首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Gossypium species represent a vast resource of genetic multiplicity for the improvement of cultivated cotton. To determine genetic diversity and relationships within a diverse collection of Gossypium, we employed 120 SSR primers on 20 diploid species representing seven basic genome groups of the genus Gossypium, five AD allotetraploid cotton accessions while T. populnea served as an outgroup species. Out of 120 SSR primers, 49 pairs are polymorphic, which produced a total of 99 distinct alleles with an average of 2.0 alleles per primer pair. A total of 1139 major SSR bands were observed. Genetic similarities among all the diploid species ranged from 0.582 (between G. herbaceum and G. trilobum) up to 0.969 (between G. arboreum and G. herbaceum). Phylogenetic trees based on genetic similarities were consistent with known taxonomic relationships. The results also indicated that G. raimondii is the closest living relative of the ancestral D-genome donor of tetraploid species and the A-genome donor is much similar to the present-day G. herbaceum and G. arboreum. Ancient tetraploid cotton species were formed by hybridizing and chromosome doubling between them, then different tetraploid cotton species appeared by further geographical and genetic isolation and separating differentiation. The results showed that SSRs could be an ideal means for the identification of the genetic diversity and relationship of cotton resources at the genomic level.  相似文献   

2.

Key message

Genetic diversity and population structure in the US Upland cotton was established and core sets of allelic richness were identified for developing association mapping populations in cotton.

Abstract

Elite plant breeding programs could likely benefit from the unexploited standing genetic variation of obsolete cultivars without the yield drag typically associated with wild accessions. A set of 381 accessions comprising 378 Upland (Gossypium hirsutum L.) and 3 G. barbadense L. accessions of the United States cotton belt were genotyped using 120 genome-wide SSR markers to establish the genetic diversity and population structure in tetraploid cotton. These accessions represent more than 100 years of Upland cotton breeding in the United States. Genetic diversity analysis identified a total of 546 alleles across 141 marker loci. Twenty-two percent of the alleles in Upland accessions were unique, specific to a single accession. Population structure analysis revealed extensive admixture and identified five subgroups corresponding to Southeastern, Midsouth, Southwest, and Western zones of cotton growing areas in the United States, with the three accessions of G. barbadense forming a separate cluster. Phylogenetic analysis supported the subgroups identified by STRUCTURE. Average genetic distance between G. hirsutum accessions was 0.195 indicating low levels of genetic diversity in Upland cotton germplasm pool. The results from both population structure and phylogenetic analysis were in agreement with pedigree information, although there were a few exceptions. Further, core sets of different sizes representing different levels of allelic richness in Upland cotton were identified. Establishment of genetic diversity, population structure, and identification of core sets from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in Upland cotton.  相似文献   

3.
Gossypium species (± 49) represent a vast resource of genetic diversity for the improvement of cultivated cotton. To determine intra- and inter-specific genetic relationships within a diverse collection of Gossypium taxa, we employed 16 AFLP primer combinations on three diploid species, Gossypium herbaceum L. (A1), Gossypium arboreum L. (A2) and Gossypium raimondii Ulbrich (D5), and 26 AD allotetraploid accessions (Gossypium barbadense L. and Gossypium hirsutum L.). A total of 1180 major AFLP bands were observed; 368 of these (31%) were polymorphic. Genetic similarities among all taxa ranged from 0.21 (between the diploid species G. arboreum and G. raimondii) up to 0.89 (within G. barbadense). Phenetic trees based on genetic similarities (UPGMA, N-J) were consistent with known taxonomic relationships. In some cases, well-supported phylogenetic relationships, as well as evidence of genetic reticulation, could also be inferred. UPGMA trees and principal coordinate analysis based on genetic similarity matrices were used to identify genetically distinct cultivars that are potentially important sources of germplasm for cotton improvement, particularly of fiber quality traits. We show that AFLP is useful for estimating genetic relationships across a wide range of taxonomic levels, and for analyzing the evolutionary and historical development of cotton cultivars at the genomic level. Received: 17 January 2000 / Accepted: 4 May 2000  相似文献   

4.
Gossypium arboreum L. and G. herbaceum L. are the diploid species of cultivated cotton. Little is known regarding the time and place of domestication of either species. Because G. arboreum is known only as a cultigen, others have proposed that it arose from domesticated G. herbaceum during the more than 5,000-year history of Old World cotton cultivation, with wild G. herbaceum subsp. africanum (Watt) Mauer as the putative ancestor of both species. An alternative hypothesis is that the two species have independent origins from progenitors that diverged prior to domestication. The relative merits of these opposing hypotheses were evaluated using data derived from starch gel electrophoresis of enzymes. One hundred and three accessions of G. arboreum and 31 accessions of G. herbaceum were examined for allelic variation at 40 allozyme loci. All measures of genetic variability demonstrated that G. arboreum contains greater diversity than G. herbaceum, although both species have relatively low levels of allozyme variation. In contrast to expectations based on morphology and other chemical data sets, the two species are highly differentiated with respect to allozyme composition. Gossypium arboreum and G. herbaceum each contain a large number of unique alleles and are fixed or nearly fixed for alternate alleles at 8 loci. Five allozyme loci have alleles that are rare in one of the two species but common in the other. Based on restricted occurrence of these alleles to areas with a long history of sympatric cultivation and the geographic distribution of a null allele, we suggest that a significant portion of the allelic diversity in both species results from historical, bidirectional interspecific introgression. The interspecific genetic identity estimate (0.74) is markedly lower than for documented progenitor-derivative and crop-ancestor species pairs. Based on these data, as well as previous cytogenetic data and the observation of F2 breakdown in interspecific crosses, we suggest that cultivated G. arboreum and G. herbaceum were independently domesticated from divergent ancestors.  相似文献   

5.
The primary aim of this study was to estimate genetic diversity among Secale cereale L. accessions using 22 previously published simple sequence repeat (SSR) markers. The plant material included 367 rye accessions comprising historical and contemporary cultivars, cultivated materials, landraces, and breeding strains from the Polish breeding company Danko. The studied accessions represented a wide geographical diversity. Several methods were employed to analyze genetic diversity among the Secale cereale L. accessions and to determine population structure: principal coordinate analysis (PCoA), neighbor-joining (NJ), and Bayesian clustering. We also defined a core collection of 25 rye accessions representing over 93 % of SSR alleles. The results of these analyses showed that accessions from the rye gene bank are clearly divergent in comparison with materials received directly from European breeding companies. Our findings suggest also that the genetic pool of current rye cultivars is becoming narrower during breeding processes. The selected panel of SSR markers performed well in detection of genetic diversity patterns and can be recommended for future germplasm characterization studies in rye.  相似文献   

6.
Genetic diversity among 42 sorghum accessions representing landraces (19), advanced breeding lines (16), local cultivars (2) and release varieties (5) with 30 simple sequence repeat (SSR) markers revealed 7.6 mean number of alleles per locus showing 93.3% polymorphism and an average polymorphism information content of 0.78 which range from 0.22 (Xtxp12) and 0.91(Xtxp321). The average heterozygosity and effective number of alleles per locus were 0.8 and 6.65 respectively. Cluster analysis based on microsatellite allelic diversity clearly demarcated the accessions into ten clusters. A total of 24 unique alleles were obtained from seven SSR loci in 23 accessions in a size range of 110–380 bp; these unique alleles may serve as diagnostic tools for particular region of the genome of respective genotypes. Selected SSR markers from different linkage groups provided an accurate way of determining genetic diversity at the molecular level.  相似文献   

7.
A series of 320 mapped simple sequence repeats (SSRs) have been used to screen the allelic diversity of tetraploid Gossypium species. Fourty-seven genotypes were analyzed representing (i) the wide spectrum of diversity of the cultivated pool and of the primitive landraces of species G. hirsutum (‘marie-galante’, ‘punctatum’, ‘richmondi’, ‘morrilli’, ‘palmeri’, and ‘latifolium’, and ‘yucatanense’), and (ii) species G. barbadense, G. darwinii and G. tomentosum. The polymorphism of 201 SSR loci revealed 1128 allelic variants ranging from 3 to 17 per locus. Neighbor-joining (NJ) method based on genetic dissimilarities produced groupings consistent with the assignments of accessions both at species and at race level. Our data confirmed the proximity of the Galapagos endemic species G. darwinii to species G. barbadense. Within species G. hirsutum, and as compared to the other 6 races, race yucatanense appeared as the most distant from cultivated genotypes. Race yucatanense also exhibited the highest number of unique alleles. The important informative heterogeneity of the 201 SSR loci was exploited to select the most polymorphic ones that were assembled into three series of genome-wide (i.e. each homoeologous AD chromosome pair being equally represented) and mutliplexable (× 3) SSRs. Using one of these ‘genotyping set’, consisting of 39 SSRs (one 3-plex for each of the 13 AD chromosomes pairs) or 45 loci, we were able to assess the relationships between accessions and the topology in the genetic diversity sampled. Such genotyping set of highly informative SSR markers assembled in PCR-multiplex, while increasing genotyping throughput, will be applicable for molecular genetic diversity studies of large germplasm collections. Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

8.
Genetic diversity among 35 rice accessions, which included 19 landraces, 9 cultivars and 7 wild relatives, was investigated by using microsatellite (SSR) markers distributed across the rice genome. The mean number of alleles per locus was 4.86, showing 95.2% polymorphism and an average polymorphism information content of 0.707. Cluster analysis based on microsatellite allelic diversity clearly demarcated the landraces, cultivars and wild relatives into different groups. The allelic richness computed for the clusters indicated that genetic diversity was the highest among wild relatives (0.436), followed by landraces (0.356), and the lowest for cultivars. Allelic variability among the SSR markers was high enough to categorize cultivars, landraces and wild relatives of the rice germplasm, and to catalogue the genetic variability observed for future use. The results also suggested the necessity to introgress genes from landraces and wild relatives into cultivars, for cultivar improvement.  相似文献   

9.
Amplified fragment length polymorphism fingerprinting was applied to survey the genetic diversity of primitive South American Gossypium barbadense cotton for establishing a possible link to its pre-Columbian expansion. New germplasm was collected along coastal Peru and over an Andean transect in areas where most of the archaeological evidence relating to cotton domestication has been recorded. Gene bank material of three diploid (G. raimondii, G. arboreum, and G. herbaceum) and four allotetraploid cotton species (G. hirsutum, G. mustelinum, G. tomentosum and additional G. barbadense) was added for inter- and intra-specific comparison. Eight primer combinations yielded 340 polymorphic bands among the 131 accessions. The obtained neighbor joining and unweighted pair-group method with arithmetic means are in full agreement with the known cytogenetics of the tetraploid cottons and their diploid genome donors. The four tetraploid species are clearly distinct based on taxonomic classification. The genetic diversity within G. barbadense reveals geographic patterns. The locally maintained cottons from coastal Peru display a distinct genetic diversity that mirrors their primitive agro-morphological traits. Accessions from the northernmost coast of Peru and from southwestern (SW) Ecuador cluster basal to the east-of-Andes accessions. The remaining accessions from Bolivia, Brazil, Columbia, Venezuela, and the Caribbean and Pacific islands cluster with the east-of-Andes accessions. Northwestern Peru/SW Ecuador (the area flanking the Guayaquil gulf) appears to be the center of the primitive domesticated G. barbadense cotton from where it spread over the Andes and expanded into its pre-Columbian range.This publication is dedicated to Prof. Dr. Drs.h.c. Gerhard Röbbelen on the occasion of his 75th birthday  相似文献   

10.
Simple sequence repeats (SSRs) were used to assess genetic diversity and study genetic relatedness in a large collection of Malus germplasm. A total of 164 accessions from the Malus core collection, maintained at the University of Illinois, were genotyped using apple SSR markers. Each of the accessions was genotyped using a single robust SSR marker from each of the 17 different linkage groups in Malus. Data were subjected to principal component analysis, and a dendrogram was constructed to establish genetic relatedness. As expected, this diverse core collection showed high allelic diversity; moreover, this allelic diversity was higher than that previously reported. Cluster analysis revealed the presence of four distinct clusters of accessions in this collection.  相似文献   

11.
Loquat (Eriobotrya japonica) is an underutilized fruit crop that originated in China and for which only a small number of molecular markers are available. This number can be increased by identifying apple SSRs that are transferable to loquat cultivars/accessions to provide new insight into the level of genetic diversity within loquat and synteny with apple. We evaluated 71 apple SSR markers distributed across 17 linkage groups, and identified 39 SSRs transferable to loquat. Testing 54 loquat accessions, from Japan, Spain, four provinces in China, and two wild species gave a total of 155 different alleles with a mean value of 3.38 per locus. The mean effective number of alleles was 2.21, and the mean observed heterozygosity was 0.47. These values indicate a high degree of genetic diversity in the set of Chinese loquat accessions analyzed. Unweighted pair-group method analysis based on simple matching coefficent clustered the accessions into two groups, cultivated and wild loquat. The cultivated loquat can be subdivided into three subgroups which generally reflect their geographic origin in China. The Spanish cultivars clustered with those of the Jiangsu and Zhejiang provinces. A core set of five SSR markers could distinguish most accessions.  相似文献   

12.
AFLP and RAPDmarkers were employed in sixteen diploid cotton (Gossypium sp) cultivars for genetic diversity estimation and cultivar identification. Polymorphism information content (PIC) and percent polymorphism were found to be more for AFLP markers as compared to RAPD markers. Average Jaccard’s genetic similarity index was found to be almost similar using either AFLP or RAPD markers. All the cultivars could be distinguished from one another using AFLP markers and also by the combined RAPD profiles. Cultivar identification indicators like resolving power, marker index and probability of chance identity of two cultivars suggested the usefulness of AFLP markers over the RAPD markers. AFLP and RAPD analyses revealed limited genetic diversity in the studied cultivars. Cluster analysis of both RAPD and AFLP data produced two clusters, one containing cultivars of G. herbaceum and another containing cultivars of G. arboreum species. Highly positive correlation between cophenetic matrices using RAPD and AFLP markers was observed. AFLP markers were found to be more efficient for genetic diversity estimation, polymorphism detection and cultivar identification.  相似文献   

13.
Genetic diversity amongst 91 upland cotton accessions (50 maintainer, ‘B’ and 41 restorer ‘R’ lines) and three wild species viz., G. aridum, G. thurberi and G. anomalum was analyzed using SSR and RAPD markers. A total of 53 primers (30 SSR and 23 RAPD) were sampled for screening 94 accessions, of which 26 SSR and 17 RAPD primers were polymorphic. Average polymorphism detected by SSR, RAPD and SSR + RAPD markers was 72.5, 62 and 66.66 per cent, respectively. A unique marker CIR-200260 that distinguishes G. thurberi from all upland accessions has been identified. Similarity coefficient values within and between B and R lines ranged from 0.65–0.95, 0.61–0.98 and 0.53–0.93 for SSR and 0.72–0.98, 0.73–0.97 and 0.69–0.98 for RAPD markers. UPGMA cluster analysis was consistent with the pedigree and genotypic background of the accessions. RAPD and SSR matrices showed significant positive product moment correlation (r?=?0.93 and 0.92) with the RAPD + SSR combined data matrix, respectively. The result indicates a moderate level of genetic diversity in B and R accessions of upland cotton. Genetically diverse combinations were identified to further evaluate heterotic performance. The maintainer, AKH-108, AKH-118 and AKH-2173; and restorer AKH-31 and AKH 4943 accession were identified as most distinct and divergent, could be used as candidate parental genotypes in hybrid and varietal development programme and also development of mapping population for trait mapping in cotton.  相似文献   

14.
European hazelnut (Corylus avellana L.), cultivated in several areas of the world including Europe, Anatolia, and the USA, is an economically important nut crop due to its high mineral, oleic acid, amino acid, and phenolic compound content and pleasant flavor. This study examined molecular genetic diversity and population structure of 54 wild accessions and 48 cultivars from the Slovenian national hazelnut collection using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Eleven AFLP primer combinations and 49 SSR markers yielded 532 and 504 polymorphic fragments, respectively. As expected for a wind-pollinated, self-incompatible species, levels of genetic diversity were high with cultivars and wild accessions having mean dissimilarity values of 0.50 and 0.60, respectively. In general, cultivars and wild accessions clustered separately in dendrogram, principal coordinate, and population structure analyses with regional clustering of the wild material. The accessions were also characterized for ten nut and seven kernel traits and some wild accessions were shown to have breeding potential. Morphological principal component analysis showed distinct clustering of cultivars and wild accessions. An association mapping panel composed of 64 hazelnut cultivars and wild accessions had considerable variation for the nut and kernel quality traits. Morphological and molecular data were associated to identify markers controlling the traits. In all, 49 SSR markers were significantly associated with nut and kernel traits [P < 0.0001 and LD value (r 2) = 0.15–0.50]. This work is the first use of association mapping in hazelnut and has identified molecular markers associated with important quality parameters in this important nut crop.  相似文献   

15.
Detection and utilization of genetic variation available in the germplasm collection for crop improvement have been the prime activities of breeders. Here a set of ICARDA barley germplasm collection comprising of 185 cultivated (Hordeum vulgare L.) and 38 wild (H. spontaneum L.) genotypes originated from 30 countries of four continents was genotyped with 68 single nucleotide polymorphism (SNP) and 45 microsatellite or simple sequence repeat (SSR) markers derived from genes (expressed sequence tags, ESTs). As two SNP markers provided 2 and 3 datapoints, a total of 71 SNPs were surveyed that yielded a total of 143 alleles. The number of SSR alleles per locus ranged from 3 to 22 with an average of 7.9 per marker. Average PIC (polymorphism information content) value for SSR and SNP markers were recorded as 0.63 and 0.38, respectively. Heterogeneity was recorded at both SNP and SSR loci in an average of 5.72 and 12.42% accessions, respectively. Genetic similarity matrices for SSR and SNP allelic data were highly correlated (r = 0.75, P < 0.005) and therefore allelic data for both markers were combined and analyzed for understanding the genetic relationships among the germplasm surveyed. Majority of clusters/subclusters were found to contain genotypes from the same geographic origins. While comparing the genetic diversity, the accessions coming from Middle East Asia and North East Asia showed more diversity as compared to that of other geographic regions. Majority of countries representing Africa, Middle East Asia, North East Asia and Arabian Peninsula included the genotypes that contained rare alleles. As expected, spontaneum accessions, as compared to vulgare accessions, showed a higher number of total alleles, higher number of alleles per locus, higher effective number of alleles and higher allelic richness and a higher number of rare alleles were observed. In summary, the examined ICARDA germplasm set showed ample natural genetic variation that can be harnessed for future breeding of barley as climate change and sustainability have become important throughout all growing areas of the world, drought/heat tolerance being the most important ones.  相似文献   

16.
In-depth characterization of apple genetic resources is a prerequisite for genetic improvement and for germplasm management. In this study, we fingerprinted a very large French collection of 2163 accessions with 24 SSR markers in order to evaluate its genetic diversity, population structure, and genetic relationships, to link these features with cultivar selection date or usage (old or modern, dessert or cider cultivars), and to construct core collections. Most markers were highly discriminating and powerful for varietal identification, with a probability of identity P (ID) over the 21 retained SSR loci close to 10?28. Pairwise comparisons revealed 34 % redundancy and 18.5 % putative triploids. The results showed that the germplasm is highly diverse with an expected heterozygosity H e of 0.82 and observed heterozygosity H o of 0.83. A Bayesian model-based clustering approach revealed a weak but significant structure in three subgroups (FST?=?0.014–0.048) corresponding, albeit approximately, to the three subpopulations defined beforehand (Old Dessert, Old Cider, and Modern Cultivars). Parentage analyses established already known and yet unknown relationships, notably between old cultivars, with the frequent occurrence of cultivars such as “King of Pippin” and “Calville Rouge d’Hiver” as founders. Finally, core collections based on allelic diversity were constructed. A large dessert core collection of 278 cultivars contained 90 % of the total dessert allelic diversity, whereas a dessert subcore collection of 48 cultivars contained 71 % of diversity. For cider apples, a 48-cultivar core collection contained 83 % of the total cider allelic diversity.  相似文献   

17.
Kenaf (Hibiscus cannabinus L.) and roselle (H. sabdariffa L.) are valuable fibre crop species with diverse end use. Phylogenetic relationship of 73 accessions of kenaf, roselle and their wild relatives from 15 countries was assessed using 44 inter-simple sequence repeat (ISSR) and jute (Corchorus olitorius L.) specific simple sequence repeats (SSR) markers. A total of 113 alleles were identified of which 61.95 % were polymorphic. Jute specific SSR markers exhibited high polymorphism and resolving power in kenaf, although ISSR markers exhibited higher resolving power than SSR markers. Number of polymorphic alleles varied from 1 to 5 for ISSR and 1 to 6 for SSR markers. Cultivated species exhibited higher allele polymorphism (57 %) than the wild species (35 %), but the improved cultivars exhibited lower genetic diversity compared to germplasm accessions. Accessions with common genetic lineage and geographical distribution clustered together. Indian kenaf varieties were distinct from cultivars bred in other countries and shared more genetic homology with African accessions. High genetic diversity was observed in the Indian (J = 0.35–0.74) and exotic kenaf germplasm collections (J = 0.38–0.79), suggesting kenaf might have been introduced in India from Africa through Central Asia during early domestication. Genetic similarity-based cluster analysis was in close accordance with taxonomic classification of Hibiscus.  相似文献   

18.
部分耐盐小麦品种(系)SSR位点遗传多样性研究   总被引:8,自引:3,他引:5  
选择有多态性的32对SSR引物对80个小麦耐盐品种(系)进行遗传差异研究,共检测出155个等位变异,平均每个位点上有4.75个等位变异;供试80份耐盐小麦品种(系)来源广泛,遗传基础丰富,表现出较高的遗传多样性,遗传相似系数范围在0.26~0.81;聚类分析结果显示,冬性小麦品种(系)聚为一大类;春性小麦品种(系)也聚为一大类;一些系谱相同或相近的品种(系)遗传相似系数较大;A、B、D基因组中SSR位点平均等位变异差异不大,以B基因组较高.  相似文献   

19.
Younas M  Xiao Y  Cai D  Yang W  Ye W  Wu J  Liu K 《Molecular biology reports》2012,39(5):5105-5113
Evaluation of the genetic diversity in conventional and modern rapeseed cultivars is essential for conservation, management and utilization of these genetic resources for high yielding hybrid production. The objective of this research was to evaluate a collection of 86 oilseed rape cultivars with 188 simple sequence repeat (SSR) markers to assess the genetic variability, heterotic group identity and relationships within and between the groups identified among the genotypes. A total of 631 alleles at 188 SSR markers were detected including 53 and 84 unique and private alleles respectively, which indicated great richness and uniqueness of genetic variation in these selected cultivars. The mean number of alleles per locus was 3.3 and the average polymorphic information content was 0.35 for all microsatellite loci. Unweighted Pair Group Method with Arithmetic Mean clustering and principal component analysis consistently divided all the cultivars into four distinct groups (I, II, III and IV) which largely coincided with their geographical distributions. The Chinese origin cultivars are predominantly assembled in Group II and showed wide genetic base because of its high allelic abundance at SSR loci while most of the exotic cultivars grouped into Group I and were highly distinct owing to the abundant private and unique alleles. The highest genetic distance was found between Group I and IV, which mainly comprised of exotic and newly synthesized yellow seeded (1728-1 and G1087) breeding lines, respectively. Our study provides important insights into further utilization of exotic Brassica napus accessions in Chinese rapeseed breeding and vice versa.  相似文献   

20.
Common wild rice (Oryza rufipogon Griff.), the progenitor of Asian cultivated rice (O. sativa L.), is endangered due to habitat loss. The objectives of this research were to evaluate the genetic diversity of wild rice species in isolated populations and to develop a core collection of representative genotypes for ex situ conservation. We collected 885 wild rice accessions from eight geographically distinct regions and transplanted these accessions in a protected conservation garden over a period of almost two decades. We evaluated these accessions for 13 morphological or phenological traits and genotyped them for 36 DNA markers evenly distributed on the 12 chromosomes. The coefficient of variation of quantitative traits was 0.56 and ranged from 0.37 to 1.06. SSR markers detected 206 different alleles with an average of 6 alleles per locus. The mean polymorphism information content (PIC) was 0.64 in all populations, indicating that the marker loci have a high level of polymorphism and genetic diversity in all populations. Phylogenetic analyses based on morphological and molecular data revealed remarkable differences in the genetic diversity of common wild rice populations. The results showed that the Zengcheng, Gaozhou, and Suixi populations possess higher levels of genetic diversity, whereas the Huilai and Boluo populations have lower levels of genetic diversity than do the other populations. Based on their genetic distance, 130 accessions were selected as a core collection that retained over 90% of the alleles at the 36 marker loci. This genetically diverse core collection will be a useful resource for genomic studies of rice and for initiatives aimed at developing rice with improved agronomic traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号