首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Francisella novicida is a close relative of Francisella tularensis, the causative agent of tularemia. The genomes of F. novicida-like clinical isolates 3523 (Australian strain) and Fx1 (Texas strain) were sequenced and compared to F. novicida strain U112 and F. tularensis strain Schu S4. The strain 3523 chromosome is 1,945,310 bp and contains 1,854 protein-coding genes. The strain Fx1 chromosome is 1,913,619 bp and contains 1,819 protein-coding genes. NUCmer analyses revealed that the genomes of strains Fx1 and U112 are mostly colinear, whereas the genome of strain 3523 has gaps, translocations, and/or inversions compared to genomes of strains Fx1 and U112. Using the genome sequence data and comparative analyses with other members of the genus Francisella, several strain-specific genes that encode putative proteins involved in RTX toxin production, polysaccharide biosynthesis/modification, thiamine biosynthesis, glucuronate utilization, and polyamine biosynthesis were identified. The RTX toxin synthesis and secretion operon of strain 3523 contains four open reading frames (ORFs) and was named rtxCABD. Based on the alignment of conserved sequences upstream of operons involved in thiamine biosynthesis from various bacteria, a putative THI box was identified in strain 3523. The glucuronate catabolism loci of strains 3523 and Fx1 contain a cluster of nine ORFs oriented in the same direction that appear to constitute an operon. Strains U112 and Schu S4 appeared to have lost the loci for RTX toxin production, thiamine biosynthesis, and glucuronate utilization as a consequence of host adaptation and reductive evolution. In conclusion, comparative analyses provided insights into the common ancestry and novel genetic traits of these strains.  相似文献   

2.
Francisella philomiragia is a saprophytic gammaproteobacterium found only occasionally in immunocompromised individuals and is the nearest neighbor to the causative agent of tularemia and category A select agent Francisella tularensis. To shed insight into the key genetic differences and the evolution of these two distinct lineages, we sequenced the first complete genome of F. philomiragia strain ATCC 25017, which was isolated as a free-living microorganism from water in Bear River Refuge, Utah.  相似文献   

3.
Historically, Francisella strains have been described as nonhemolytic. In this study, we show by use of solid and liquid hemolysis assays that some Francisella strains have hemolytic properties. The Francisella novicida type strain U112 is hemolytic to horse erythrocytes and Francisella philomiragia type strain FSC144 is hemolytic towards both human and horse erythrocytes. The F. novicida strain U112 released a protein (novilysin A) into the culture supernatant which cross-reacted with antiserum against Escherichia coli HlyA whereas there was no similar protein detectable with this cross-reactive property from the supernatant of the F. philomiragia strain.  相似文献   

4.
ABSTRACT: BACKGROUND: Prior to this study, relatively few strains of Francisella had been genome-sequenced. Previously published Francisella genome sequences were largely restricted to the zoonotic agent F. tularensis. Only limited data were available for other members of the Francisella genus, including F. philomiragia, an opportunistic pathogen of humans, F. noatunensis, a serious pathogen of farmed fish, and other less well described endosymbiotic species. RESULTS: We determined the phylogenetic relationships of all known Francisella species, including some for which the phylogenetic positions were previously uncertain. The genus Francisella could be divided into two main genetic clades: one included F. tularensis, F. novicida, F. hispaniensis and Wolbachia persica, and another included F. philomiragia and F. noatunensis. Some Francisella species were found to have significant recombination frequencies. However, the fish pathogen F. noatunensis subsp. noatunensis was an exception due to it exhibiting a highly clonal population structure similar to the human pathogen F. tularensis. CONCLUSIONS: The genus Francisella can be divided into two main genetic clades occupying both terrestrial and marine habitats. However, our analyses suggest that the ancestral Francisella species originated in a marine habitat. The observed genome to genome variation in gene content and IS elements of different species supports the view that similar evolutionary paths of host adaptation developed independently in F. tularensis (infecting mammals) and F. noatunensis subsp. noatunensis (infecting fish).  相似文献   

5.
Lipopolysaccharide (LPS) antigenic epitopes of natural virulent and isogenic avirulent Francisella tularensis strains and other species of the Francisella genus (F. novicida, F. novicida-like, and F. philomiragia) were studied by dot and immunoblotting. Polyclonal rabbit and human sera to virulent F. tularensis strains and monoclonal antibodies to F. tularensis LPS O-side chain were used for detecting species- and genus-specific LPS epitopes. Typical virulent F. tularensis strains produce two types of S-LPS with different antigenic specificity simultaneously. Antigenic determinants of two LPS types were located in LPS O-polysaccharide but not in the core oligosaccharide. The epitopes of the first LPS type were characterized by species specificity for F. tularensis in contrast to determinants of the second LPS type, which had epitopes common with F. novicida. Cross exhaustion of human and rabbit antitularemic sera by F. tularensis and F. novicida LPS showed that F. novicida LPS molecules contained at least two epitopes--highly specific for F. novicida and common with the second type of F. tularensis LPS. The immune response of rabbits and humans to F. tularensis LPS epitopes was different in principle. Sera from rabbits immunized with vaccine and virulent F. tularensis strains contained antibodies "recognizing" antigenic epitopes of two S-LPS forms of the bacterium: type 1 species-specific (in high titers) and type 2 epitopes common with F. novicida LPS (in low titers). In addition to these, sera from patients with tularemia contain immunoglobulins to species-specific epitopes of F. novicida LPS in high titers. Experiments on avirulent mutants showed that in some cases attenuation of F. tularensis can involve loss of species-specific LPS form, while S-LPS with epitopes common with F. novicida LPS will be retained. The difference in specificity of human and rabbit antitularemic antibodies is due to individual features in the host immune system.  相似文献   

6.
7.
8.
Serum antibodies were analyzed in rabbits immunized with live and formalin-killed Francisella (F. tularensis, F. novicida, F. novicida-like, and F. philomiragia). Passive hemagglutination test with erythrocytes sensitized by these bacteria' LPS showed much higher titers of species-specific antibodies in all sera to live microorganisms than sera to killed bacteria. The results of immunoblotting with purified LPS and bacterial lysates indicate that sera to live bacteria contained mainly immunoglobulins to species-specific antigenic epitopes of LPS O-polysaccharide chain and few antibodies to the protein component of the cell. By contrast, killed bacterial cells induced weak production of antibodies to S-LPS and a pronounced antibody response to protein antigens. Besides the quantitative differences, live and killed bacteria differed by the qualitative spectrum of immunodominant proteins. Serum to live F. tularensis 15/10 contained antibodies to at least 3 immunodominant antigens of the cell, while serum to killed bacteria contained antibodies to only two of these. Immunoglobulins to protein antigens, absent in homologous sera to live bacteria, were detected in the sera to killed F. novicida and F. novicida-like bacteria. Both sera to F. philomiragia had antibodies reacting with LPS epitopes and immunodominant complex containing protein. In contrast to other Francisella, F. philomiragia was found to synthesize an uncommon LPS representing two major lipooligosaccharides with different molecular weights and antigenic specificity. Therefore, immune response of the host to live and killed Francisella is different: live cells more effectively induce the production of antibodies to S-LPS epitopes, while killed ones to protein antigens.  相似文献   

9.
The study of the biological properties of lipopolysaccharides (LPS) of bacteria of the genus Francisella (F. tularensis, F. novicida, F. novicida-like, F. philomiragia) revealed that the preparation of Francisella LPS possessed immunomodulating and antitoxic properties in the absence of toxicity. At the same time the structure of LPS (S or R) was found to produce an essential effect of the immunobiological activity of this molecule. Thus, the S-forms of LPS proved to be more effective as immunomodulators and the R-forms of LPS, as antagonists of classical endotoxins.  相似文献   

10.
Francisella novicida (U112), a close relative of the highly virulent bacterium F. tularensis, is known to produce a lipopolysaccharide that is significantly different in biological properties from the LPS of F. tularensis. Here we present the results of the structural analysis of the F. novicida LPS core part, which is found to be similar to that of F. tularensis, differing only by one additional alpha-Glc residue:where R is an O-chain, linked via a beta-bacillosamine (2,4-diamino-2,4,6-trideoxyglucose) residue. The lipid part of F. novicida LPS contains no phosphate substituent and apparently has a free reducing end, a feature also noted in F. tularensis LPS.  相似文献   

11.
Aims:  To develop a selective medium for isolation of F. tularensis, F. novicida and F. philomiragia from environmental samples.
Methods and Results:  A selective media, cysteine heart agar with 9% chocolatized sheep blood, containing polymyxin B, amphotericin B, cyclohexamide, cefepime and vancomycin (CHAB-PACCV) was developed and evaluated for growth of Francisella spp. No differences were observed in recovered colony forming units (CFUs) for F. tularensis , F. novicida and F. philomiragia on CHAB-PACCV vs nonselective CHAB. Growth of non- Francisella species was inhibited on CHAB-PACCV. When environmental samples were cultured on CHAB and CHAB-PACCV, only CHAB-PACCV allowed isolation of Francisella spp. Three new Francisella strains were isolated directly from seawater and seaweed samples by culture on CHAB-PACCV.
Conclusions:  CHAB-PACCV can be used for direct isolation of Francisella spp from environmental samples.
Significance and Impact of the Study:  Francisella spp. show a close association with environmental sources. Future utilization of CHAB-PACCV for isolation of Francisella spp. directly from environmental samples should prove valuable for investigating outbreaks and human infections attributed to environmental exposure.  相似文献   

12.
Francisella tularensis is the causative agent of tularemia and is a category A select agent. Francisella novicida, considered by some to be one of four subspecies of F. tularensis, is used as a model in pathogenesis studies because it causes a disease similar to tularemia in rodents but is not harmful to humans. F. novicida exhibits a strong restriction barrier which reduces the transformation frequency of foreign DNA up to 10(6)-fold. To identify the genetic basis of this barrier, we carried out a mutational analysis of restriction genes identified in the F. novicida genome. Strains carrying combinations of insertion mutations in eight candidate loci were created and assayed for reduced restriction of unmodified plasmid DNA introduced by transformation. Restriction was reduced by mutations in four genes, corresponding to two type I, one type II, and one type III restriction system. Restriction was almost fully eliminated in a strain in which all four genes were inactive. The strongest contributor to the restriction barrier, the type II gene, encodes an enzyme which specifically cleaves Dam-methylated DNA. Genome comparisons show that most restriction genes in the F. tularensis subspecies are pseudogenes, explaining the unusually strong restriction barrier in F. novicida and suggesting that restriction was lost during evolution of the human pathogenic subspecies. As part of this study, procedures were developed to introduce unmodified plasmid DNA into F. novicida efficiently, to generate defined multiple mutants, and to produce chromosomal deletions of multiple adjacent genes.  相似文献   

13.
We have isolated and characterized outer membrane vesicles (OMVs) from Francisella. Transport of effector molecules through secretion systems is a major mechanism by which Francisella tularensis alters the extracellular proteome and interacts with the host during infection. Outer membrane vesicles produced by Francisella were examined using TEM and AFM and found to be 43-125 nm in size, representing another potential mechanism for altering the extracellular environment. A proteomic analysis (LC-MS/MS) of OMVs from F. novicida and F. philomiragia identified 416 (F. novicida) and 238 (F. philomiragia) different proteins, demonstrating that OMVs are an important contributor to the extracellular proteome. Many of the identified OMV proteins have a demonstrated role in Francisella pathogenesis. Biochemical assays demonstrated that Francisella OMVs possess acid phosphatase and hemolytic activities that may affect host cells during infection, and are cytotoxic toward murine macrophages in cell culture. OMVs have been previously used as a human vaccine against Neisseria meningitidis . We hypothesized that Francisella OMVs could be useful as a novel Francisella vaccine. Vaccinated BALB/C mice challenged with up to 50 LD50 of Francisella showed statistically significant protection when compared to control mice. In the context of these new findings, we discuss the relevance of OMVs in Francisella pathogenesis as well as their potential use as a vaccine.  相似文献   

14.
It was demonstrated that the lipopolysaccharides (LPS) preparations, which were isolated from all representatives of Francisella Genus bacteria, i.e. F. tularensis, F. novicida, F. novicida-like and F. philomiragia by using the method of R.P. Darveau, R.E. Hancock (1983), were not toxic for white rats and white mice. A comparative study of toxicity of live F. tularensis bacteria (both wild and LPS-defective strains) made it possible to establish a direct correlation between the toxicity of microbes and LPS chemotype. It was found that only typical strains, which synthesize the wild-type S-LPS, caused the death of white rats and white mice in 24 hours after intraperitoneal contamination (10(9), 10(10) CFU/animal). Live bacteria of F tularensis R-mutants were not able to induce a lethal infection of rats and retained only residual virulence for mice. Other representatives of Francissela genus possessed less pronounced pathogenic properties. Thus, the toxic effect was registered, in case of white rats, only for F. novicida but not for F. novicida-like or F. philomiragia. At the same time, the two last mentioned species displayed a certain degree of virulence at high challenge doses (10(9), 10(10) CFU/animal) in respect to white mice. F. philomiragia, which generated lipoolygosaccharide (LOS) with an unusual structure, was found to be least pathogenic (25-75% of dead mice). The toxicity of bacteria, killed experimentally by different means (heating, UV-light, chloroform, acetone and formalin), was studied to define the role of bacterial proteins in the realisation of F. tularensis toxic potential in vivo. No lethal effect was exerted on experimental animals by killed microbes or purified LPS preparations. Finally, the study results show a priority role of the LPS molecule in the toxic effect of F. tularensis, which is possible in vivo only if structurally valuable molecules of live bacterial cells are available.  相似文献   

15.
16.
17.
Francisella tularensis is the etiological agent of tularemia, a serious disease in several Northern hemisphere countries. The organism has fastidious growth requirements and is very poorly understood at the genetic and molecular levels. Given the lack of data on this organism, we undertook the sample sequencing of its genome. A random library of DNA fragments from a highly virulent strain (Schu 4) of F. tularensis was constructed and the nucleotide sequences of 13,904 cloned fragments were determined and assembled into 353 contigs. A total of 1.83 Mb of nucleotide sequence was obtained that had a G+C content of 33.2%. Genes located on plasmids pOM1 and pNFL10, which had been previously isolated from low virulence strains of F. tularensis, were absent but all of the other known F. tularensis genes were represented in the assembled data. F. tularensis Schu4 was able to grow in the absence of aromatic amino acids and orthologues of genes which could encode enzymes in the shikimate pathway in other bacteria were identified in the assembled data. Genes that could encode all of the enzymes in the purine biosynthetic and most of the en- zymes in the purine salvage pathways were also identified. This data will be used to develop defined rationally attenuated mutants of F. tularensis, which could be used as replacements for the existing genetically undefined live vaccine strain.  相似文献   

18.
The accessibility of the partial genome sequence of Francisella tularensis strain Schu 4 was the starting point for a comprehensive proteome analysis of the intracellular pathogen F. tularensis. The main goal of this study is identification of protein candidates of value for the development of diagnostics, therapeutics and vaccines. In this review, the current status of 2-DE F. tularensis database building, approaches used for identification of biologically important subsets of F. tularensis proteins, and functional and topological assignments of identified proteins using various prediction programs and database homology searches are presented.  相似文献   

19.
20.
Francisella tularensis and related intracellular pathogens synthesize lipid A molecules that differ from their Escherichia coli counterparts. Although a functional orthologue of lpxK, the gene encoding the lipid A 4'-kinase, is present in Francisella, no 4'-phosphate moiety is attached to Francisella lipid A. We now demonstrate that a membrane-bound phosphatase present in Francisella novicida U112 selectively removes the 4'-phosphate residue from tetra- and pentaacylated lipid A molecules. A clone that expresses the F. novicida 4'-phosphatase was identified by assaying lysates of E. coli colonies, harboring members of an F. novicida genomic DNA library, for 4'-phosphatase activity. Sequencing of a 2.5-kb F. novicida DNA insert from an active clone located the structural gene for the 4'-phosphatase, designated lpxF. It encodes a protein of 222 amino acid residues with six predicted membrane-spanning segments. Rhizobium leguminosarum and Rhizobium etli contain functional lpxF orthologues, consistent with their lipid A structures. When F. novicida LpxF is expressed in an E. coli LpxM mutant, a strain that synthesizes pentaacylated lipid A, over 90% of the lipid A molecules are dephosphorylated at the 4'-position. Expression of LpxF in wild-type E. coli has no effect, because wild-type hexaacylated lipid A is not a substrate. However, newly synthesized lipid A is not dephosphorylated in LpxM mutants by LpxF when the MsbA flippase is inactivated, indicating that LpxF faces the outer surface of the inner membrane. The availability of the lpxF gene will facilitate re-engineering lipid A structures in diverse bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号