首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An aluminum borate whiskers-mediated transformation system for calluses of tobacco (Nicotiana tabacum, cv. SR-1) has been developed. A total of 50 small pieces of calluses were vigorously agitated in a liquid medium containing aluminum borate whiskers, pBI221 plasmid carrying the -glucuronidase (GUS) gene, and pBI222 plasmid carrying the hygromycin phosphotransferase (HPT) gene. After treatment, calluses were cultured to select for hygromycin resistance, and three resistant calluses were obtained. Adventitious shoots were produced from each hygromycin-resistant callus and were transferred to rooting medium. A total of three plantlets obtained from each hygromycin-resistant callus were acclimatized and established in soil. Polymerase chain reaction analysis revealed that all the plantlets were cotransformed with both the GUS and HPT genes. Detached leaves of transgenic individuals showed clear hygromycin resistance when cultured in liquid medium. Histochemical assay for GUS revealed that one of these transgenic plants expressed the GUS gene, indicating coexpression of foreign genes.  相似文献   

2.
The integration pattern and the inheritance of exogenous DNA in transgenic rice plants were analysed. Plasmid pCH (4.8 kb), that contains chimaeric cauliflower mosaic virus 35S promoter-hygromycin phosphotransferase structural gene, and plasmid pGP400 (7.2 kb), possessing oat phytochrome promoter and structural gene of bacterial -glucuronidase, were co-transferred into protoplasts of rice (Oryza sativa L.) plants via electroporation. Primary transformants (T0 generation) and their progenies (T1, T2 and T3) were selected by hygromycin B. Southern blot analysis of inserted genes in transgenic rice plants suggests the integration of an intact hygromycin phosphotransferase gene and non-functional DNA fragments into host genome. Co-inheritance of the hygromycin phosphotransferase gene and -glucuronidase gene was also observed. There were no significant differences in terms of the morphology and size of seeds between untransformed and transgenic plants (T3 generation).  相似文献   

3.
Li HQ  Xu J  Chen L  Li MR 《Plant cell reports》2007,26(10):1785-1789
Thellungiella halophila is a salt-tolerant close relative of Arabidopsis, which is adopted as a halophytic model for stress tolerance research. We established an Agrobacterium tumefaciens-mediated transformation procedure for T. halophila. Leaf explants of T. halophila were incubated with A. tumefaciens strain EHA105 containing a binary vector pCAMBIA1301 with the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene as a reporter gene. Following co-cultivation, leaf explants were cultured on selective medium containing 10 mg l−1 hygromycin and 500 mg l−1 cefotaxime. Hygromycin-resistant calluses were induced from the leaf explants after 3 weeks. Shoot regeneration was achieved after transferring the calluses onto fresh medium of the same composition. Finally, the shoots were rooted on half strength MS basal medium supplemented with 10 mg l−1 hygromycin. Incorporation and expression of the transgenes were confirmed by PCR, Southern blot analysis and GUS histochemical assay. Using this protocol, transgenic T. halophila plants can be obtained in approximately 2 months with a high transformation frequency of 26%.  相似文献   

4.
Microprojectile- or Agrobacterium-mediated DNA delivery into calluses initiated from immature embryos has proven to be effective in transforming wheat. Yet, obtaining a large number of high quality immature embryos throughout the year is a laborious and delicate process. To circumvent these limitations, we propose an alternative technique applying the particle bombardment technology to calluses derived from fragmented mature embryos rather than immature tissues. The phosphinothricin acetyl transferase (bar) and -glucuronidase (gus) genes were used as selectable and screenable marker genes, respectively, to assess and optimise the performance of the proposed technique. Primary requirement for genetic transformation method development, the regeneration capacity of bombarded calluses was established. A preculture duration of 6 days was identified as optimal for DNA uptake and -glucuronidase (GUS) expression. The highest activity was recorded when calluses were selected. Long-term GUS expression studies (1–7weeks subsequent to bombardment), showed differentiated behaviours for tissues obtained from mature versus immature embryos. Notably, mature embryos exhibited the greatest number of cells stably expressing the reporter gene, thus providing an excellent source material for developing a stable transformation procedure.  相似文献   

5.
The timing of excision of maize transposable element Ac was studied using visual histochemical assay based on Ac excision restoring activity of -glucuronidase (GUS). The Solanum tuberosum L. cv. Bintje was used for Agrobacterium-mediated transformation with pTT230 plasmid harbouring Ac-interrupted gus A gene and npt II gene as a selectable marker gene. Twenty-eight out of 72 kanamycin resistant calli did not express any GUS activity, 31 calli showed partial GUS expression and 13 out of assayed calli revealed strong expression of gus A gene. Plants were regenerated from calli without and/or with partial expression of gus A gene. The regenerated transformants which did not express GUS during the callus phase often contained many small GUS expressing spots on leaves. A phenotypic selection assay for excision of Ac has been also used. This non-detectable excision of Ac in callus tissue could be followed by a "late" timing excision during leaf development. After transformation with pTT224 plasmid harbouring Ac-interrupted hpt II gene and npt II gene transgenic calli containing Ac within the hygromycin resistance gene were derived and hygromycin sensitive plants were regenerated from them. Protoplasts isolated from leaves of transgenic regenerated plants were selected on hygromycin. Hygromycin resistant minicalli showed to harbour multiple copies of Ac and mark out low uniqueness of integration sites.  相似文献   

6.
Agrobacterium-mediated genetic transformation of a Dendrobium orchid   总被引:1,自引:0,他引:1  
A protocol was developed to obtain stable transgenic orchids (Dendrobium nobile) via Agrobacterium-mediated transformation of protocorm-like bodies (PLBs). Agrobacterium tumefaciens strains AGL1 and EHA105 were used, with each containing a binary vector pCAMBIA1301 with the hpt gene as a selectable marker for hygromycin resistance and an intron-containing -glucuronidase gene (gus-int) as a reporter gene. PLBs were co-cultivated with A. tumefaciens, which had been activated with 100 M acetosyringone (AS), for 2–3 days until the growth of A. tumefaciens was observed on co-cultivation medium containing 100 M AS. Following co-cultivation, PLBs were cultured on selective medium containing 30 mg l–1 hygromycin and 250 mg l–1 cefotaxime. Proliferating PLBs were repeatedly selected for hygromycin resistance. A high efficiency of transformation (18%) was obtained with a total of 73 stably transformed lines produced. Incorporation and expression of the transgenes were confirmed by Southern blot analysis and GUS histochemical assay.  相似文献   

7.
We established an effective biolistic transformation procedure fortransferring foreign genes into garlic (Allium sativumL.),which we demonstrated by generating transgenic plants resistant tochlorsulfuron, a sulfonylurea herbicide. We subcultured callus tissue from theapical meristem of garlic cloves and repeatedly selected calli with brittle,non-mucilaginous surfaces for over six months, to increase transformationefficiency. We then constructed recombinant DNA that contained the acetolactatesynthase (ALS) gene from a chlorsulfuron-resistantArabidopsis mutant, the cauliflower mosaic virus 35Spromoter, the -glucuronidase (GUS) reporter gene, and the hygromycinphosphotransferase (HPT) selectable marker gene. The garlic calli werebombarded twice with tungsten particles coated with the DNA constructs. Transformed calliwere efficiently selected by embedding them in solid agar medium containing 50mg l–1 hygromycin B. Selected propagules wereregenerated into 12 independent plants. We confirmed that the transgenes wereintegrated and expressed in the plants using PCR-Southern and Northern blotanalyses and by -glucuronidase expression assay forGUS. The regenerated plants survived in the presence of 3mg l–1 chlorsulfuron, demonstrating that theirALS was insensitive to this herbicide. These results illustrate the successfultransformation of foreign genes into garlic plants. The set of proceduresdeveloped in this study is applicable to the generation of transgenic garlicplants with other agronomically beneficial traits. These authors contributed equally to this work  相似文献   

8.
Forty-six independent transformed plants were regenerated under hygromycin selection from cell-suspension derived protoplasts of Festuca arundinacea (Schreb.) after PEG-mediated transformation. Protoplasts were co-transformed with varying molar gene ratios (0.7:1–6:1) of a marker -glucuronidase (uidA) gene and a selective hygromycin (hpt) resistance gene. Logistic regression analysis indicated that, as expected, the proportion of co-transformed plants tended to increase as the proportion of the marker gene was increased. However, although the proportion of plants co-expressing both genes tended to increase up to a molar ratio of 4:1, it appeared to fall at a molar ratio of 6:1. No statistically significant differences were found in the average copy number of the integrated uidA or hpt transgenes, either in GUS expressing, or in non-GUS expressing plants at the different molar ratios. When using naked-DNA gene transformation methods most authors use a molar ratio of 1:1; our data suggest that adding non-selected and selected transgenes at a higher Molar Gene Ratio would probably improve the proportion of plants regenerated which express both transgenes.  相似文献   

9.
Genetically transformed alfalfa (Medicago sativa L., cv. Zajearska 83) plantlets were obtained by inoculating somatic embryos with Agrobacterium tumefaciens strains A281/pGA472 and LBA4404/pBI121. Single somatic embryos, 5–7 mm long, were released from a repetitively embryogenic culture, wounded, and cocultivated with the bacteria. The agar-solidified culture medium contained mineral salts, vitamins, 40 g l–1 sucrose, 1 g l–1 yeast extract and 0.05 mg l–1 BA. Five clones, transformed with A281/pGA472, and 4 clones transformed with LBA4404/pBI121, were selected for proliferation by repetitive somatic embryogenesis, on media containing 100 mg l–1 of kanamycin. The transformation of kanamycin-resistant clones was confirmed by assaying the activity of neomycin phosphotransferase II and/or -glucuronidase enzymes, and by the Southern blot analysis. It is suggested that the transformation/regeneration system based on somatic embryogenesis may be suitable for establishing transgenic alfalfa lines. The relatively low frequency of embryo transformation is compensated for by abundant proliferation in secondary somatic embryogenesis.Abbreviations BA 6-benzyladenine - GUS -glucuronidase - Km kanamycin - NPTII neomycin phosphotransferase II - X-gluc 5-bromo-4-chloro-3-indolyl--glucuronic acid - BM basal medium  相似文献   

10.
The GUS gene of E. coli, encoding -glucuronidase, has been widely used as a reporter gene in plant transformation. However, -glucuronidase activity in transgenic wheat leaf or root tissue is rarely observed or reported. To address this question, we investigated three wheat lines transformed with the GUS reporter gene. We found all three lines expressed GUS mRNA as well as -glucuronidase protein in their leaf and root tissues as detected by RNA gel blot, ELISA, and immunoblot analyses. However, -glucuronidase enzyme activity was only detected in pollen grains from the transgenic plants. Fluorometric and histochemical assays performed in the presence of wheat tissue extracts indicated that wheat leaf and root tissues contain inhibitor(s) of -glucuronidase activity, but pollen grains contain much lower concentrations. Further characterizations indicated that the inhibitor(s) is of low molecular weight (<10 kDa) and is non-proteinaceous.  相似文献   

11.
Soybean (Glycine max (L.) Merr.) seeds contain the storage protein -conglycinin, encoded by a multigene family. -Conglycinin consists of three subunits; , , and . A genomic clone for a -subunit of -conglycinin has been characterized by restriction-enzyme mapping and hybrid selected in-vitro translation followed by immunoprecipitation. In order to determine the developmental regulation of this -subunit gene, its expression was studied in seeds of transgenic petunia (Petunia hybrida) and tobacco (Nicotiana tabacum L.) plants. The -subunit expressed in seeds of petunia and tobacco was recognized by anti--conglycinin serum at a relative molecular mass of 53 000, equivalent to that of the native protein. Separation of the petunia-seed proteins by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis showed that multiple isoelectric forms of the -subunit were produced. There was approximately a twofold variation in the accumulation of the -subunit protein in the mature seeds of transgenic petunia plants, each containing a single -subunit gene. However, the level of protein accumulation in mature seeds and the amount of -subunit mRNA in developing seeds was not correlated. Accumulation of the -subunit protein in transgenic seeds was less than the -subunit protein that accumulated in transgenic petunia seeds containing a single -subunit gene and less than the amount of the -subunit in mature soybean seeds which contain 8–13 -subunit genes. In transgenic tobacco plants, the accumulation of the -subunit protein in seeds was generally well correlated with the number of genes that were incorporated in the different transformants.Abbreviations kb kilobase - kDa kilodalton - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

12.
A highly efficient transformation procedure was developed for Lobelia erinus. Leaf or cotyledon discs were inoculated with Agrobacterium tumefaciens strain EHA105 harboring the binary vector plasmid pIG121Hm, which contains a -glucuronidase gene with an intron as a reporter gene and both the neomycin phosphotransferase II and hygromycin phosphotransferase genes as selectable markers. The hygromycin-resistant calli produced on the selection medium were transferred to MS medium supplemented with 0.5 mg/l benzyladenine and 0.2 mg/l indole-3-acetic acid for regeneration of adventitious shoots. Transgenic plants were obtained as a result of the high regeneration rate of the transformed calli, which was as high as 83%. In contrast, no transgenic plant was obtained by the procedure of direct shoot formation following inoculation with A. tumefaciens. Transgenic plants flowered 3–4 months after transformation. Integration of the transgenes was detected using PCR and Southern blot analysis, which revealed that one to several copies were integrated into the genomes of the host plants. The transformation frequency at the stage of whole plants was very high—45% per inoculated disc.Abbreviations BA: 6-Benzyladenine - 2,4-D: 2,4-Dichlorophenoxyacetic acid - GUS: -Glucuronidase - IAA: Indole-3-acetic acidCommunicated by G.C. Phillips  相似文献   

13.
A transformation procedure for phalaenopsis orchid established by using immature protocorms for Agrobacterium infection was aimed at the introduction of target genes into individuals with divergent genetic backgrounds. Protocorms obtained after 21 days of culture on liquid New Dogashima medium were inoculated with Agrobacterium strain EHA101(pIG121Hm) harboring both -glucuronidase (GUS) and hygromycin resistance genes. Subculture of the protocorms on acetosyringone-containing medium 2 days before Agrobacterium inoculation gave the highest transformation efficiencies (1.3–1.9%) based on the frequency of hygromycin-resistant plants produced. Surviving protocorms obtained 2 months after Agrobacterium infection on selection medium containing 20 mg l–1 hygromycin were cut transversely into two pieces before transferring to recovery medium without hygromycin. Protocorm-like bodies (PLBs) proliferated from pieces of protocorms during a 1-month culture on recovery medium followed by transfer to selection medium. Hygromycin-resistant phalaenopsis plants that regenerated after the re-selection culture of PLBs showed histochemical blue staining due to GUS. Transgene integration of the hygromycin-resistant plants was confirmed by Southern blot analysis. A total of 88 transgenic plants, each derived from an independent protocorm, was obtained from ca. 12,500 mature seeds 6 months after infection with Agrobacterium. Due to the convenient protocol for Agrobacterium infection and rapid production of transgenic plants, the present procedure could be utilized to assess expression of transgenes under different genetic backgrounds, and for the molecular breeding of phalaenopsis.  相似文献   

14.
Transgenic plant production mediated by Agrobacterium in Indica rice   总被引:3,自引:0,他引:3  
Summary A reproducible system has been developed for the production of transgenic plants in indica rice using Agrobacterium-mediated gene transfer. Three-week-old scutella calli served as an excellent starting material. These were infected with an Agrobacterium tumefaciens strain EHA101 carrying a plasmid pIG121Hm containing genes for -glucuronidase (GUS) and hygromycin resistnace (HygR). Hygromycin (50 mg/l) was used as a selectable agent. Inclusion of acetosyringone (50M) in the Agrobacterium suspension and co-culture media proved to be indispensable for successful transformation. Transformation efficiency of Basmati 370 was 22% which was as high as reported in japonica rice and dicots. A large number of morphologically normal, fertile transgenic plants were obtained. Integration of foreign genes into the genome of transgenic plants was confirmed by Southern blot analysis. GUS and HygR genes were inherited and expressed in R1 progeny. Mendelian segregation was observed in some R1 progeny.Abbreviations GUS ß-glucuronidase - HygR hygromycin-resistance - AS acetosyringone  相似文献   

15.
Using the pulse-discharging electroporation system HPES-3, we have transferred the neomycin phosphotransferase II (nptII) gene and -glucuronidase (gus) gene into mechanically-woulded immature zygotic embryo cells of an elite local maize cultivar Huanong Supersweet No. 42 and have produced transgenic maize plants. DNA hybridization and NPTII dot assay showed that the foreign genes were integrated into the genomes and expressed stably in the cells of the transgenic calluses and plants.  相似文献   

16.
Approximately 2,000 embryogenic uninuclear microspores of rapeseed (Brassica napus) cv. Topas were intranuclearly injected with a chimaeric -glucuronidase (Escherichia coli Uid A) gene. Stable integration had not occurred among 55 plants that were regenerated. Coinjection of the dye Lucifer Yellow and detection of injected DNA by the polymerase chain reaction revealed high frequencies of transfer. However, the amount of DNA injected was less than 20 copies, which may have been insufficient for stable transformation of microspores.Abbreviations PCR polymerase chain reaction - GUS -glucuronidase  相似文献   

17.
The processing of DNA molecules during transformation was characterized in the oomycete Phytophthora infestans. Linear and circular forms of nonreplicating transformation vectors supported similar rates of stable transformation. Remarkably, digestion of plasmids within the selectable marker genes neomycin phosphotransferase (npt) or hygromycin phosphotransferase (hpt) had little effect on the recovery of drug-resistant transformants, and the cleaved sites were shown to be reconstituted in the transformants. An assay for the transient expression of -glucuronidase (GUS) in protoplasts treated with partial or disrupted GUS genes demonstrated that active genes could be reconstituted through intramolecular and/or intermolecular ligation between compatible ends, while incompatible ends were inefficiently joined. Stable transformation studies also demonstrated that complementing portions of incomplete npt or hpt genes joined through homologous recombination. Based on the indication of efficient ligation between DNA molecules during transformation, an efficient procedure for cotransformation was developed. The frequency of cotransformation between vectors expressing selected genes (npt or hpt) and nonselected sequences (GUS, -galactosidase, or streptomycin phosphotransferase) approached unity when the plasmids were linearized with the same restriction enzyme before transformation. In contrast, cotransformation between circular plasmids or those cut with different enzymes occurred infrequently (10%). Hybridization analysis of DNA from cotransformants demonstrated that linearized plasmids became colocalized within genomic DNA, while circular plasmids typically inserted at unliked sites.  相似文献   

18.
Traditional breeding processes to genetically modify the long reproductive cycle and slow seed maturation of orchids have limits. We developed a more efficient protocol using particle bombardment to produce transgenic plants of Oncidium Sharry Baby OM8 (Orchidaceae). Pretreating protocorm-like bodies (PLBs) with 0.5 M sucrose for 2 h increased single-cell embryogenesis 3- to 4-fold; however, shoot formation was suppressed. In addition, new PLBs were regenerated from the entire sucrose-pretreated PLBs, whereas in untreated PLBs, this occurred only from the bases. Pretreated PLBs were bombarded with pSPFLP containing genes encoding a sweet pepper ferredoxin-like protein (pflp), hygromycin phosphotransferase (hpt) and -glucuronidase (GUS) driven by the cauliflower mosaic virus 35S promoter. Pretreated PLBs showed a 14.8-fold increase in GUS expression over the untreated PLBs 40days after bombardment. The presence of pflp and hpt transgenes in the 40 putatively stably transformed lines that produced 113 clones was confirmed by PCR analysis. Six lines (eight clones) were positive for both pflp and hpt transgenes. In addition, clones derived from these lines were either all positive or all negative for the two transgenes, which suggests homogeneity in pretreated PLBs with more single-cell embryogenesis. Thus, sucrose pretreatment enhanced the regeneration of PLBs, single-cell embryogenesis and efficiency of transformation.  相似文献   

19.
Polybrene and/or spermidine treatments were used to deliver plasmid DNA into cotton suspension culture obtained from cotyledon-induced callus. The transforming plasmid (pBI221.23) contained the selectablehpt gene for hygromycin resistance and the screenablegus gene. Primary transformant cotton plants were regenerated and analyzed by DNA hybridization and β-glucuronidase assay. The combination polybrene-spermidine treatment greatly enhanced the uptake and expression of DNA and the recovery of nonchimeric germ-line transgenic cotton plants.  相似文献   

20.
An efficient Agrobacterium-mediated method for transformation of popular Bangladeshi Indica rice genotypes has been developed. Mature embryo-derived calluses as well as immature embryos were used as the target material. Transgenic plant production frequency was higher using the immature embryos than mature embryo-derived calluses. However, 3-week-old mature embryo-derived calluses served as an excellent starting material. The super-binary vector (pTOK233) was generally more effective than the binary vector (pC1301-Xa21mSS) particularly with recalcitrant Bangladeshi genotypes such as BR22. However, transformation of the Japonica cultivar Taipei-309 was equally effective with either plasmid. Inclusion of acetosyringone (200M) in co-cultivation media proved essential for successful transformation and the optimum co-cultivation period found was to be 3days. A large number of morphologically normal, fertile transgenic plants were obtained which expressed gus as determined by histochemical staining. Integration of the hpt gene into the genome of transgenic plants was confirmed by molecular analysis. Mendelian inheritance of transgenes (hpt and gus gene) was observed in T1 progeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号