首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
3.
4.
目的:研究人A-to-I RNA编辑事件对外显子剪接增强子(ESE)的潜在影响。方法:搜集文献报道的人A-to-I RNA编辑位点,并筛选包含有A-to-I RNA编辑位点的ESE,分析人A-to-I RNA编辑前后单碱基变化对ESE的潜在影响。结果:3640个A-to-I RNA编辑位点可能使其所在的ESE功能发生潜在改变;A-to-I RNA编辑事件对不同类型ESE的潜在影响不同。结论:A-to-I RNA编辑事件可能潜在影响ESE的功能,对ESE的潜在影响为量的调节,而非质的改变。  相似文献   

5.
6.
7.
8.

Background  

Several bioinformatic approaches have previously been used to find novel sites of ADAR mediated A-to-I RNA editing in human. These studies have discovered thousands of genes that are hyper-edited in their non-coding intronic regions, especially in alu retrotransposable elements, but very few substrates that are site-selectively edited in coding regions. Known RNA edited substrates suggest, however, that site selective A-to-I editing is particularly important for normal brain development in mammals.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Adenosine-to-inosine (A-to-I) RNA editing is an endogenous regulatory mechanism involved in various biological processes. Site-specific, editing-state–dependent degradation of target RNA may be a powerful tool both for analyzing the mechanism of RNA editing and for regulating biological processes. Previously, we designed an artificial hammerhead ribozyme (HHR) for selective, site-specific RNA cleavage dependent on the A-to-I RNA editing state. In the present work, we developed an improved strategy for constructing a trans-acting HHR that specifically cleaves target editing sites in the adenosine but not the inosine state. Specificity for unedited sites was achieved by utilizing a sequence encoding the intrinsic cleavage specificity of a natural HHR. We used in vitro selection methods in an HHR library to select for an extended HHR containing a tertiary stabilization motif that facilitates HHR folding into an active conformation. By using this method, we successfully constructed highly active HHRs with unedited-specific cleavage. Moreover, using HHR cleavage followed by direct sequencing, we demonstrated that this ribozyme could cleave serotonin 2C receptor (HTR2C) mRNA extracted from mouse brain, depending on the site-specific editing state. This unedited-specific cleavage also enabled us to analyze the effect of editing state at the E and C sites on editing at other sites by using direct sequencing for the simultaneous quantification of the editing ratio at multiple sites. Our approach has the potential to elucidate the mechanism underlying the interdependencies of different editing states in substrate RNA with multiple editing sites.  相似文献   

17.
Adenosine to inosine (A-to-I) RNA editing, catalyzed by the ADAR enzyme family, acts on dsRNA structures within pre-mRNA molecules. Editing of the coding part of the mRNA may lead to recoding, amino acid substitution in the resulting protein, possibly modifying its biochemical and biophysical properties. Altered RNA editing patterns have been observed in various neurological pathologies. Here, we present a comprehensive study of recoding by RNA editing in Alzheimer''s disease (AD), the most common cause of irreversible dementia. We have used a targeted resequencing approach supplemented by a microfluidic-based high-throughput PCR coupled with next-generation sequencing to accurately quantify A-to-I RNA editing levels in a preselected set of target sites, mostly located within the coding sequence of synaptic genes. Overall, editing levels decreased in AD patients’ brain tissues, mainly in the hippocampus and to a lesser degree in the temporal and frontal lobes. Differential RNA editing levels were observed in 35 target sites within 22 genes. These results may shed light on a possible association between the neurodegenerative processes typical for AD and deficient RNA editing.  相似文献   

18.
19.
20.
Identification of RNA editing sites in the SNP database   总被引:3,自引:0,他引:3  
The relationship between human inherited genomic variations and phenotypic differences has been the focus of much research effort in recent years. These studies benefit from millions of single-nucleotide polymorphism (SNP) records available in public databases, such as dbSNP. The importance of identifying false dbSNP records increases with the growing role played by SNPs in linkage analysis for disease traits. In particular, the emerging understanding of the abundance of DNA and RNA editing calls for a careful distinction between inherited SNPs and somatic DNA and RNA modifications. In order to demonstrate that some of the SNP database records are actually somatic modification, we focus on one type of these modifications, namely A-to-I RNA editing, and present evidence for hundreds of dbSNP records that are actually editing sites. We provide a list of 102 RNA editing sites previously annotated in dbSNP database as SNPs, and experimentally validate seven of these. Interestingly, we show how dbSNP can serve as a starting point to look for new editing sites. Our results, for this particular type of RNA editing, demonstrate the need for a careful analysis of SNP databases in light of the increasing recognition of the significance of somatic sequence modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号