首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mesenchymal stem cells (MSCs) are non-haematopoeitic, stromal cells that are capable of differentiating into mesenchymal tissues such as bone and cartilage. They are rare in bone marrow, but have the ability to expand many-fold in culture, and retain their growth and multi-lineage potential. The properties of MSCs make them ideal candidates for tissue engineering. It has been shown that MSCs, when transplanted systemically, can home to sites of injury, suggesting that MSCs possess migratory capacity; however, mechanisms underlying migration of these cells remain unclear. Chemokine receptors and their ligands play an important role in tissue-specific homing of leukocytes. Here we define the cell surface chemokine receptor repertoire of murine MSCs from bone marrow, with a view to determining their migratory activity. We also define the chemokine receptor repertoire of human MSCs from bone marrow as a comparison. We isolated murine MSCs from the long bones of Balb/c mice by density gradient centrifugation and adherent cell culture. Human MSCs were isolated from the bone marrow of patients undergoing hip replacement by density gradient centrifugation and adherent cell culture. The expression of chemokine receptors on the surface of MSCs was studied using flow cytometry. Primary murine MSCs expressed CCR6, CCR9, CXCR3 and CXCR6 on a large proportion of cells (73+/-11%, 44+/-25%, 55+/-18% and 96+/-2% respectively). Chemotaxis assays were used to verify functionality of these chemokine receptors. We have also demonstrated expression of these receptors on human MSCs, revealing some similarity in chemokine receptor expression between the two species. Consequently, these murine MSCs would be a useful model to further study the role of chemokine receptors in in vivo models of disease and injury, for example in recruitment of MSCs to inflamed tissues for repair or immunosuppression.  相似文献   

2.
The formation of complex tissues during embryonic development is often accompanied by directed cellular migration towards a target tissue. Specific mutual recognition between the migrating cell and its target tissue leads to the arrest of the cell migratory behavior and subsequent contact formation between the two interacting cell types. Recent studies implicated a novel family of surface proteins containing a trans-membrane domain and single leucine-rich repeat (LRR) domain in inter-cellular recognition and the arrest of cell migration. Here, I describe the involvement of a novel LRR surface protein, LRT, in targeting migrating muscles towards their corresponding tendon cells in the Drosophila embryo. LRT is specifically expressed by the target tendon cells, and is essential for arresting the migratory behavior of the muscle cells. Additional studies in Drosophila S2 cultured cells suggest that LRT forms a protein complex with the Roundabout (Robo) receptor, essential for guiding muscles towards their tendon partners. Genetic analysis supports a model in which LRT performs its activity non-autonomously through its interaction with the Robo receptors expressed on the muscle surfaces. These results suggest a novel mechanism of intercellular recognition through interactions between LRR family members and Robo receptors.  相似文献   

3.
Aberrant upregulation of COX-2 enzyme resulting in accumulation of PGE2 in a cancer cell environment is a marker for progression of many cancers, including breast cancer. Four subtypes of cell surface receptors (EP1, EP2, EP3, and EP4), which are coupled with different G-proteins, mediate PGE2 actions. Since migration is an essential step in invasion and metastasis, in the present study we defined the expression of EP receptors and their roles in migratory function of breast cancer cells of murine (C3L5) and human (MDA-MB-231 and MCF-7) origin. Highly metastatic C3L5 and MDA-MB-231 cells, found to be highly migratory in a Transwell migration assay, were shown to accumulate much higher levels of PGE2 in culture media in comparison with nonmetastatic and poorly migrating MCF-7 cells; the levels of PGF2alpha and 6-keto-PGF1alpha were low in all cases. The elevated PGE2 production by metastatic cancer cells was due to COX-2 activity since dual COX-1/2 inhibitor indomethacin and selective COX-2 inhibitor NS-398 equally suppressed both basal and inducible (by IFN-gamma/LPS or Ca2+-ionophores) PGE2 accumulation. RT-PCR analysis revealed that murine C3L5 cells expressed mRNA of EP1, EP3, and EP4 but not EP2 receptors. On the other hand, human MDA-MB-231 and MCF-7 cells expressed all the above receptors. High levels of expression of functional EP4 receptors coupled with Gs-protein was confirmed in C3L5 cells by biochemical assay showing a dose-dependent increase of intracellular cAMP synthesis in response to PGE2. EP receptor antagonists SC-19220, AH-6809, and AH-23848B, having highest affinity for EP1, EP1/EP2/DP, and EP4 receptors, respectively, variably inhibited migration of metastatic breast cancer cells. An autocrine PGE2-mediated migratory activity of these cells appeared to be associated predominantly with EP4 receptor-mediated signaling pathway, which uses cAMP as a second messenger. This conclusion is based on several observations: (1) selective EP4 antagonist AH-23848B effectively inhibited migration of both C3L5 and MDA-MB-231 cells in a dose-dependent manner; (2) exogenous PGE2 and EP4 agonist PGE1 alcohol increased migration of C3L5 cells; (3) forskolin, a potent activator of adenylate cyclase, as well as membrane-permeable analogues of cAMP (8-bromo-cAMP, dibutyryl-cAMP) stimulated migration of C3L5 cells; and (4) Rp-cAMPS, a selective protein kinase A inhibitor, reduced migration of C3L5 cells. Migration of poorly migratory MCF-7 cells remained unaffected with either PGE2 or EP4 antagonist. These findings are relevant for designing therapeutic strategies against breast cancer metastasis.  相似文献   

4.
In neuro-oncology, the biology of neural stem cells (NSCs) has been pursued in two ways: as tumor-initiating cells (TICs) and as a potential cell-based vehicle for gene therapy. NSCs as well as mesenchymal stem cells (MSCs) have been reported to possess tumor tropism capacities. However, there is little data on the migratory capacity of MSCs toward brain tumor-initiating cells (BTICs). This study focuses on the ability of human adipose tissue derived MSCs (hAT-MSCs) to target BTICs and their crosstalk in the microenvironment. BTICs were isolated from three different types of brain tumors. The migration capacities of hAT-MSCs toward BTICs were examined using an in vitro migration assay and in vivo bioluminescence imaging analysis. To investigate the crosstalk between hAT-MSCs and BTICs, we analyzed the mRNA expression patterns of cyto-chemokine receptors by RT-qPCR and the protein level of their ligands in co-cultured medium. The candidate cyto-chemokine receptors were selectively inhibited using siRNAs. Both in vitro and in vivo experiments showed that hAT-MSCs possess migratory abilities to target BTICs isolated from medulloblastoma, atypical teratoid/rhabdoid tumors (AT/RT) and glioblastoma. Different types of cyto-chemokines are involved in the crosstalk between hAT-MSCs and BTICs (medulloblastoma and AT/RT: CXCR4/SDF-1, CCR5/RANTES, IL6R/IL-6 and IL8R/IL8; glioblastoma: CXCR4/SDF-1, IL6R/IL-6, IL8R/IL-8 and IGF1R/IGF-1). Our findings demonstrated the migratory ability of hAT-MSCs for BTICs, implying the potential use of MSCs as a delivery vehicle for gene therapy. This study also confirmed the expression of hAT-MSCs cytokine receptors and the BTIC ligands that play roles in their crosstalk.  相似文献   

5.
The polarization of tumor cells and leukocytes into a front end and a rear end is a crucial prerequisite for their autonomous, directed movement. Phosphatidylinositol 3-kinase (PI3K) is assumed to play an important role in this polarization process, whereas the results obtained with different cell types and different migration assays widely vary. Thus, we conducted a comparative study on the role of the PI3K in the locomotor activity and directionality of the migration of tumor cells on the example of MDA-MB-468 breast carcinoma cells in comparison with CTLs and neutrophil granulocytes. We used our well-established, collagen-based, three-dimensional migration assay for the investigation of the chemokinesis and chemotaxis of these cells. Our results show that the role of the PI3K in the regulation of migratory activity is distinct between the investigated cell types: the migration of CTLs and MDA-MB-468 cells was impaired by the inhibition of the PI3K with wortmannin, whereas neutrophil granulocytes were only slightly affected. However, neither cell type was impaired in the ability to respond chemotactically to gradients of ligands to G protein-coupled receptors. Thus, the PI3K contributes to the regulation of migratory activity but not to the directionality of migration of MDA-MB-468 breast carcinoma cells. As a further conclusion with regard to cancer treatment, the PI3K is not a suitable target for the inhibition of metastasis formation, because the migration of leukocytes is also affected, which leads to a dysfunction of the immune defense.  相似文献   

6.
Stromal cell-derived factor-1alpha (SDF-1alpha) is a strong migratory stimulant for hematopoietic stem and progenitor cells (HSPCs). The hematopoietic cytokines thrombopoietin (TPO), Flt3-ligand (FL), stem cell factor (SCF) and interleukin 11 (IL-11) are able to stimulate amplification of primitive murine hematopoietic stem cells (HSCs) in vitro. The effects of these cytokines on SDF-1alpha-induced migratory activity of murine Lin(-)c-kit+ HSPC were analyzed by cultivation of these cells in the presence of 12 combinations of FL, TPO, SCF and IL-11. Migratory activity was measured in a three-dimensional collagen matrix using time-lapse video microscopy. Each cytokine combination had a distinct effect on SDF-1alpha-stimulated migratory activity. For instance, FL- and SCF-cultivated cells showed a high migratory SDF-1alpha response, while cells cultivated with SCF, TPO and IL-11 did not react to SDF-1alpha stimulation with an elevated migration rate. Our data indicate that the differences in the migratory SDF-1alpha response are not related to different CXCR4 expression levels, but rather to the differential engagement of the CXCR4-dependent MAPK p42/44 and PI3K signal transduction pathways. This indicates that hematopoietic cytokines can have a significant impact on SDF-1alpha-stimulated migratory activity and the underlying intracellular signaling processes in cultivated HSPCs.  相似文献   

7.
Matrix-bound fibronectin (FN) appears to be involved in cell adhesion and motility mediated by integrin receptors. Although lymphoid cells and other cell types are capable of producing and secreting FN, the precise role of this secreted FN-like factor in regulating immune reactions is unclear. In the present study we analyzed the adhesive properties of FN secreted by rat CD4+ T cells and clone cells activated by the T cell mitogen concanavalin A (Con A), antigen, or via the CD2 pathways, or by macrophages (M phi) activated by lipopolysaccharide (LPS). Immobilized culture supernatant (CS) from the activated T cells or M phi supports the adhesion of activated rat or human CD4+ T cell or murine tumor cell. These CS contained FN and were more potent at facilitating cell adhesion then plasma FN. The adhesion activity of CS was attributed to FN because (a) gelatin columns depleted the FN present in the CS and (b) pretreating the cells with peptides of the cell-binding domain of FN abrogated their ability to bind CS. CS-mediated adhesion appears to occur primarily via the recognition of the Arg-Gly-Asp (RGD) by the beta 1-integrin-specific receptors of the adhesive cells. Thus, we postulate that FN secreted by various types of leukocytes is involved in promoting essential cell-matrix interactions, possibly affecting cell-adhesive and migratory processes at inflammatory or extravasation sites.  相似文献   

8.
Appearance of nerve growth factor receptors on cultured neural crest cells   总被引:2,自引:0,他引:2  
Light microscopic radioautography of differentiating quail neural crest cultures (1 to 2 weeks after explanation) incubated with Iodine-125-labeled nerve growth factor (125I-NGF) revealed that approximately 35% of the cells bound NGF. The binding was specific and saturable; it was blocked by an excess of nonradioactive NGF, and was not detected following incubation with biologically inactive 125I-NGF. In addition, the binding did not appear to be blocked or diminished by insulin. Cell cultures prepared from somites or notochord showed no specific binding of 125I-NGF. Melanocytes comprised approximately 10% of the cell population in these cultures and appeared to be unlabeled. The subpopulation of cells with NGF receptors that were morphologically similar to other non-melanocyte unlabeled cells present in the neural crest cultures are probably the targets of the factor during differentiation and development. In contrast, there was no evidence of 125I-NGF binding by premigratory neural crest (adherent to the isolated neural tube) or by early migratory neural crest cells (24 hr after explantation). Both of these types of neural crest cells are relatively undifferentiated. The cells of the neural tube were also unlabeled. The binding of 125I-NGF to differentiating neural crest cells was not noticeably diminished by a brief pretreatment with trypsin or Dispase, enzymes used in the isolation of neural tubes. Hence, the absence of NGF receptors on premigratory neural crest and early migratory neural crest cultures was not due to enzymatic alterations of the receptor. It seems, therefore, that receptors for NGF appear on neural crest cells during the time when these cells are acquiring their phenotypic characteristics.  相似文献   

9.
FGF signals for cell proliferation and migration through different pathways   总被引:9,自引:0,他引:9  
FGFs are pleiotropic growth factors that control cell proliferation, migration and differentiation. However, FGF transduction studies have so far focused primarily on the mitogenic effect of this growth factor family and it has been difficult to assess if the described intracellular signaling pathways are dedicated solely to cell proliferation, or whether they are equally important for the migratory activity often seen in responsive cells. We review here papers in which the migratory effects of this growth factor family were clearly discriminated from proliferative effects. In toto, these studies suggest that cells use different signaling pathways for migration, such as Src and p38 MAP kinase, from those for proliferation, which tend to upregulate the ERKs. Which signaling pathway a cell uses for proliferation or migration appears to depend on many factors, including the structure and the quantity of available FGF trapped in the basal lamina by heparan sulfate co-factors, the disposition of cognate high affinity receptors and the general environment of the cell. Thus the density of the cell population, the state of the cell cycle, the presence of other factors or receptors will modulate the migratory response of cells to FGF.  相似文献   

10.
It was shown that immersion cooling caused deminished phagocytes number and and phagocytes index of polymorphonuclear leucocytes in blood, decreased NCT test data, decreased NADPH-oxidase activity, increased activity of Ca(2+)-ATPase in the cells. Lysozyme corrected the above mentioned parameters of polymorphonuclear leucocytes. Lysozyme activity was mediated by cytokins of glass-spleen cells.  相似文献   

11.
The basis for the angiogenic effects of CXC chemokines such as interleukin 8 (IL-8) and for angiostatic chemokines such as interferon-inducible protein 10 (IP-10) has been difficult to assess. We recently reported, based on an RNase protection assay, that human umbilical vein endothelial cells (HUVECs) did not express detectable mRNA for the IL-8 receptors CXCR1 and CXCR2. This raised the possibility of heterogeneity of receptor expression by different endothelial cell (ECs) types. Since systemic angiogenesis induced by IL-8 would more likely involve microvessel ECs, we investigated CXC receptor expression on human microvascular dermal endothelial cells (HMECs). By confocal microscopy and immunofluorescence we observed that HMECs consistently expressed high levels of CXCR1 and CXCR4 (mean fluorescence intensity of 261+/-22.1 and 306.2+/-19, respectively) and intermediate levels of CXCR3 and CXCR2 (173.9+/-30. 2 and 156+/-30.9, respectively). In contrast, only a small proportion of HUVEC preparations expressed low levels of CXCR1, -2, and -3 (66+/-19.9; 49+/-15, and 81.4+/-17.9, respectively). However, both HMECs and HUVECs expressed equal levels of CXCR4. As expected, HMECs had more potent chemotactic responses to IL-8 than HUVECs, and this was correlated with the levels of IL-8 receptors on the ECs. Antibodies to CXCR1 and CXCR2 each had inhibitory effects on chemotaxis of HMECs to IL-8, indicating that both IL-8 receptors contributed to the migratory response of these cells toward IL-8. Assessment of the functional capacity of CXCR3 unexpectedly revealed that HMECs migrated in response to relatively higher concentrations (100-500 ng/ml) of each of the 'angiostatic' chemokines IP-10, ITAC, and MIG. Despite this, the 'angiostatic' chemokines inhibited the chemotactic response of HMECs to IL-8. IL-8 and SDF-1alpha but not IP-10 induced calcium mobilization in adherent ECs, suggesting that signaling events associated with calcium mobilization are separable from those required for chemotaxis. Taken together, our data indicated that functional differences among EC types is dependent on the level of the expression of CXC chemokine receptors. Whether this heterogeneity in receptor expression by ECs reflects distinct differentiation pathways remains to be established.  相似文献   

12.
Antiviral activity of immunomodulator "Hepon" was evaluated in human cells culture infected with hepatitis C virus. "Hepon" presence protected human cells SW-13 from cytopathogenic effect of hepatitis C virus. Maximum antiviral effect was demonstrated by "Hepon" at concentration 1 mcg/mL. Control antiviral agent reaferon (interferon alfa-2a) was more potent as vitality protecting agent in the case of SW-13 human cells culture. "Hepon" activity is based on changes of cytokins and interferons spectrum so this immunomodulator is expected to be effective against different viruses including herpes virus and encephalocarditis virus.  相似文献   

13.
BACKGROUND: The glucagon-like peptides-1 and -2 (GLP-1 and -2) are co-secreted after food intake from intestinal L cells. Since both peptides are rapidly degraded by dipeptidyl peptidase-IV (DPPIV), research is focused on the development of DPPIV inhibitors or DPPIV resistant. AIMS: In this study we investigated, whether the inhibition of DPPIV activity and the resulting increased half-life of DPPIV substrates may influence cancer development and progression. METHODS: We examined proliferation and migratory activity of two human colon cancer cell lines (SW480, HT29) after stimulation with GLP-2 in combination with or without DPPIV inhibitors. RESULTS: Migratory activity was increased by 25% from 20% matrix induced activity to a maximum of 45% (100 nM GLP-2). In cells expressing CD26, migration was prolonged by addition of DPPIV inhibitors in a concentration dependent manner. After treatment with GLP-2 doubling time decreased from 2.4 to 1.5 days - and addition of DPPIV inhibitors enhanced the effect of GLP-2. CONCLUSIONS: The use of DPPIV inhibitors together with GLP-2 led to increased proliferation as well as elevated migratory activity. Therefore, the use of DPPIV inhibitors could increase the risk of promoting an already existing intestinal tumour and may support the potential of colon cancer cells to metastasize.  相似文献   

14.
For bone repair, transplantation of periosteal progenitor cells (PCs), which had been amplified within supportive scaffolds, is applied clinically. More innovative bone tissue engineering approaches focus on the in situ recruitment of stem and progenitor cells to defective sites and their subsequent use for guided tissue repair. Chemokines are known to induce the directed migration of bone marrow CD34(-) mesenchymal stem cells (MSCs). The aim of our study was to determine the chemokine receptor expression profile of human CD34(-) PCs and to demonstrate that these cells migrate upon stimulation with selected chemokines. PCs were isolated from periosteum of the mastoid bone and displayed a homogenous cell population presenting an MSC-related cell-surface antigen profile (ALCAM(+), SH2(+), SH3(+), CD14(-), CD34(-), CD44(+), CD45(-), CD90(+)). The expression profile of chemokine receptors was determined by real-time PCR and immunohistochemistry. Both methods consistently demonstrated that PCs express receptors of all four chemokine subfamilies CC, CXC, CX(3)C, and C. Migration of PCs and a dose-dependent migratory effect of the chemokines CCL2 (MCP1), CCL25 (TECK), CXCL8 (IL8), CXCL12 (SDF1alpha), and CXCL13 (BCA1), but not CCL22 (MDC) were demonstrated using a 96-multiwell chemotaxis assay. In conclusion, for the first time, here we report that human PCs express chemokine receptors, present their profile, and demonstrate a dose-dependent migratory effect of distinct chemokines on these cells. These results are promising towards in situ bone repair therapies based on guiding PCs to bone defects, and encourage further in vivo studies.  相似文献   

15.
Metastatic properties of prostate cancer cells are controlled by VEGF   总被引:16,自引:0,他引:16  
Mechanisms of metastasis, the major complication of prostate cancer, are poorly understood. In this study, we define molecular mechanisms that may contribute to the highly invasive potential of prostate cancer cells. Vascular endothelial growth factor (VEGF), its receptors (VEGFRs), and alpha5beta1 integrin were expressed by prostate cancer cells in vitro and by prostate tumors in vivo, and their expression was elevated at sites of bone metastasis compared to original prostate tumor. VEGF, through interaction with its receptors, regulated adhesive and migratory properties of the cancer cells. Specifically, the highly metastatic prostate cancer cell subline LNCaP-C4-2 showed a decreased adhesive but an enhanced migratory response to fibronectin, a ligand for alpha5beta1 integrin, compared to its nonmetastatic counterpart. A similar pattern was also observed when bone sialoprotein was used as a ligand in migration assays. Increased migration of metastatic prostate cancer cells to fibronectin and bone sialoprotein was regulated by VEGF via VEGFR-2. Tumor suppressor PTEN was involved in control of VEGF/VEGFR-2 stimulated prostate cancer cell adhesion as well as proliferation.  相似文献   

16.
C6 glioma cells contain two types of receptors for adrenocorticoids. Glucocorticoid (Type II) receptors are present at higher density and mediate increases in glycerol phosphate dehydrogenase and glutamine synthetase activity. The function of mineralocorticoid (Type I) receptors present at low density in C6 cells is unknown. Since mineralocorticoid (Type I) receptors in renal epithelial cells regulate cation transport, we sought to determine whether adrenocorticoid receptors located in glioma cells are similarly linked to electrolyte transporting activity. Occupation of mineralocorticoid receptors in C6 glioma by adrenocorticoids did not alter Na+ or K+ transport, in contrast to their effects on renal epithelial and vascular smooth muscle cells. Occupation of glucocorticoid receptors produced a 20-25% decrease in K+ uptake into C6 cells, but did not alter Na+ influx. Stimulation of Na+ influx with the ionophore monensin produced a large ouabain-sensitive increase in glucose utilization, as measured by 2-deoxyglucose uptake. However, mineralocorticoid receptor occupation did not alter glucose utilization, providing further evidence that these receptors do not influence Na+ transport in C6 cells. These studies provide evidence that mineralocorticoid receptors in glioma cells do not regulate Na+ or K+ transport. Glial glucocorticoid receptors have an inhibitory effect on glial K+ influx, which may contribute to glucocorticoid hormone effects on brain excitability.  相似文献   

17.
Metastasis of primary tumors progresses stepwise — from change in biochemistry, morphology, and migratory patterns of tumor cells to the emergence of receptors on their surface that facilitate directional migration to target organs followed by the formation of a specific microenvironment in a target organ that helps attachment and survival of metastatic cells. A set of specific genes and signaling pathways mediate this process under control of microRNA. The molecular mechanisms underlying biological processes associated with tumor metastasis are reviewed in this publication using ovarian cancer, which exhibits high metastatic potential, as an example. Information and data on the genes and regulatory microRNAs involved in the formation of cancer stem cells, epithelial–mesenchymal transition, reducing focal adhesion, degradation of extracellular matrix, increasing migration activity of cancer cells, formation of spheroids, apoptosis, autophagy, angiogenesis, formation of metastases, and development of ascites are presented. Clusters of microRNAs (miR-145, miR-31, miR-506, miR-101) most essential for metastasis of ovarian cancer including the families of microRNAs (miR-200, miR-214, miR-25) with dual role, which is different in different histological types of ovarian cancer, are discussed in detail in a section of the review.  相似文献   

18.
The objective of this work was to develop an in vitro system that would extend the usefulness of the macaque as a model for studying trophoblast invasion and spiral artery modification. We sought to determine whether trophoblast cells isolated from early gestation macaque placentas expressed vitronectin receptors and tested the idea that these receptors play a role in trophoblast migration and adhesion. Cytotrophoblast cells were isolated from 40-100 day macaque placentas, cultured, and characterized by immunofluorescence microscopy and flow cytometry. The cells expressed alphaV, beta3, and beta1 integrins on their surfaces. Immunohistochemical analysis of early gestation placentas and decidua basalis confirmed that intravascular trophoblast cells express alphaVbeta3/beta5. Using migration chambers we found that the trophoblast cells migrated towards vitronectin but not towards bovine serum albumin. This specific migration was blocked by preincubating the trophoblast cells with anti-vitronectin receptor (alphaVbeta3/beta5) antibodies. In other experiments, macaque trophoblast cells adhered to myometrial endothelial cells in a time-dependent manner and adhesion was significantly blocked by antibodies against alphaVbeta3/beta5 integrin. The results suggest that vitronectin receptors expressed by macaque trophoblast cells play a role in the migratory activity of these cells and may also be important in mediating attachment to endothelium.  相似文献   

19.
Increased cell proliferation and migration, of several cell types are key components of vascular remodeling observed in pulmonary hypertension (PH). Our previous data demonstrate that adventitial fibroblasts isolated from pulmonary arteries of chronically hypoxic hypertensive calves (termed PH-Fibs) exhibit a "constitutively activated" phenotype characterized by high proliferative and migratory potential. Osteopontin (OPN) has been shown to promote several cellular activities including growth and migration in cancer cells. We thus tested the hypothesis that elevated OPN expression confers the "activated" highly proproliferative and promigratory/invasive phenotype of PH-Fibs. Our results demonstrate that, both in vivo and ex vivo, PH-Fibs exhibited increased expression of OPN, as well as its cognate receptors, α(V)β(3) and CD44, compared with control fibroblasts (CO-Fibs). Augmented OPN expression in PH-Fibs corresponded to their high proliferative, migratory, and invasive properties and constitutive activation of ERK1/2 and AKT signaling. OPN silencing via small interfering RNA or sequestering OPN production by specific antibodies led to decreased proliferation, migration, invasion, and attenuated ERK1/2, AKT phosphorylation in PH-Fibs. Furthermore, increasing OPN levels in CO-Fibs via recombinant OPN resulted in significant increases in their proliferative, migratory, and invasive capabilities to the levels resembling those of PH-Fibs. Thus our data suggest OPN as an essential contributor to the activated (highly proliferative, migratory, and proinvasive) phenotype of pulmonary adventitial fibroblasts in hypoxic PH.  相似文献   

20.
Cryptochromes are ubiquitously expressed in various animal tissues including the retina. Some cryptochromes are involved in regulating circadian activity. Cryptochrome proteins have also been suggested to mediate the primary mechanism in light-dependent magnetic compass orientation in birds. Cryptochrome 1b (Cry1b) exhibits a unique carboxy terminus exclusively found in birds so far, which might be indicative for a specialised function. Cryptochrome 1a (Cry1a) is so far the only cryptochrome protein that has been localised to specific cell types within the retina of migratory birds. Here we show that Cry1b, an alternative splice variant of Cry1a, is also expressed in the retina of migratory birds, but it is primarily located in other cell types than Cry1a. This could suggest different functions for the two splice products. Using diagnostic bird-specific antibodies (that allow for a precise discrimination between both proteins), we show that Cry1b protein is found in the retinae of migratory European robins (Erithacus rubecula), migratory Northern Wheatears (Oenanthe oenanthe) and pigeons (Columba livia). In all three species, retinal Cry1b is localised in cell types which have been discussed as potentially well suited locations for magnetoreception: Cry1b is observed in the cytosol of ganglion cells, displaced ganglion cells, and in photoreceptor inner segments. The cytosolic rather than nucleic location of Cry1b in the retina reported here speaks against a circadian clock regulatory function of Cry1b and it allows for the possible involvement of Cry1b in a radical-pair-based magnetoreception mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号