首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Abstract. 1. The tiger swallowtail butterfly, Papilio glaucus (L.) (Lepidoptera: Papilionidae), is commonly assumed to have a bivoltine life cycle in central New York State and other parts of the northeastern United States. The seasonal abundance of adults in Tompkins County, New York, shows a bimodal pattern in some years, and a skewed unimodal pattern in others. We studied the incidence of diapause, the potential for successful development of two generations in the field, and the dates of adult emergence from overwintering pupae to determine whether these seasonal patterns are the result of bivoltinism.
2. Insects from Tompkins County, reared as larvae under 16L:8D photoperiod, uniformly enter pupal diapause.
3. Comparison of the heat units required for successful development of two generations with the heat units available in the field during 11 years shows that emergence of non-diapausing individuals would occur too late in the summer to contribute to the second peak of butterfly abundance. Offspring of non-diapausing individuals could only rarely complete development before the end of the growth season.
4. Diapausing offspring of butterflies collected in early June and late July differed sufficiently in dates of emergence to account for the field pattern of seasonal abundance.
5. Electrophoretic studies revealed no evidence of genetic isolation between early and late emerging butterflies.
6. These results suggest that polymodal emergence of diapausing insects can masquerade as a bivoltine life cycle.  相似文献   

2.
The larval food plants of the butterflies of the Andaman and Nicobar islands have not been studied, although the butterfly fauna per se is fairly well known. For the first time we report the food plants of the larvae of 120 species of butterflies from these islands on the basis of laboratory rearing and field studies. This information is essential for the formulation of management programmes for butterfly conservation on these islands which are known to harbour critical swallowtail and (possibly) danaine faunas.  相似文献   

3.
二化螟滞育幼虫的蛋白和核酸含量以及保护酶活性的变化   总被引:1,自引:0,他引:1  
为了阐明二化螟Chilo supprressalis滞育幼虫的分子特征及滞育期间保护酶活性的变化规律, 本研究应用Trizol法、 总量DNA提取法和蛋白定量试剂盒, 测定了在长光周期16L∶8D和25℃下发育的非滞育老熟幼虫、 在短光周期12L∶12D 和25℃下诱导滞育51 d的幼虫(称为滞育0个月)、 滞育1, 2和3个月幼虫的核酸含量和总蛋白含量; 同时应用试剂盒测定了老熟幼虫、 滞育0, 1和2个月的二化螟幼虫5种保护酶(POD, CAT, SOD, LDH和ATP酶)的活性。结果表明: 滞育幼虫的总RNA含量显著低于非滞育的老熟幼虫(P<0.05), 而滞育1, 2和3个月的幼虫之间没有显著差异(P≥0.05)。老熟幼虫的总DNA含量显著高于滞育幼虫(P<0.05)。老熟幼虫的RNA/DNA比值较低, 滞育幼虫的RNA/DNA比值较高, RNA/DNA比值随着滞育时间的推移呈现出先上升后下降的趋势。滞育期大于1个月的幼虫中蛋白含量均显著高于非滞育的老熟幼虫(P<0.05), 而滞育1, 2和3个月的幼虫之间没有显著差异(P≥0.05)。二化螟幼虫体内5种保护酶活性随发育阶段不同而存在差异。滞育幼虫中POD, CAT和SOD的活性随滞育时间延长而逐渐增强, 滞育2个月幼虫中的活性最高, 而非滞育老熟幼虫中的活性最低; LDH和ATP酶的活性则相反, 非滞育老熟幼虫中的活性最高, 滞育2个月幼虫中的活性最低。这些结果说明, 总RNA和DNA含量降低、 RNA/DNA比值先升后降、 总蛋白含量升高以及保护酶活性的变化是二化螟幼虫滞育过程中的主要生理特征。  相似文献   

4.
Summary Chrysomela confluens produces a salicylaldehyde-based defensive secretion which is very effective against generalist predators and apparently produced at no cost. If no cost defenses are common, then one of the basic assumptions in the plant-herbivore literature, i.e. tradeoffs among defense, reproduction, and growth, must be reconsidered. We examined the effectiveness of this defense by exposing defended larvae and larvae whose secretion had been removed to a generalist predator. Larvae which had their secretions intact were attacked by only 7% of the ants which encountered them, and none of these larvae suffered serious damage. In contrast, those which had been milked of their secretions immediately prior to exposure were attacked in 48% of such encounters, and two-thirds of the larvae were killed. Larvae which had been milked 24 or 72 h before exposure, then allowed to regenerate their defenses, were attacked at rates indistinguishable from larvae that had not been milked. Thus regenerated defenses are just as effective as original defenses. We also tested the hypothesis that the cost of defense production and maintainence would be reflected in reductions in developmental rates and final adult mass and increases in leaf consumption rate. We found that larvae which were milked daily of their secretions manifested no measurable cost of recharging reservoirs. Milked larvae grew and fed at the same rates as their control sibs, and became adults of equal or slightly larger size. The liberation of glucose from salicin, a precursor present in leaves of salicaceous hosts, during the production of salicylaldehyde apparently provides enough of an energetic benefit to offset the cost of maintaining an effective defense. Consistent with this hypothesis, we did not find that milked larvae compensated for increased nutritional or salicin demands by increasing their feeding rates. Although this patterns is familiar to chemical ecologists it is generally unappreciated in the plant-herbivore literature. It is likely that many arthropod herbivore defensive systems come at little or no cost, given the intimacy of association between herbivores and their food plants. Sequestration of host plant defensive chemicals which eliminates the cost of synthesis is common in arthropods. The de novo synthesis of chemical defenses may be less costly than expected if it is integrated into other parts of an insects metabolism. Calculations based on the bond energies or molecular constitution of the compounds will not yield a complete perception of cost. Tests over the life of the herbivore, coupled with an understanding of the herbivore's metabolism, are necessary.  相似文献   

5.
Plants have evolved a variety of mechanisms for dealing with insect herbivory among which chemical defense through secondary metabolites plays a prominent role. Physiological, behavioural and sensorical adaptations to these chemicals provide herbivores with selective advantages allowing them to diversify within the newly occupied ecological niche. In turn, this may influence the evolution of plant metabolism giving rise to e.g. new chemical defenses. The association of Pierid butterflies and plants of the Brassicales has been cited as an illustrative example of this adaptive process known as 'coevolutionary armsrace'. All plants of the Brassicales are defended by the glucosinolate-myrosinase system to which larvae of cabbage white butterflies and related species are biochemically adapted through a gut nitrile-specifier protein. Here, we provide evidence by metabolite profiling and enzyme assays that metabolism of benzylglucosinolate in Pieris rapae results in release of equimolar amounts of cyanide, a potent inhibitor of cellular respiration. We further demonstrate that P. rapae larvae develop on transgenic Arabidopsis plants with ectopic production of the cyanogenic glucoside dhurrin without ill effects. Metabolite analyses and fumigation experiments indicate that cyanide is detoxified by β-cyanoalanine synthase and rhodanese in the larvae. Based on these results as well as on the facts that benzylglucosinolate was one of the predominant glucosinolates in ancient Brassicales and that ancient Brassicales lack nitrilases involved in alternative pathways, we propose that the ability of Pierid species to safely handle cyanide contributed to the primary host shift from Fabales to Brassicales that occured about 75 million years ago and was followed by Pierid species diversification.  相似文献   

6.
Abstract This study examined the factors used as cues for diapause termination by two Euploea species. Euploea core and E. sylvester were collected from two overwintering sites at Chillagoe, Queensland. Under tropical wet-season conditions, more butterflies terminated diapause (approximately 60%) than those kept under dry-season conditions (approximately 40%). However, 100% diapause termination occurred only when butterflies were kept under wet-season conditions and were fed with honey. For reproductive success, Euploea species need to terminate diapause rapidly to synchronise oviposition with fresh, rapid growth of their larval host plants, which often occurs after rain. The presence of rainfall, increased temperature and long days alone is not a fail-safe set of cues for this event. Our results suggest that food (as nectar), in conjunction with these combined environmental factors, provide Euploea species with a reliable signal that larval host resources are available for oviposition.  相似文献   

7.
While trying to achieve their nutritional requirements, foraging herbivores face the costs of plant defenses, such as toxins. Teasing apart the costs and benefits of various chemical constituents in plants is difficult because their chemical defenses and nutrient concentrations often co-vary. We used an approach derived from predator–prey studies to quantitatively compare the foraging response of a free-ranging mammalian herbivore, the swamp wallaby (Wallabia bicolor), through three feeding trials with artificial diets that differed in their concentrations of (1) the terpene 1,8-cineole, (2) primary constituents (including nitrogen and fiber), and (3) both the terpene and the primary constituents. Applying the giving-up density (GUD) framework, we demonstrated that the foraging cost of food patches increases with higher dietary cineole concentration and decreases with higher dietary nutrient concentration. The effect of combined differences in nutrients and cineole concentrations on GUD was interactive, and high nutrient food required more cineole to achieve the same patch value as low nutrient food. Our results indicate that swamp wallabies equate low nutrient, poorly defended food with high nutrient, highly defended food, providing two contrasting diets with similar cost–benefit outcomes. This behavior suggests that equal concentrations of chemical defenses provide nutrient-poor plants with relatively greater protection as nutrient-rich plants. Nutrient-rich plants may therefore face the exacerbated problem of being preferred by herbivores and therefore need to produce more defense compounds to achieve the same level of defense as nutrient-poor plants. Our findings help explain the difference in anti-herbivore strategy of nutrient-poor and rich plants, i.e., tolerance versus defense.  相似文献   

8.
Larvae of the pipevine swallowtail ( Battus philenor ) sequester toxic alkaloids called aristolochic acids from their Aristolochia host plants, rendering both larvae and adults chemically defended against most predators. Using a chemically controlled artificial diet, we observed substantial among-family variation in sequestration ability and larval developmental rate in a population occurring in central Texas. Early instar larvae from families that sequester greater amounts of aristolochic acid showed increased survivorship in a field experiment in which cohorts from each family were exposed to natural predators, whereas among-family variation in growth rate did not predict survivorship. Conversely, the aristolochic acid content of adult butterflies was negatively correlated with adult fat content, a fitness correlate. Sequestration ability positively affects the probability of larval survivorship, but at the cost of adult fat content. The costs and benefits of aristolochic acid sequestration vary during the course of the butterfly's development, and these antagonistic selection pressures may explain why variation in sequestration ability persists in wild populations.  相似文献   

9.
This study evaluates the adaptive significance of host preferences and searching behaviour in Vancouver and Canberra populations of the cabbage butterfly Pieris rapae (L.). As a result of a complex of responses to plant age, the butterflies concentrate their eggs on middle-aged plants. Young larvae develop faster and survive better on young plants than old ones, but larvae on smaller plants are more susceptible to crowding effects. Thus a preference for plants which are well-grown but not too old is selectively advantageous. By contrast, the butterflies’ host species preferences appear non-adaptive, and are unrelated to the quality of the host as larval food. Vancouver butterflies change their flight direction often and are very responsive to hosts, thereby generating a very aggregated distribution at a low cost in flight time. Canberra butterflies tend to fly in straight lines and are less responsive to hosts; their egg distribution is consequently more nearly random, but they fly further for each egg they lay. The relative costs of aggregation and increased flight time differ between the populations in a manner consistent with the observed behavioural differences.  相似文献   

10.
在以卵滞育的昆虫中昆虫滞育时的生理代谢特点已经得到了大量研究。本文对以末龄幼虫(5龄)滞育的大斑芫菁Mylabris phalerate(Pallas)在不同滞育阶段体内糖类和醇类代谢的特征进行了研究。结果表明: 滞育个体血淋巴中的海藻糖含量高于非滞育个体,且随滞育时间的加大逐渐升高,滞育5个月时达到最大值,为5.61 μmol/mL。糖原的含量随滞育的进程逐渐减少,滞育初期(0.5个月)为0.72 mg/mL,到滞育末期(5个月)时仅为0.1 mg/mL。滞育个体脂肪体中的海藻糖含量都高于非滞育个体,滞育1个月时为非滞育个体的3倍,至滞育末期时达非滞育个体的5倍,为2.5 μmol/g脂肪体。糖原含量总体变化趋势是随滞育时间的加大逐渐减少,滞育早期和中期都高于非滞育个体。在滞育过程中血淋巴积累的小分子多元醇主要为甘油,其次是山梨醇;而在脂肪体中主要为甘油,其次是甘露醇,少量积累山梨醇:表明大斑芫菁滞育幼虫主要积累的是海藻糖和一些小分子多元醇。滞育幼虫在准备滞育时储备了大量糖原,这些糖原可能为滞育期间海藻糖、山梨醇和甘油的代谢提供了原料。  相似文献   

11.
Antioxidant enzymes (CAT, catalase; GPx, selenium nondependent glutathione peroxidase; GST, glutathione-S-transferase; GR, glutathione reductase; DHAR, dehydroascorbate reductase) were determined in the mitochondria of diapausing and non-diapausing larvae and pupae of both diapausing and non-diapausing larvae of the European corn borer (Ostrinia nubilalis, Hubn., Lepidoptera: Pyralidae). CAT, GST, and DHAR activity in mitochondria of diapausing larvae were reduced compared to non-diapausing larvae. Pupae of diapaused-larvae possessed lower GST, but higher DHAR activities compared to pupae of non-diapaused individuals. Comparison between larvae and pupae revealed lower GPx activity in the mitochondria of pupae. CAT activity in the mitochondria of pupae was higher compared to diapausing larvae, but lower than in non-diapausing ones. Correlation and canonical discriminant analyses revealed different antioxidant enzyme compositions for a particular stage and developmental pattern. Our results show that antioxidant enzymes have a similar role in the regulation of energetics in mitochondria as that in diapause and metamorphosis.  相似文献   

12.
Orchid pollinators have highly varied life histories with complex biotic resource requirements, about which we have limited knowledge. Among the specialist orchid pollinators are insect predators and parasitoids with specific prey types such as aphids and subterranean scarab larvae; oligolectic bees that collect pollen from limited sources such as bellflowers; euglossine bees and butterflies that collect particular plant chemicals for reproduction and self defense; oil-collecting bees that provision their brood cells with floral oils from a few plants; bees that collect rare floral resins to construct their nest and brood cells; moths and butterflies that require specific larval host plants; mosquitos and horse flies that need blood; and fungus gnats and carrion flies tied to fungi and dead animals. Loss of critical biotic resources and relationships can reduce the abundance of orchid pollinators and/or their effectiveness. Protection of large, plant rich, pesticide-free orchid habitats is key to conserving essential pollinator resources.  相似文献   

13.
The larvae of Sesamia nonagrioides (Lepidoptera: Noctuidae) grown at 25 degrees C and long photoperiod (16:8h light:dark) pupate in the 5th or 6th (mostly) larval instar, while the larvae reared under a short photoperiod (12:12h) enter diapause during which they consume some food and undergo up to 12 (usually 3-4) stationary larval molts. Diapause programming includes an increase of juvenile hormone (JH) titer in the hemolymph from about 20 to 50 nM in the 4th and 5th instar larvae (titer in earlier instars was not measured). JH I, II, and III are present in approximate ratio 1-2:10:1. The JH titer drops to zero before pupation but remains around 20 nM during diapause. Perfect extra larval molts associated with a body weight increase can be induced in the non-diapausing larvae with a JH analogue (JHA). The weight rise is due to accumulation of reserves and not to a general body growth. The timing of extra molts is similar to the molting pattern of the diapausing larvae only when JHA is present since early larval instars. In the diapausing larvae, JHA application affects neither molting periodicity nor the body weight. It is concluded that (1) Increased JH titer in early larval instars is a part of diapause programming; (2) The extension of larval stage in the diapausing larvae, but not the timing pattern of extra molts, is due to continuously high JH titer; (3) The diapause program includes low food intake, maintenance of a certain body weight, and periodic larval molts.  相似文献   

14.
Evolutionary convergence of color pattern in mimetic species is tightly linked with the evolution of chemical defenses. Yet, the evolutionary forces involved in natural variations of chemical defenses in aposematic species are still understudied. Herein, we focus on the evolution of chemical defenses in the butterfly tribe Heliconiini. These neotropical butterflies contain large concentrations of cyanogenic glucosides, cyanide‐releasing compounds acting as predator deterrent. These compounds are either de novo synthesized or sequestered from their Passiflora host plant, so that their concentrations may depend on host plant specialization and host plant availability. We sampled 375 wild Heliconiini butterflies across Central and South America, covering 43% species of this clade, and quantify individual variations in the different CGs using liquid chromatography coupled with tandem mass spectrometry. We detected new compounds and important variations in chemical defenses both within and among species. Based on the most recent and well‐studied phylogeny of Heliconiini, we show that ecological factors such as mimetic interactions and host plant specialization have a significant association with chemical profiles, but these effects are largely explained by phylogenetic relationships. Our results therefore suggest that shared ancestries largely contribute to chemical defense variation, pointing out at the interaction between historical and ecological factors in the evolution of Müllerian mimicry.  相似文献   

15.
Due to a growing demand of food production worldwide, new strategies are suggested to allow for sustainable production of food with minimal effects on natural resources. A promising alternative to the application of chemical pesticides is the implementation of crops resistant to insect pests. Plants produce compounds that are harmful to a wide range of attackers, including insect pests; thus, exploitation of their natural defense system can be the key for the development of pest‐resistant crops. Interestingly, some plants possess a unique first line of defense that eliminates the enemy before it becomes destructive: egg‐killing. Insect eggs can trigger (1) direct defenses, mostly including plant cell tissue growth or cell death that lead to eggs desiccating, being crushed or falling off the plant or (2) indirect defenses, plant chemical cues recruiting natural enemies that kill the egg or hatching larvae (parasitoids). The consequences of plant responses to eggs are that insect larvae do not hatch or that they are impeded in development, and damage to the plant is reduced. Here, we provide an overview on the ubiquity and evolutionary history of egg‐killing traits within the plant kingdom including crops. Up to now, little is known on the mechanisms and on the genetic basis of egg‐killing traits. Making use of egg‐killing defense traits in crops is a promising new way to sustainably reduce losses of crop yield. We provide suggestions for new breeding strategies to grow egg‐killing crops and improve biological control.  相似文献   

16.
Herbivore microbial associates can affect diverse interactions between plants and insect herbivores. Some insect symbionts enable herbivores to expand host plant range or to facilitate host plant use by modifying plant physiology. However, little attention has been paid to the role of herbivore-associated microbes in manipulating plant defenses. We have recently shown that Colorado potato beetle secrete the symbiotic bacteria to suppress plant defenses. The bacteria in oral secretions from the beetle hijack defense signaling pathways of host plants and the suppression of induced plant defenses benefits the beetle’s performance. While the defense suppression by the beetle-associated bacteria has been investigated in local damaged leaves, little is known about the effects of the symbiotic bacteria on the manipulation of plant defenses in systemic undamaged leaves. Here, we demonstrate that the symbiotic bacteria suppress plant defenses in both local and systemic tissues when plants are attacked by antibiotic-untreated larvae.  相似文献   

17.
Nutrient accumulation is crucial in insect diapause preparation because insufficient nutrient accumulation can shorten the diapause period, interfere with diapause development completion, and decrease the probability of surviving the overwintering period. The amounts of lipids and carbohydrates stored in diapausing pupae of Hyphantria cunea (Drury) (Lepidoptera: Erebidae, Arctiinae) are greater than those in the non-diapausing pupae. In this study, we tested the hypothesis that diapause-destined (DD) and non-diapause-destined (NDD) larvae of H. cunea have different nutrient accumulation patterns in penultimate and final instars. The body mass, as well as lipid, carbohydrate, and soluble protein contents, and the efficiency of converting digested food and ingested food into body matter were greater in the DD penultimate and final instars than in the NDD penultimate and final instars. Larger amounts of lipids, carbohydrates, and proteins were absorbed by DD penultimate and final instars and the final instar development period in the DD larvae was prolonged relative to NDD larvae. The activities of fatty acid synthase and glycogen synthase of DD penultimate and final instars were significantly higher than those of NDD larvae. These results suggest that the changes in nutrient accumulation patterns between DD and NDD larvae occur in penultimate and final instars, and that the DD larvae increase their nutrient accumulation during diapause preparation by the combined effect of extending their final-instar development period and improving their digestive efficiency; they increase their lipid and carbohydrate stores by increasing the activities of fatty acid synthase and glycogen synthase in the fat body.  相似文献   

18.
Diapause in Apanteles melanoscelus can be terminated by exposure of the diapausing last instar larvae within their cocoons to 5°C for a period of 8 or more weeks. Photoperiod has no consistent influence upon diapause termination, but is of paramount importance for diapause induction. At less than 16 hr light per day virtually all larvae diapause, and at 18 hr and above very few larvae diapause. By exposing different larval stages to different photoperiods it was found that older larvae were most sensitive to the light-dark cycle. It was also noted that cocoons of diapausing larvae are larger than those of non-diapausing larvae.  相似文献   

19.
Divergent natural selection contributes to reproductive isolation among populations adapting to different habitats or resources if hybrids between populations are intermediate in phenotype and suffer an associated, environmentally dependent reduction in fitness. This prediction was tested using two host races of Mitoura butterflies. Thirty-five F1 hybrid and parental lines were created, larvae were raised on the two host plants, and oviposition preferences were assayed in choice arenas. Larvae from both reciprocal hybrid crosses suffered a host-specific reduction in performance: when reared on incense cedar, hybrid survival was approximately 30% less than the survival of pure lines of the cedar-associated host race. The performance of hybrid larvae reared on the other host, MacNab cypress, was not reduced relative to parental genotypes. Females from both reciprocal hybrid crosses preferred to oviposit on incense cedar, the same host that resulted in the reduced survival of hybrid larvae. Thus, dominance is implicated in the inheritance of traits involved in both preference and performance, which do not appear to be genetically linked in Mitoura butterflies. Gene flow between host races may be reduced because the correlation between preference and performance that was previously described in parental populations is essentially broken by hybridization.  相似文献   

20.
Summary The interaction of host plant phenology and microclimatic heterogeneity was examined to determine its role in the population dynamics of checkerspot butterflies, Euphydryas editha, inhabiting serpentine grassland in California's outer Coast Range.Within the 2–3 hectares inhabited by a population of E. editha (Jasper Ridge Area H), microclimatic differences resulting from topographic heterogeneity largely determine the temporal and spatial pattern of senescence of the larval host plants, Plantago erecta and Orthocarpus densiflorus. Survival of larvae from hatching to diapause is extremely low as a result of unpredictable variation in the timing of larval development relative to the timing of host plant senescence, both of which are mediated by microclimatic patterns. During this study, population H declined to near extinction as a result of two consecutive years of record rainfall that apparently disrupted the tenuous temporal relationship between larval development and plant senescence. Retarded development of post-diapause larvae led to a late and extended flight season and delayed egg production; this in turn resulted in massive mortality of pre-diapause larvae due to starvation because host plant senescence occurred before larvae became large enough to enter diapause. Adult population size the following spring was the smallest in 25 years of study. This work emphasizes the importance of microclimatic heterogeneity for understanding population-level processes in small ectothermic animals and underlines the potential importance of such heterogeneity in the establishment of reserves designed to protect such animals  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号