首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Next-generation sequencing (NGS) is a powerful tool for massive detection of DNA sequence variants such as single nucleotide polymorphisms (SNPs), multi-nucleotide polymorphisms (MNPs) and insertions/deletions (indels). For routine screening of numerous samples, these variants are often converted into cleaved amplified polymorphic sequence (CAPS) markers which are based on the presence versus absence of restriction sites within PCR products. Current computational tools for SNP to CAPS conversion are limited and usually infeasible to use for large datasets as those generated with NGS. Moreover, there is no available tool for massive conversion of MNPs and indels into CAPS markers. Here, we present VCF2CAPS–a new software for identification of restriction endonucleases that recognize SNP/MNP/indel-containing sequences from NGS experiments. Additionally, the program contains filtration utilities not available in other SNP to CAPS converters–selection of markers with a single polymorphic cut site within a user-specified sequence length, and selection of markers that differentiate up to three user-defined groups of individuals from the analyzed population. Performance of VCF2CAPS was tested on a thoroughly analyzed dataset from a genotyping-by-sequencing (GBS) experiment. A selection of CAPS markers picked by the program was subjected to experimental verification. CAPS markers, also referred to as PCR-RFLPs, belong to basic tools exploited in plant, animal and human genetics. Our new software–VCF2CAPS–fills the gap in the current inventory of genetic software by high-throughput CAPS marker design from next-generation sequencing (NGS) data. The program should be of interest to geneticists involved in molecular diagnostics. In this paper we show a successful exemplary application of VCF2CAPS and we believe that its usefulness is guaranteed by the growing availability of NGS services.

This is a PLOS Computational Biology Software paper.
  相似文献   

2.
The generation of genomic binding or accessibility data from massively parallel sequencing technologies such as ChIP-seq and DNase-seq continues to accelerate. Yet state-of-the-art computational approaches for the identification of DNA binding motifs often yield motifs of weak predictive power. Here we present a novel computational algorithm called MotifSpec, designed to find predictive motifs, in contrast to over-represented sequence elements. The key distinguishing feature of this algorithm is that it uses a dynamic search space and a learned threshold to find discriminative motifs in combination with the modeling of motifs using a full PWM (position weight matrix) rather than k-mer words or regular expressions. We demonstrate that our approach finds motifs corresponding to known binding specificities in several mammalian ChIP-seq datasets, and that our PWMs classify the ChIP-seq signals with accuracy comparable to, or marginally better than motifs from the best existing algorithms. In other datasets, our algorithm identifies novel motifs where other methods fail. Finally, we apply this algorithm to detect motifs from expression datasets in C. elegans using a dynamic expression similarity metric rather than fixed expression clusters, and find novel predictive motifs.  相似文献   

3.
4.
Cis-acting short sequence motifs play important roles in alternative splicing. It is now possible to identify such sequence motifs as conserved sequence patterns in genome sequence alignments. Here, we report the systematic search for motifs in the neighboring introns of alternatively spliced exons by using comparative analysis of mammalian genome alignments. We identified 11 conserved sequence motifs that might be involved in the regulation of alternative splicing. These motifs are not only significantly overrepresented near alternatively spliced exons, but they also co-occur with each other, thus, forming a network of cis-elements, likely to be the basis for context-dependent regulation. Based on this finding, we applied the motif co-occurrence to predict alternatively skipped exons. We verified exon skipping in 29 cases out of 118 predictions (25%) by EST and mRNA sequences in the databases. For the predictions not verified by the database sequences, we confirmed exon skipping in 10 additional cases by using both RT–PCR experiments and the publicly available RNA-Seq data. These results indicate that even more alternative splicing events will be found with the progress of large-scale and high-throughput analyses for various tissue samples and developmental stages.  相似文献   

5.
6.
We performed whole-genome analyses of DNA methylation in Shewanella oneidensis MR-1 to examine its possible role in regulating gene expression and other cellular processes. Single-molecule real-time (SMRT) sequencing revealed extensive methylation of adenine (N6mA) throughout the genome. These methylated bases were located in five sequence motifs, including three novel targets for type I restriction/modification enzymes. The sequence motifs targeted by putative methyltranferases were determined via SMRT sequencing of gene knockout mutants. In addition, we found that S. oneidensis MR-1 cultures grown under various culture conditions displayed different DNA methylation patterns. However, the small number of differentially methylated sites could not be directly linked to the much larger number of differentially expressed genes under these conditions, suggesting that DNA methylation is not a major regulator of gene expression in S. oneidensis MR-1. The enrichment of methylated GATC motifs in the origin of replication indicates that DNA methylation may regulate genome replication in a manner similar to that seen in Escherichia coli. Furthermore, comparative analyses suggest that many Gammaproteobacteria, including all members of the Shewanellaceae family, may also utilize DNA methylation to regulate genome replication.  相似文献   

7.
Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover, our analysis shows that de novo assembly from 50X read data requires only 6–40 GB RAM depending on the genome size and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.  相似文献   

8.
Improved understanding of genetic diversity in onion and shallot (Allium cepa L.) is required to inform breeding and genetic resource conservation, and to enable development of association genetics and seed quality assurance methods. To develop quantitative estimates of diversity we estimated within- and among-population heterozygosity in a set of onion populations using genomic simple sequence repeat (SSR) markers developed by genomic skim sequencing. Primer sets (166) designed to flank SSR motifs identified were evaluated in a diverse set of lines, with 80 (48?%) being polymorphic. The 20 most robust single copy markers were scored in 12 individuals from 24 populations representing short-day to long-day adapted material from diverse environments. The average genetic diversity estimate (H e) per population was 0.3 (SD 0.08) and the average per marker was 0.49 (SD 0.2). The onion populations assessed in this survey were distinct with moderate to large population differentiation but also had high within-population variation (F st?=?0.26). There was evidence of inbreeding (F is?=?0.22) with observed heterozygosities lower than the expected. This marker resource will be applicable for DNA fingerprinting, measuring levels of inbreeding in breeding lines, assessing population structure for association mapping and expanding linkage maps that are principally based on expressed sequence tag-based markers. A Galaxy workflow was developed to facilitate bulk SSR marker design from next-generation sequence data. This study provides one of the first quantitative views of population genetic variation in onion and a practical toolset for further genetics.  相似文献   

9.
Konieczny and Ausubel have described a technique whereby Arabidopsis thaliana loci can be rapidly mapped to one of the ten chromosome arms using a small number of F2 progeny from crosses between the ecotypes Landsberg erecta and Columbia. The technique involves the use of 18 co-dominant, cleaved amplified polymorphic sequence (CAPS) markers which are evenly distributed throughout the Arabidopsis genome. We have mapped these 18 markers using recombinant inbred (RI) lines generated in our laboratory. These data enable a better integration of loci mapped relative to the CAPS markers into the restriction fragment length polymorphism (RFLP) map generated using Arabidopsis RI lines.  相似文献   

10.
11.
12.
13.
The killer-cell immunoglobulin-like receptor (KIR) complex on chromosome 19 encodes receptors that modulate the activity of natural killer cells, and variation in these genes has been linked to infectious and autoimmune disease, as well as having bearing on pregnancy and transplant outcomes. The medical relevance and high variability of KIR genes makes short-read sequencing an attractive technology for interrogating the region, providing a high-throughput, high-fidelity sequencing method that is cost-effective. However, because this gene complex is characterized by extensive nucleotide polymorphism, structural variation including gene fusions and deletions, and a high level of homology between genes, its interrogation at high resolution has been thwarted by bioinformatic challenges, with most studies limited to examining presence or absence of specific genes. Here, we present the PING (Pushing Immunogenetics to the Next Generation) pipeline, which incorporates empirical data, novel alignment strategies and a custom alignment processing workflow to enable high-throughput KIR sequence analysis from short-read data. PING provides KIR gene copy number classification functionality for all KIR genes through use of a comprehensive alignment reference. The gene copy number determined per individual enables an innovative genotype determination workflow using genotype-matched references. Together, these methods address the challenges imposed by the structural complexity and overall homology of the KIR complex. To determine copy number and genotype determination accuracy, we applied PING to European and African validation cohorts and a synthetic dataset. PING demonstrated exceptional copy number determination performance across all datasets and robust genotype determination performance. Finally, an investigation into discordant genotypes for the synthetic dataset provides insight into misaligned reads, advancing our understanding in interpretation of short-read sequencing data in complex genomic regions. PING promises to support a new era of studies of KIR polymorphism, delivering high-resolution KIR genotypes that are highly accurate, enabling high-quality, high-throughput KIR genotyping for disease and population studies.  相似文献   

14.
15.
Restriction endonuclease digests of total DNA from races 3, 4, and 5 of the soybean cyst nematode, Heterodera glycines, have been analyzed on agarose gels. DNA fragment patterns of race 4 were completely different from those patterns obtained for races 3 and 5 by all eight restriction enzymes tested. Differences in long and short restriction DNA fragments generated by the enzyme Msp I or its isoschizomer, Hpa II, were detected between race 3 and 5 digestion profiles. Rapid DNA isolation followed by its digestion with either Msp I or Hpa II enzymes and visualization of repetitive DNA fragments in agarose gels provided a diagnostic assay for the populations of the three races examined in this study.  相似文献   

16.
17.
Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements.  相似文献   

18.

Background  

Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) or ChIP followed by genome tiling array analysis (ChIP-chip) have become standard technologies for genome-wide identification of DNA-binding protein target sites. A number of algorithms have been developed in parallel that allow identification of binding sites from ChIP-seq or ChIP-chip datasets and subsequent visualization in the University of California Santa Cruz (UCSC) Genome Browser as custom annotation tracks. However, summarizing these tracks can be a daunting task, particularly if there are a large number of binding sites or the binding sites are distributed widely across the genome.  相似文献   

19.
Next-generation sequencing (NGS) technologies have enabled high-throughput and low-cost generation of sequence data; however, de novo genome assembly remains a great challenge, particularly for large genomes. NGS short reads are often insufficient to create large contigs that span repeat sequences and to facilitate unambiguous assembly. Plant genomes are notorious for containing high quantities of repetitive elements, which combined with huge genome sizes, makes accurate assembly of these large and complex genomes intractable thus far. Using two-color genome mapping of tiling bacterial artificial chromosomes (BAC) clones on nanochannel arrays, we completed high-confidence assembly of a 2.1-Mb, highly repetitive region in the large and complex genome of Aegilops tauschii, the D-genome donor of hexaploid wheat (Triticum aestivum). Genome mapping is based on direct visualization of sequence motifs on single DNA molecules hundreds of kilobases in length. With the genome map as a scaffold, we anchored unplaced sequence contigs, validated the initial draft assembly, and resolved instances of misassembly, some involving contigs <2 kb long, to dramatically improve the assembly from 75% to 95% complete.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号