadly applicable.  相似文献   

16.
The purification of recombinant proteins by affinity chromatography is one of the most efficient strategies due to the high recovery yields and purity achieved. However, this is dependent on the availability of specific affinity adsorbents for each particular target protein. The diversity of proteins to be purified augments the complexity and number of specific affinity adsorbents needed, and therefore generic platforms for the purification of recombinant proteins are appealing strategies. This justifies why genetically encoded affinity tags became so popular for recombinant protein purification, as these systems only require specific ligands for the capture of the fusion protein through a pre-defined affinity tag tail. There is a wide range of available affinity pairs “tag-ligand” combining biological or structural affinity ligands with the respective binding tags. This review gives a general overview of the well-established “tag-ligand” systems available for fusion protein purification and also explores current unconventional strategies under development.  相似文献   

17.
We have compared four different vectors for expression of proteins with N- or C-terminal hexahistidine (His6) tags in Escherichia coli by testing these on 20 human proteins. We looked at a total recombinant protein production levels per gram dry cell weight, solubility of the target proteins, and yield of soluble and total protein when purified by immobilized metal ion affinity purification. It was found that, in general, both N- and C-terminal His6 tags have a noticeable negative affect on protein solubility, but the effect is target protein specific. A solubilizing fusion tag was able to partly counteract this negative effect. Most target proteins could be purified under denaturing conditions and about half of the proteins could be purified under physiological conditions. The highest protein production levels and yield of purified protein were obtained from a construct with C-terminal His tag. We also observe a large variation in cell growth rate, which we determined to be partly caused by the expression vectors and partly by the targets. This variation was found to be independent of the production level, solubility and tertiary structure content of the target proteins.  相似文献   

18.
The palette of transfer vectors available for generation of recombinant baculoviruses based on transposition-mediated recombination has been enlarged by constructing the pFmel-protA vector. The pFmel-protA plasmid includes the honeybee melittin secretion signal and a Staphylococcus aureus protein A fusion protein tag, which allows the secretion and purification of recombinant proteins. Using this system, the human beta1-4 galactosyltransferase-I protein was expressed in Sf9 insect cells at a level ranging from 22 to 28 U (4.8 to 6.0 mg)/L. The protein A tag enabled a simple monitoring of recombinant protein expression by enzyme-linked immunosorbent assay and Western blotting. Single step purification was achieved by immunoglobulin G affinity chromatography achieving a recovery yield of 28% and a specific activity of 1.9 U per mg of recombinant protein.  相似文献   

19.
【目的】构建串联亲和纯化原核表达载体,用于研究细菌中(生理状态或接近生理条件下的)蛋白-蛋白相互作用。【方法】设计并合成两条串联亲和标签序列,分别可以在靶蛋白N端和C端融合Protein G和链亲和素结合肽(Streptavidin binding peptide,SBP)标签;以pUC18载体为骨架,去除原有的阻遏蛋白基因,构建组成型表达载体pNTAP和pCTAP。【结果】成功构建N端和C端标签表达载体pNTAP和pCTAP,它们在大肠杆菌(Escherichia coli)BL21(DE3)、肠出血性大肠杆菌O157:H7和痢疾杆菌福氏5型M90T菌株中都可以实现表达。【结论】本实验构建的两个串联亲和纯化表达载体可以在部分革兰氏阴性细菌中表达,为研究细菌内蛋白-蛋白相互作用及致病菌毒力蛋白的作用机制奠定了基础。  相似文献   

20.
The expression of recombinant proteins is a well-accepted technology, but their detection and purification often require time-consuming and complicated processes. This paper describes the development of a novel double epitope tag (GEPGDDGPSGAEGPPGPQG) for rapid and accurate quantification of recombinant protein by a homogeneous immunoassay based on fluorescence resonance energy transfer. In our double epitope tagging system, recombinant proteins can be simply measured on a microtiter plate by addition of a pair of fluorophore-labeled monoclonal antibodies (their epitopes; GEPGDDGPS and GPPGPQG). The sensitivity of the immunoassay with an incubation time of only 5 min is almost equal to that of labor-intensive Western blotting. In addition, culture media and extracts of host cells generally used for protein expression have little effect on this immunoassay. To investigate the utility of our proposed tag for protein production, several different proteins containing this tag were practically expressed and purified. The data presented demonstrate that the double epitope tag is a reliable tool that can alleviate the laborious and troublesome processes of protein production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号