首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
AIMS: The aim of the present investigation was to determine the influence of various Fusarium solani strains on the production of nematicidal agent(s) in vitro and biocontrol of Meloidogyne javanica in tomato by Pseudomonas fluorescens strains CHA0 and CHA0/pME3424. METHODS AND RESULTS: Culture filtrates (CF) of P. fluorescens strain CHA0 and its diacetylphloroglucinol-overproducing derivative CHA0/pME3424 caused substantial mortality of M. javanica juveniles in vitro. Bacterial growth medium amended with the growth medium of F. solani repressed the nematicidal activity of the bacteria. Methanol extract of F. solani CF resulting from Czapek's Dox liquid (CDL) medium without zinc amendment repressed the nematicidal activity of the bacteria while the CF obtained from CDL medium amended with zinc did not. Conidial suspension of F. solani strain Fs5 (repressor strain for the biosynthesis of nematicidal compounds in P. fluorescens) reduced biocontrol potential of the bacterial inoculants against M. javanica in tomato while strain Fs3 (non-repressor) did not. CONCLUSIONS: Fusarium solani strains with increased nematicidal activity repress the biosynthesis of nematicidal compounds by P. fluorescens strains in vitro and greatly alter its biocontrol efficacy against root-knot nematode under natural conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Fusarium solani strains are distributed worldwide and found in almost all the agricultural fields which suggest that some mycotoxin-producing strains will also be found in almost any soil sample taken. Besides the suppressive effect of these metabolite-producing strains on the production of nematicidal compound(s) critical in biocontrol, F. solani strains may also affect the performance of mycotoxin-sensitive biocontrol bacteria effective against plant-parasitic nematodes.  相似文献   

2.
AIMS: To determine the influence of soil-borne fungus Trichoderma harzianum on the biocontrol performance of Pseudomonas fluorescens strain CHA0 and its 2,4-diacetylphloroglucinol (DAPG) overproducing derivative CHA0/pME3424 against Meloidogyne javanica. METHODS AND RESULTS: Amendment of the culture filtrate (CF) or methanol extract of the CF of a T. harzianum strain Th6 to P. fluorescens growth medium enhanced the production of nematicidal compound(s) by bacterial inoculants in vitro. In addition, bacteria overwhelmingly expressed phl'-'lacZ reporter gene when the medium was amended with CF of T. harzianum. Pseudomonas fluorescens and T. harzianum applied together in unsterilized sandy loam soil caused greater reduction in nematode population densities in tomato roots. CONCLUSIONS: Trichoderma harzianum improves root-knot nematode biocontrol by the antagonistic rhizobacterium P. fluorescens both in vitro and under glasshouse conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: The synergistic effect of T. harzianum on the production of nematicidal compound(s) critical in biocontrol may improve the efficacy of biocontrol bacteria against plant-parasitic nematodes. Considering the inconsistent performance of the biocontrol agents under field conditions, application of a mixture of compatible T. harzianum and P. fluorescens would more closely mimic the natural situation and might broaden the spectrum of biocontrol activity with enhanced efficacy and reliability of control.  相似文献   

3.
AIMS: To improve the efficacy of Pseudomonas fluorescens CHA0 and its genetically modified (GM) derivatives by adding ammonium molybdate to control Meloidogyne javanica, the root-knot nematode in mungbean. METHODS AND RESULTS: Culture filtrate of P. fluorescens CHA0 and its GM derivative (antibiotic overproducing strain CHA0/pME3424 and antibiotic-deficient CHA89) obtained from nutrient broth yeast extract medium amended with 1, 2 or 4 mm of ammonium molybdate (NH4-Mo) caused substantial mortality of M. javanica juveniles in vitro. Pseudomonas fluorescens CHA0 or CHA0/pME3424 applied in conjunction with NH4-Mo caused greater reduction of nematode penetration in mungbean roots compared with the bacterial application alone. Ammonium molybdate at 4 mg kg-1 of soil along with CHA0 also enhanced plant height while shoot weight remained unaffected. Either used alone or in conjunction with NH4-Mo, strain CHA89 did not reduce nematode invasion compared with the controls. Bacterial strains did not differ significantly in their colonization potential in the mungbean rhizosphere. Efficacy of the biocontrol bacteria to control root-knot nematode was accentuated when soil was treated with NH4-Mo and zinc (both at 1 mg kg-1 of soil). CONCLUSION: The addition of ammonium molybdate enhances the production of nematicidal compounds by P. fluorescensin vitro and improves bacterial efficacy against root-knot nematode under glasshouse conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Application of minerals such as ammonium molybdate is appealing because they are cheap and can easily be applied under field conditions to improve biocontrol potential of the bacterial inoculants. They also significantly reduce the amount of biocontrol inoculant biomass required to achieve root-knot disease control, with a consequent reduction in cost.  相似文献   

4.
AIMS: The aim of the present investigation was to determine the influence of Rhizoctonia solani and its pathogenicity factor on the production of nematicidal agent(s) by Pseudomonas fluorescens strain CHA0 and its GM derivatives in vitro and nematode biocontrol potential by bacterial inoculants in tomato. METHODS AND RESULTS: One (Rs7) of the nine R. solani isolates from infected tomato roots inhibited seedling emergence and caused root rot in tomato. Thin layer chromatography revealed that culture filtrates of two isolates (Rs3 and Rs7) produced brown spots at Rf-values closely similar to synthetic phenylacetic acid (PAA), a phytotoxic factor. Filtrates from isolate Rs7, amended with the growth medium of P. fluorescens, markedly repressed nematicidal activity and PhlA'-'LacZ reporter gene expression of the bacteria in vitro. On the contrary, isolate Rs4 enhanced nematicidal potential of a 2,4-diacetylphloroglucinol overproducing mutant, CHA0/pME3424, of P. fluorescens strain CHA0 in vitro. Therefore, R. solani isolates Rs4 and Rs7 were tested more rigorously for their potential to influence biocontrol effectiveness of the bacterial agents. Methanol extract of the culture filtrates of PAA-producing isolate Rs7 resulting from medium amended with phenylalanine enhanced fungal repression of the production of nematicidal agents by bacteria, while amendments with zinc or molybdenum eliminated such fungal repression, thereby restoring bacterial potential to cause nematode mortality in vitro. A pot experiment was carried out, 3-week-old tomato seedlings were infested with R. solani isolates Rs4 or Rs7 and/or inoculated with Meloidogyne incognita, the root-knot nematode. The infested soil was treated with aqueous cell suspensions (10(8) CFU) of P. fluorescens strain CHA0 or its GM derivatives or left untreated (as a control). Observations taken 45 days after nematode inoculation revealed that, irrespective of the bacterial treatments, galling intensity per gram of fresh tomato roots was markedly higher in soil amended with isolate Rs4 than in Rs7-amended soils. Soil amendments with R. solani and the bacterial antagonists resulted in substantial reductions of the number of galls per gram of root. These results are contradictory to those obtained under in vitro conditions where culture filtrates of PAA-positive Rs7 repressed the production of nematicidal compounds. Plants grown in Rs7-amended soils, with or without bacterial inoculants, had lesser shoot and root weights than plants grown in nonamended or Rs4-amended soils. Moreover, amendments with Rs7 substantially retarded root growth and produced necrotic lesions that reduced the number of entry sites for invasion and subsequent infection by nematodes. Populations of P. fluorescens in the tomato rhizosphere were markedly higher in Rs7-amended soils. CONCLUSIONS: PAA-producing virulent R. solani drastically affects the potential of P. fluorescens to cause death of M. incognita juveniles in vitro and influences bacterial effectiveness to suppress nematodes in tomato roots. SIGNIFICANCE AND IMPACT OF THE STUDY: As most agricultural soils are infested with root-infecting fungi, including R. solani, it is likely that some PAA-producing isolates of the fungus may also be isolated from such soils. The inhibitory effect of PAA-producing R. solani on the biosynthesis of nematicidal agent(s) critical in biocontrol may reduce or even eliminate the effectiveness of fluorescent pseudomonads against root-knot nematodes, both in nursery beds and in field conditions. Introduction of bacterial inoculants, for the control of any plant pathogen, should be avoided in soils infested with PAA-producing R. solani. Alternatively, the agents could be applied together with an appropriate quantity of fungicide or chemicals such as zinc to create an environment more favourable for bacterial biocontrol action.  相似文献   

5.
Pseudomonas fluorescens strain CHA0 and its antibiotic overproducing derivative CHA0/pME3424 repeatedly reduced Meloidogyne incognita galling on tomato, brinjal, mungbean and soya bean roots but not in chilli. An antibiotic‐deficient derivative, CHA89, did not reduce nematode invasion in any of the plant species tested. When plant species were compared, bacterial inoculants afforded better protection to tomato, mungbean and soya bean roots against root‐knot nematodes than to brinjal and chilli. Antibiotic overproducing strain CHA0/pME3424 markedly reduced fresh shoot weights of chilli and mungbean while antibiotic‐deficient strain CHA89 enhanced fresh shoot weights of mungbean. While strains CHA0 had no significant impact on fresh root weights of any of the plant species, strain CHA0/pME3424 consistently reduced fresh root weights of brinjal and mungbean. In none of the plant species the bacterial strains had an influence on protein contents of the leaves. Regardless of the plant species, the three bacterial strains did not differ markedly in their rhizosphere colonization pattern. However, colonization was highest in brinjal rhizosphere and lowest in the mungbean rhizosphere. A slight host genotype effect on the biocontrol performance of the bacterial inoculants was also detected at cultivar level. When five soya bean cultivars were compared, biocontrol bacteria exhibited best suppression of the root‐knot nematode in cv. Ajmeri. Antibiotic overproducing strain CHA0/pME3424 substantially reduced fresh shoot weights of the soya bean cultivars Centuray 84 and NARC‐I while strain CHA89 enhanced shoot weights of the cultivars Ajmeri, William‐82 and NARC‐II. Wild type strain CHA0 had no significant impact on fresh shoot weights of any of the soya bean cultivars. Strain CHA0/pME3424 reduced fresh weights of root of Century 84, NARC‐I and NARC‐II while strain CHA89 increased root weights. Bacterial rhizosphere colonization was highest in variety NARC‐I and lowest in variety Ajmeri. Plant age had a significant impact on the biocontrol performance of bacterial inoculants against nematodes. The biocontrol effect of all bacterial strains was more prominent during early growth stage (7 days after nematode inoculation). A strong negative correlation between bacterial rhizosphere colonization and nematode invasion in soya bean roots was observed.  相似文献   

6.
AIMS: To assess the effects of various carbon and mineral sources on the nematicidal potential of biocontrol inoculants of Pseudomonas aeruginosa IE-6S+ and Ps. fluorescens CHA0 under laboratory and glasshouse conditions. METHODS AND RESULTS: Culture filtrates of strains IE-6S+ and CHA0, cultured in nutrient yeast extract broth, caused substantial mortality of the juveniles of Meloidogyne javanica. The nematicidal activities of the culture filtrates were altered after amendment with various carbon and mineral sources. Soil amendment with zinc alone or in combination with glycerol improved the biocontrol efficacy against root-knot nematode, promoted tomato plant growth and enhanced bacterial rhizosphere and endophytic colonization. CONCLUSIONS: Appropriate quantities of glycerol and zinc alone or in combination enhance the nematicidal activity of Ps. aeruginosa and Ps. fluorescens. Glucose reduces the activity of these bacteria against nematodes. SIGNIFICANCE AND IMPACT OF THE STUDY: Minerals and carbon sources are appealing because they are easy and economical to provide during liquid fermentation of inoculants or as fertilizer amendments to improve the biocontrol activity of indigenous and introduced bacteria.  相似文献   

7.
AIMS: To assess whether Pseudomonas fluorescens strain CHA0 and its genetically modified derivatives, CHA0/pME3424 (antibiotic over-producer) and CHA89 (antibiotic-deficient) could have an impact on the fungal community structure and composition in the rhizosphere of mungbean. METHODS AND RESULTS: Under glasshouse conditions, mungbean was grown repeatedly in the same soil, which was inoculated with CHA0, CHA0/pME3424, CHA89 or was left untreated. Treatments were applied to soil at the start of each 36-day mungbean growth cycle, and their effects on the diversity of the rhizosphere populations of culturable fungi were assessed at the end of the first, second and third cycles. The effects of CHA0 and CHA0/pME3424 did differ from the controls while CHA89 did not. Whereas all major fungal species were frequently isolated from both bacterized and nonbacterized rhizospheres, certain fungal species were exclusively promoted or specifically suppressed from Pseudomonas-treated soils. In general, fungal diversity and equitability tended to decrease with time while species richness slightly increased. Whilst a total of 29 fungal species were isolated from the mungbean rhizosphere, only eight species colonized the root tissues. CONCLUSIONS: Soil inoculation with Ps. fluorescens CHA0 or CHA0/pME3424 altered fungal community structure in mungbean rhizosphere but strain CHA89 failed to produce such effect. SIGNIFICANCE AND IMPACT OF THE STUDY: Pseudomonas fluorescens-mediated alteration in the composition and structure of fungal communities might have acute or lasting effects on ecosystem functioning. Furthermore, the study provides useful data pertinent to characterization of the fate of genetically modified inoculants (e.g. antibiotic-overproducing Pseudomonas strains) released into the environment.  相似文献   

8.
Summary Pseudomonas fluorescens strain CHA0 produces hydrogen cyanide (HCN), a secondary metabolite that accounts largely for the biocontrol ability of this strain. In this study, we examined the role of HCN production by CHA0 as an antagonistic factor that contributes to biocontrol of Meloidogyne javanica, the root-knot nematode, in situ. Culture filtrate of CHA0, resulting from 1/10-strength nutrient broth yeast extract medium amended with glycine, inhibited egg hatch and caused mortality of M. javanica juveniles in vitro. The bacterium cultured under high oxygen-tension conditions exhibited better inhibitory effects towards nematodes, compared to its cultivation under excess oxygen situation. Growth medium amended with 0.50 or 1.0 mM FeEDDHA further improved hatch inhibition and nematicidal activity of the strain CHA0. Strain CHA77, an HCN-negative mutant, failed to exert such toxic effects, and in this strain, antinematode activity was not influenced by culture conditions. Exogenous cyanide also inhibited egg hatch and caused mortality of M. javanica juveniles in vitro. Strains CHA0 or CHA77 applied in unsterilized sandy-loam soil as drench, caused marked suppression of root-knot disease development incited by M. javanica in tomato seedlings. However, efficacy of CHA77 was noticeably lower compared to its wild type counterpart CHA0. An increased bioavailability of iron following EDTA application in soil substantially improved nematode biocontrol potential of CHA0 but not that of CHA77. Soil infestation with M. javanica eggs resulted in significantly lower nematode population densities and root-knot disease compared to the juveniles used as root-knot disease-inducing agents. Strain CHA0 significantly suppressed nematode populations and inhibited galling in tomato roots grown in soil inoculated with eggs or juveniles and treated with or without EDTA. Strain CHA0 exhibited greater biocontrol potential in soil inoculated with eggs and treated with EDTA. To demonstrate that HCN synthesis by the strain CHA0 acts as the inducing agent of systemic resistance in tomato, efficacy of the strain CHA0 was compared with CHA77 in a split root trial. The split-root experiment, guaranteeing a spatial separation of the inducing agent and the challenging pathogen, showed that HCN production by CHA0 is not crucial in the induction of systemic resistance in tomato against M. javanica, because the HCN-negative-mutant CHA77 induced the same level of resistance as the wild type but exogenous cyanide in the form of KCN failed to trigger the resistance reaction. In the root section where both nematode and the bacterium were present, strain CHA0 reduced nematode penetration to a greater extent than CHA77, suggesting that for effective control of M. javanica, a direct contact between HCN-producing CHA0 and the nematode is essential.  相似文献   

9.
Little is known about the effects of Pseudomonas biocontrol inoculants on nontarget rhizosphere fungi. This issue was addressed using the biocontrol agent Pseudomonas fluorescens CHA0-Rif, which produces the antimicrobial polyketides 2,4-diacetylphloroglucinol (Phl) and pyoluteorin (Plt) and protects cucumber from several fungal pathogens, including Pythium spp., as well as the genetically modified derivative CHA0-Rif(pME3424). Strain CHA0-Rif(pME3424) overproduces Phl and Plt and displays improved biocontrol efficacy compared with CHA0-Rif. Cucumber was grown repeatedly in the same soil, which was left uninoculated, was inoculated with CHA0-Rif or CHA0-Rif(pME3424), or was treated with the fungicide metalaxyl (Ridomil). Treatments were applied to soil at the start of each 32-day-long cucumber growth cycle, and their effects on the diversity of the rhizosphere populations of culturable fungi were assessed at the end of the first and fifth cycles. Over 11,000 colonies were studied and assigned to 105 fungal species (plus several sterile morphotypes). The most frequently isolated fungal species (mainly belonging to the genera Paecilomyces, Phialocephala, Fusarium, Gliocladium, Penicillium, Mortierella, Verticillium, Trichoderma, Staphylotrichum, Coniothyrium, Cylindrocarpon, Myrothecium, and Monocillium) were common in the four treatments, and no fungal species was totally suppressed or found exclusively following one particular treatment. However, in each of the two growth cycles studied, significant differences were found between treatments (e.g., between the control and the other treatments and/or between the two inoculation treatments) using discriminant analysis. Despite these differences in the composition and/or relative abundance of species in the fungal community, treatments had no effect on species diversity indices, and species abundance distributions fit the truncated lognormal function in most cases. In addition, the impact of treatments at the 32-day mark of either growth cycle was smaller than the effect of growing cucumber repeatedly in the same soil.  相似文献   

10.
In Pseudomonas fluorescens CHA0, mutation of the GacA-controlled aprA gene (encoding the major extracellular protease) or the gacA regulatory gene resulted in reduced biocontrol activity against the root-knot nematode Meloidogyne incognita during tomato and soybean infection. Culture supernatants of strain CHA0 inhibited egg hatching and induced mortality of M. incognita juveniles more strongly than did supernatants of aprA and gacA mutants, suggesting that AprA protease contributes to biocontrol.  相似文献   

11.
AIMS: The aim of the present investigation was to determine the influence of nutrients on the nematicidal activity by Pseudomonas aeruginosa strain IE-6S+ and Ps. fluorescens strain CHA0 in vitro. METHODS AND RESULTS: Culture filtrate of IE-6S+ and CHA0 obtained from chemically defined medium caused mortality of Meloidogyne javanica juveniles in vitro and that growth medium amended with various C, N or inorganic phosphate (Pi) sources markedly influenced nematicidal activity of the two bacteria. Glycerol (C source), propionate (fatty acid precursor) and L-lysine (N source) enhanced nematicidal activity while glucose (C), L-valine (N) and Pi substantially repressed nematicidal activity of the two bacteria. CONCLUSION: Liquid culture amendments with various C, N or Pi sources modulate the biosynthesis of nematicidal agents to a different extent in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY: Developing bacterial strains more responsive to certain environmental signals can be exploited for increased secondary metabolite production in pharmaceutical fermentations and offers new avenues to improve biocontrol.  相似文献   

12.
Interactions between Pseudomonas fluorescens biocontrol agents and Glomus mosseae , an arbuscular mycorrhizal fungus, were studied. The biocontrol agents included the genetically modified strains CHA96 and CHA0 pME3424 which produced enhanced levels of antifungal compounds. Tomato ( Lycopersicum esculentum ) and leek ( Allium porrum ) host plants were grown in sterile Terra-Green (calcined attapulgite clay) with limited nutrients. Mycorrhizal activity was indicated by shoot dry weight and phosphorus content. In all experiments, plants grown in the presence of G. mosseae had a significantly higher shoot dry weight than those grown in the absence of G. mosseae . Colonisation and activity of G. mosseae was unaltered in the presence of P. fluorescens isolates and presence of G. mosseae increased the population of P. fluorescens in the rhizosphere.  相似文献   

13.
Little is known about the effects of Pseudomonas biocontrol inoculants on nontarget rhizosphere fungi. This issue was addressed using the biocontrol agent Pseudomonas fluorescens CHA0-Rif, which produces the antimicrobial polyketides 2,4-diacetylphloroglucinol (Phl) and pyoluteorin (Plt) and protects cucumber from several fungal pathogens, including Pythium spp., as well as the genetically modified derivative CHA0-Rif(pME3424). Strain CHA0-Rif(pME3424) overproduces Phl and Plt and displays improved biocontrol efficacy compared with CHA0-Rif. Cucumber was grown repeatedly in the same soil, which was left uninoculated, was inoculated with CHA0-Rif or CHA0-Rif(pME3424), or was treated with the fungicide metalaxyl (Ridomil). Treatments were applied to soil at the start of each 32-day-long cucumber growth cycle, and their effects on the diversity of the rhizosphere populations of culturable fungi were assessed at the end of the first and fifth cycles. Over 11,000 colonies were studied and assigned to 105 fungal species (plus several sterile morphotypes). The most frequently isolated fungal species (mainly belonging to the genera Paecilomyces, Phialocephala, Fusarium, Gliocladium, Penicillium, Mortierella, Verticillium, Trichoderma, Staphylotrichum, Coniothyrium, Cylindrocarpon, Myrothecium, and Monocillium) were common in the four treatments, and no fungal species was totally suppressed or found exclusively following one particular treatment. However, in each of the two growth cycles studied, significant differences were found between treatments (e.g., between the control and the other treatments and/or between the two inoculation treatments) using discriminant analysis. Despite these differences in the composition and/or relative abundance of species in the fungal community, treatments had no effect on species diversity indices, and species abundance distributions fit the truncated lognormal function in most cases. In addition, the impact of treatments at the 32-day mark of either growth cycle was smaller than the effect of growing cucumber repeatedly in the same soil.  相似文献   

14.
AIMS: To determine the influence of various trace minerals and carbon source on the biocontrol performance of Pseudomonas aeruginosa strain IE-6S+ and P. fluorescens strain CHA0 against Macrophomina phaseolina. METHODS AND RESULTS: In dual culture plate assay, P. aeruginosa IE-6S+ and P. fluorescens CHA0 inhibited radial growth of M. phaseolina producing zones of inhibition. Czapek's dox agar medium amended with both zinc and glucose remarkably improved antifungal activities of the bacterial inoculants. Under glasshouse conditions, soil amendment with zinc and/or glucose alone did not reduce M. phaseolina infection in tomato roots but did reduce significantly when used in combination with IE-6S+ or CHA0. Soil amendments with zinc and/or glucose increased fresh shoot weights but zinc amendment greatly reduced bacterial populations in the rhizosphere. CONCLUSIONS: Mineral and carbon amendments enhance the biocontrol performance of fluorescent pseudomonads against M. phaseolina. SIGNIFICANCE AND IMPACT OF THE STUDY: Identification of mineral and carbon amendments that favour biocontrol of certain bacterial strains may provide clues to soil factors or components of nutrient solutions in hydroponic culture that will improve the level and reliability of control.  相似文献   

15.
Xia  Yanfei  Li  Shen  Liu  Xueting  Zhang  Chong  Xu  Jianqiang  Chen  Yingwu 《Annals of microbiology》2019,69(12):1227-1233
Purpose

Determination of the nematicidal potential and mode of action of bacteria isolated from tobacco rhizosphere soil against the root-knot nematode Meloidogyne javanica in tomato plants.

Methods

Antagonistic bacteria were isolated from rhizosphere soil of tobacco infested with root-knot nematodes. Culture filtrate was used to examine nematicidal activity and ovicidal action of bacterial strains. Biocontrol of M. javanica and growth of treated tomato plants were assessed in pot experiments. To clarify whether secondary metabolites of bacteria in tomato roots induced systemic resistance to M. javanica, bacterial culture supernatants and second-stage juvenile nematodes were applied to spatially separated tomato roots using a split-root system. Bacterial strains were identified by 16S rDNA and gyrB gene sequencing and phylogenetic analysis.

Results

Of the 15 bacterial strains isolated, four (LYSX1, LYSX2, LYSX3, and LYSX4) demonstrated nematicidal activity against second-stage juveniles of M. javanica, and strain LYSX1 showed the greatest antagonistic activity; there was dose-dependent variability in nematicidal activity and inhibition of egg mass hatching by strain LYSX1. In vivo application of LYSX1 to tomato seedlings decreased the number of egg masses and galls and increased the root and shoot fresh weight. Treatment of half of the split-root system with LYSX1 reduced nematode penetration to the other half by 41.64%. Strain LYSX1 was identified as Bacillus halotolerans.

Conclusion

Bacillus halotolerans LYSX1 is a potential microbe for the sustainable biocontrol of root-knot nematodes through induced systemic resistance in tomato.

  相似文献   

16.
Salicylic acid (SA)‐mediated induction of systemic resistance by Pseudomonas aeruginosa strain 7NSK2 and P. fluorescens strain CHA0 against soil‐borne fungi and viruses have been reported. The role of SA biosynthesis in the enhancement of defence mechanism against plant‐parasitic nematodes by these bacterial strains in tomato is not known. To better understand the importance of SA in rhizobacteria‐mediated suppression of root‐knot nematodes, biocontrol potential of SA‐negative or SA‐overproducing mutants against Meloidogyne javanica was evaluated with their respective wild type counter parts. Culture supernatant of 7NSK2, CHA0 and their respective mutants caused significant mortality of M. javanica juveniles in vitro. SA deletion in 7NSK2 and SA overproduction in CHA0 did not influence bacterial efficacy to cause nematode deaths. Similarly, culture supernatants resulting from King's B liquid medium amended with FeCl3 did not influence nematicidal activity of the bacterial strains. Strain CHA0 induced juvenile deaths more than 7NSK2 did. In pot experiments, the bacterial strains applied in unsterilized sandy loam soil markedly reduced final nematode population densities in roots and subsequent root‐knot infection in tomato seedlings. SA‐negative or overproducing derivatives prevented tomato roots in kinetics similar to those with their respective wild types. When soil iron concentration was lowered by the addition of ethylenediamine di(o‐hydroxyphenylacetic acid), nematode biocontrol by the bacterial strains (both wild type and mutants) remained unaltered. To understand the mechanism involved in rhizobacteria‐mediated suppression of root‐knot nematode in tomato, bacterial performance was assessed in a split root trial in which one‐half of the root system was treated with bacterium while the other inoculated with nematode. Compared with the controls, application of the bacterial cell suspension to one‐half of the root system lowered the populations of root‐knot nematode in non‐bacterized nematode‐treated sections indicating enhanced defence in the non‐bacterized half. With respect to nematode infection, mutants induced systemic resistance to a similar extent as that caused by the wild types in both wild type tomato and NahG tomato plants. It is concluded that fluorescent pseudomonads induce systemic resistance against root‐knot nematode via a signal transduction pathway, which is independent of SA accumulation in roots.  相似文献   

17.
In Pseudomonas fluorescens CHA0, mutation of the GacA-controlled aprA gene (encoding the major extracellular protease) or the gacA regulatory gene resulted in reduced biocontrol activity against the root-knot nematode Meloidogyne incognita during tomato and soybean infection. Culture supernatants of strain CHA0 inhibited egg hatching and induced mortality of M. incognita juveniles more strongly than did supernatants of aprA and gacA mutants, suggesting that AprA protease contributes to biocontrol.  相似文献   

18.
Experiments were carried out to investigate the nematicidal potential of a cyanobacterium, Oscillatoria chlorina, against the root-knot nematode, Meloidogyne arenaria on tomato plants grown in pots filled with 500 cm3 of field soil infested with 12-s stage juveniles (J2)/cm3 soil. Incorporation of freeze-dried cyanobacterial powder into potted field soil at the rate of 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) 5 days prior to tomato planting, reduced root galling, final population of M. arenaria and increased vegetative growth of tomato plants and root-mass production, compared with untreated control (P > or = 0.05). The beneficial effect of adding cyanobacterial powder into infested potted field soil increased exponentially with concentration up to 0.8%. Root galling and nematode population decreased by 68.9% and 97.6%, respectively at the highest dose (1%) of cyanobacterial powder compared with the untreated control. Addition of cyanobacterial powder into infested potted field soil at 5 days before planting was the most effective followed by 2 days before and at the time of tomato planting. We conclude that application rate and timing are important factors in the control of root-knot nematodes with O. chlorina.  相似文献   

19.
Glasshouse experiments were conducted to assess the influence of Pseudomonas fluorescens, Azotobacter chroococcum, Azospirillum brasilense and composted organic fertilizers (cow dung, horse dung, goat dung and poultry manure) alone and in combination on the multiplication of Meloidogyne incognita and growth of tomato. P. fluorescens was better at improving tomato growth and reducing galling and nematode multiplication than A. chroococcum or A. brasilense. Among composted organic fertilizers, poultry manure resulted in less galling and nematode multiplication than occurred with goat dung. However, composted goat dung was better in reducing nematode multiplication and improving plant growth than horse dung. Cow dung was the composted organic fertilizer least effective in reducing galling and nematode multiplication. Poultry manure with P. fluorescens was the best combination for the management of M. incognita on tomato but improved management of M. incognita can also be obtained if goat dung is used with P. fluorescens or poultry manure with A. chroococcum.  相似文献   

20.
How bacterial feeding fauna affects colonization and survival of bacteria in soil is not well understood, which constrains the applicability of bacterial inoculants in agriculture. This study aimed to unravel how food quality of bacteria and bacterial feeders with different feeding habits (the selective feeding flagellate Cercomonas longicauda versus the non-selective feeding nematode Caenorhabditis elegans) influence the abundance of two bacteria that compete for resources in simple model communities. Microcosms consisted of either one gfp-tagged bacterial strain (Pseudomonas fluorescens DSM50090 or one of two biocontrol strains P. fluorescens CHA0 or Pseudomonas sp. DSS73) or combinations of two bacterial strains. DSM50090 is a suitable food bacterium, DSS73 is of intermediate food quality, and CHA0 is inedible to the bacterial feeders. Bacterial and protozoan cell numbers were measured by flow cytometry. In the presence of flagellates, CHA0 increased its abundance as compared to the other biocontrol strain DSS73 or to DSM50090, which were both eaten by the flagellates. In contrast, the number of CHA0 declined as compared to DSS73 when the model community was subjected to nematode predation pressure. Hence, the results suggested that the outcome of competition among bacteria depended on their ability to cope with the prevailing bacterial predator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号