首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Forest restoration by planting trees often accelerates succession, but the trajectories toward reference ecosystems have rarely been evaluated. Using a chronosequence (4–53 years) of 26 riparian forest undergoing restoration in the Brazilian Atlantic Forest, we modeled how the variables representing forest structure, tree species richness and composition, and the proportion of plant functional guilds change through time. We also estimated the time required for these variables to reach different types of reference ecosystems: old‐growth forest (OGF), degraded forest, and secondary forest. Among the attributes which follow a predictable trajectory over time are: the basal area, canopy cover, density and tree species richness, as well as proportions of shade tolerant and slow growing species or individuals. Most of the variation in density of pteridophythes, lianas, shrubs and phorophythes, proportion of animal‐dispersed individuals, rarefied richness and floristic similarity with reference ecosystems remain unexplained. Estimated time to reach the reference ecosystems is, in general, shorter for structural attributes than for species composition or proportion of functional guilds. The length of this time varies among the three types of reference ecosystems for most attributes. For instance, tree species richness and proportion of shade tolerant or slow growing individuals become similar to secondary forests in about 40 years, but is estimated to take 70 years or more to reach the OGF. Of all the variables considered, canopy cover, basal area, density, and richness of the understory—by their ecological relevance and predictability—are recommended as ecological indicators for monitoring tropical forest restoration success.  相似文献   

2.
Restoring forest landscapes is critical in the face of continued global forest loss and degradation. In this article, we explore some challenges underlying the delivery of global commitments to restore forest landscapes. We propose that three fundamental questions need to be resolved upfront for the effective implementation of Forest Landscape Restoration and related commitments: (1) What social and ecological landscape objectives are being sought through Forest Landscape Restoration? (2) How are specific areas being selected for restoration? (3) How is success measured when restoring forest landscapes? We believe that there is an urgent need to adequately answer these questions to successfully implement political commitments for large‐scale forest restoration.  相似文献   

3.
The Society for Ecological Restoration (SER) Primer identifies key ecosystem attributes for evaluating restoration outcome. Broad attribute categories could be necessary due to the large variety of restoration projects, but could make overall evaluations and assessments challenging and might hamper the development of sound and successful restoration. In this study we carry out a systematic review of scientific papers addressing evaluation of restoration outcome. We include 104 studies published after 2010 from Europe or North America, representing different types of restoration projects in terrestrial and freshwater ecosystems. We explore the main ecological and socioeconomic attributes used to evaluate restoration outcome, and related indicators and specific methods applied to measure this, in relation to ecosystem and type of restoration project. We identify a wide range of indicators within each attribute, and show that very different methods are employed to measure them. This complexity reduces the opportunity for meaningful comparison and standardization of evaluation of restoration outcome, within and between ecosystems. Socioeconomic indicators are rarely used to evaluate restoration outcome, and studies including both ecological and socioeconomic indicators are nearly absent. Based on our findings we discuss whether standardization and streamlining of indicators is useful to improve the evaluation of “on the ground” restoration, or if this is not appropriate given the diversity of goals and ecosystems involved. Species‐specific traits are used in many projects and should be considered as an addition to the original SER attributes. Furthermore, we discuss the potential for restoration evaluation that encompasses not only assessment of ecological but also socioeconomic indicators.  相似文献   

4.
Ecosystem restoration can help reverse biodiversity loss, but whether faunal communities of forests undergoing restoration converge with those of primary forest over time remains contentious. There is a need to develop faunal indicators of restoration success that more comprehensively reflect changes in biodiversity and ecosystem function. Ants are an ecologically dominant faunal group and are widely advocated as ecological indicators. We examine ant species and functional group responses on a chronosequence of rainforest restoration in northern Australia, and develop a novel method for selecting and using indicator species. Four sampling techniques were used to survey ants at 48 sites, from grassland, through various ages (1–24 years) of restoration plantings, to mature forest. From principal components analysis of seven vegetation metrics, we derived a Forest Development Index (FDI) of vegetation change along the chronosequence. A novel Ant Forest Indicator Index (AFII), based on the occurrences of ten key indicator species associated with either grassland or mature forest, was used to assess ant community change with forest restoration. Grasslands and mature forests supported compositionally distinct ant communities at both species and functional levels. The AFII was strongly correlated with forest development (FDI). At forest restoration sites older than 5–10 years that had a relatively closed canopy, ant communities converged on those of mature rainforest, indicating a promising restoration trajectory for fauna as well as plants. Our findings reinforce the utility of ants as ecological indicators and emphasize the importance of restoration methods that achieve rapid closed‐canopy conditions. The novel AFII assessed restoration status from diverse and patchily distributed species, closely tracking ant community succession using comprehensive species‐level data. It has wide applicability for assessing forest restoration in a way that is relatively independent of sampling methodology and intensity, and without a need for new comparative data from reference sites.  相似文献   

5.
The United Nations climate treaty may soon include a mechanism for compensating tropical nations that succeed in reducing carbon emissions from deforestation and forest degradation, source of nearly one fifth of global carbon emissions. We review the potential for this mechanism [reducing emissions from deforestation and degradation (REDD)] to provoke ecological damages and promote ecological cobenefits. Nations could potentially participate in REDD by slowing clear‐cutting of mature tropical forest, slowing or decreasing the impact of selective logging, promoting forest regeneration and restoration, and expanding tree plantations. REDD could also foster efforts to reduce the incidence of forest fire. Potential ecological costs include the accelerated loss (through displaced agricultural expansion) of low‐biomass, high‐conservation‐value ecosystems, and substitution of low‐biomass vegetation by monoculture tree plantations. These costs could be avoided through measures that protect low‐biomass native ecosystems. Substantial ecological cobenefits should be conferred under most circumstances, and include the maintenance or restoration of (1) watershed functions, (2) local and regional climate regimes, (3) soils and biogeochemical processes, (4) water quality and aquatic habitat, and (5) terrestrial habitat. Some tools already being developed to monitor, report and verify (MRV) carbon emissions performance can also be used to measure other elements of ecosystem function, making development of MRV systems for ecological cobenefits a concrete possibility. Analysis of possible REDD program interventions in a large‐scale Amazon landscape indicates that even modest flows of forest carbon funding can provide substantial cobenefits for aquatic ecosystems, but that the functional integrity of the landscape's myriad small watersheds would be best protected under a more even spatial distribution of forests. Because of its focus on an ecosystem service with global benefits, REDD could access a large pool of global stakeholders willing to pay to maintain carbon in forests, thereby providing a potential cascade of ecosystem services to local stakeholders who would otherwise be unable to afford them.  相似文献   

6.
Ecological restoration is becoming mainstreamed worldwide but target ecosystems' responses to restorative interventions are not sufficiently monitored, in terms of the wide range of ecological, social, and economic attributes available. In order to highlight and better understand this problem, we conducted a literature review of the ecological, social, and economic attributes cited in the scientific literature used for monitoring the success of ecological restoration projects in Latin America and the Caribbean region, where no regional study of this kind has previously been conducted. In 84 of the 91 articles retained for the study, ecological indicators were evaluated, while only seven articles included measurements of socioeconomic indicators. Regarding the Society for Ecological Restoration Primer attributes of restored ecosystems, we only found indicators measuring attributes 1–6, with attribute 1 (species assemblages) predominating (73%), followed by physical conditions (54%) and ecological functions (51%). Brazil was the country in the region where most monitoring was being carried out (51% of the articles), and tropical rainforest (33%) and tropical dry forest (25%) were the ecosystem types where ecological restoration was most frequently monitored. Highly vulnerable ecosystems such as mangroves and paramos were underrepresented. Attributes related to ecosystem stability or to governance and education of communities were not monitored at all. More real long‐term monitoring, instead of chronosequences, is needed, especially where understanding socioeconomic implications of, and barriers to, effective ecological restoration is a top priority.  相似文献   

7.
Large‐scale and long‐term restoration efforts are urgently needed to reverse historical global trends of deforestation and forest degradation in the tropics. Restoration of forests within landscapes offers multiple social, economic, and environmental benefits that enhance lives of local people, mitigate effects of climate change, increase food security, and safeguard soil and water resources. Despite rapidly growing knowledge regarding the extent and feasibility of natural regeneration and the environmental and economic benefits of naturally regenerating forests in the tropics, tree planting remains the major focus of restoration programs. Natural regeneration is often ignored as a viable land‐use option. Here, we assemble a set of 16 original papers that provide an overview of the ecological, economic, and social dimensions of forest and landscape restoration (FLR), a relatively new approach to forest restoration that aims to regain ecological integrity and enhance human well‐being in deforested or degraded forest landscapes. The papers describe how spontaneous (passive) and assisted natural regeneration can contribute to achieving multiple social and ecological benefits. Forest and landscape restoration is centered on the people who live and work in the landscape and whose livelihoods will benefit and diversify through restoration activities inside and outside of farms. Given the scale of degraded forestland and the need to mitigate climate change and meet human development needs in the tropics, harnessing the potential of natural regeneration will play an essential role in achieving the ambitious goals that motivate global restoration initiatives.  相似文献   

8.
This paper presents a conceptual framework for analyzing forest complexity as the combination of the variety of species and key structures that are associated with the composition, structure, and function of forest stands. Several spatial indicators have been developed to characterize the biodiversity, the structural complexity, and anthropogenic effects that can be observed in Mexican forests. By integrating several stand complexity attributes, the forest condition can be characterized as a function of species composition, stand structural attributes, and forest development. In addition, indicators of anthropogenic effects were also analyzed to identify their influence on forest eco-complexity, and therefore, on the current condition of forests. The results of applying this conceptual framework showed that Mexican forest are ecologically complex, with varying levels of anthropogenic impacts that modify the structural forest characteristics, particularly in tropical forests. The main factor explaining the current eco-complexity condition in tropical forests was associated with early stages of forest development, due to ecological degradation, and showed a generalized loss of attributes, particularly for stand complexity and stand development. In contrast, temperate forests exhibited better eco-complexity conditions, especially for those attributes that define forest stand occupancy and development. Mining activities, forest extraction as selective harvesting, forest fires, land use change, and road openings are critical human activities that directly affect forest structure and, ultimately, modify forest eco-complexity and integrity. This eco-complexity index derived for Mexican forests can be used to integrate measures of forest structure and functioning, and thereby better inform decision making and policy development.  相似文献   

9.
Large‐scale forest restoration relies on approaches that are cost‐effective and economically attractive to farmers, and in this context agroforestry systems may be a valuable option. Here, we compared ecological outcomes among (1) 12–15‐year‐old coffee agroforests established with several native shade trees, (2) 12–15‐year‐old high‐diversity restoration plantations, and (3) reference old‐growth forests, within a landscape restoration project in the Pontal do Paranapanema region, in the Atlantic Forest of southeastern Brazil. We compared the aboveground biomass, canopy cover, and abundance, richness, and composition of trees, and the regenerating saplings in the three forest types. In addition, we investigated the landscape drivers of natural regeneration in the restoration plantations and coffee agroforests. Reference forests had a higher abundance of trees and regenerating saplings, but had similar levels of species richness compared to coffee agroforests. High‐diversity agroforests and restoration plantations did not differ in tree abundance. However, compared to restoration plantations, agroforests showed higher abundance and species richness of regenerating saplings, a higher proportion of animal‐dispersed species, and higher canopy cover. The abundance of regenerating saplings declined with increasing density of coffee plants, thus indicating a potential trade‐off between productivity and ecological benefits. High‐diversity coffee agroforests provide a cost‐effective and ecologically viable alternative to high‐diversity native tree plantations for large‐scale forest restoration within agricultural landscapes managed by local communities, and should be included as part of the portfolio of reforestation options used to promote the global agenda on forest and landscape restoration.  相似文献   

10.
Abstract

The most commonly used old‐growth forest indicators are structural attributes; nevertheless, they do not necessarily represent the biodiversity value of old‐growth forests. The aim of this study is to analyse the relationships between species richness data of different taxa and structural indicators of old‐growth and to identify taxonomic/functional groups, species and structural attributes that may be used as indicators of old‐growth. To achieve this goal we sampled forest structure, vascular plants, lichens, bryophytes, fungi, saproxylic beetles and birds in mature and old‐growth stands in southern Italy. We calculated Spearman’s correlation coefficients between species richness data and structural attributes. Analyses of indicator species, co‐occurrences and two‐way clusters were performed on the multi‐taxonomic list. The group of vascular plants most significantly correlated with other groups in terms of species richness; furthermore, it displays the highest proportion of between‐group co‐occurrences. The resulting multi‐taxonomic list of potential indicators may serve as an effective means of detecting and monitoring forest ecosystems; however, for this goal, structure‐based indicators, such as forest structural attributes and vascular plant species composition, are of primary importance.  相似文献   

11.
The structure and composition of the soil micro‐arthropod communities of five postmining rehabilitating sites (between 1 and 24 years after rehabilitation) are compared with that of an undisturbed dune forest benchmark. We extracted soil micro‐arthropods (Acari and insects) with a modified Berlese–Tullgren funnel and used soil carbon, calcium, potassium, magnesium, nitrogen, sodium, phosphorous and acidity (pH) as explanatory variables of micro‐arthropod community composition. Acari accounted for the majority of all the micro‐arthropods (between 65 and 97% of the sample) at the different sites. Density, richness, diversity and composition showed significant differences between the unmined benchmark site and the rehabilitating sites for both insects and Acari, with weak habitat‐age related patterns. Canonical Correspondence Analysis suggests that differences between samples from regenerating sites and those from the benchmark sites slowly decrease with increasing regeneration age, but that community composition is only weakly related to soil properties. Our results suggest that coastal dune forest rehabilitation could give rise to the regeneration of micro‐arthropod assemblages, but it may take a long time. Therefore, potential limiting factors for community regeneration need to be identified to improve the chances for successful restoration.  相似文献   

12.
Tens of thousands of stream kilometers worldwide are degraded by a legacy of acid loads, high metal concentrations, and altered habitat caused by acid mine drainage (AMD) from abandoned underground and surface mines. As the primary production base in streams, the condition of algal‐dominated periphyton communities is particularly important to nutrient cycling, energy flow, and higher trophic levels. Here, we synthesize current knowledge regarding how AMD‐associated stressors affect (i) algal communities and their use as ecological indicators, (ii) their functional roles in stream ecosystems, and (iii) how these findings inform management decisions and evaluation of restoration effectiveness. A growing body of research has found ecosystem simplification caused by AMD stressors. Species diversity declines, productivity decreases, and less efficient nutrient uptake and retention occur as AMD severity increases. New monitoring approaches, indices of biological condition, and attributes of algal community structure and function effectively assess AMD severity and effectiveness of management practices. Measures of ecosystem processes, such as nutrient uptake rates, extracellular enzyme activities, and metabolism, are increasingly being used as assessment tools, but remain in their infancy relative to traditional community structure‐based approaches. The continued development, testing, and implementation of functional measures and their use alongside community structure metrics will further advance assessments, inform management decisions, and foster progress toward restoration goals. Algal assessments will have important roles in making progress toward improving and sustaining the water quality, ecological condition, and ecosystem services of streams in regions affected by the legacy of unregulated coal mining.  相似文献   

13.
There is growing interest in the potential for reforestation to assist the recovery of rainforest biodiversity. There is also a need to identify taxonomically tractable groups for use as cost‐effective indicators when monitoring the status of biodiversity within reforested sites. Insects are an important component of terrestrial biodiversity but often require considerable resources to sample at species level. Ant genera and generic‐based functional groups have been suggested as possible indicators of environmental disturbance. Here we ask to what extent the development of biodiversity is indicated by epigaeic ant genera and functional groups, across different types of reforestation in tropical and subtropical Australia. In each region, we used pitfall traps to sample the ants in replicate sites of: unmanaged regrowth, monoculture and mixed species plantations and ‘ecological restoration’ plantings, together with reference sites in pasture and rainforest. We recorded 35 epigaeic ant genera (and 4623 individuals) from 50 tropical sites, and 39 genera (and 9904 individuals) from 54 subtropical sites, with 47 genera overall. Community composition of both genera and functional groups differed between pasture and rainforest, although many genera were widespread in both. Reforested sites were intermediate between pasture and rainforest in both regions, and showed a gradient associated with decreasing grass and increasing tree and litter cover. Older monoculture plantations and ecological restoration plantings had the most rainforest‐like ant assemblages, and mixed‐species cabinet timber plots the least, of the reforested sites. We conclude that ground‐active ant genera and functional groups sampled in rapid surveys by pitfall‐trapping showed only a modest ability to discriminate among different types of reforestation. Species‐level identification, perhaps together with expanded sampling effort, could be more informative, but would require resourcing beyond the scope of rapid assessments.  相似文献   

14.
Land‐use changes such as conversion of natural forest to rural and urban areas have been considered as main drivers of ecosystem functions decline, and a large variety of indicators has been used to investigate these effects. Here, we used a replicated litter‐bag experiment to investigate the effects of land‐use changes on the leaf‐litter breakdown process and leaf‐associated invertebrates along the forest–pasture–urban gradient located in a subtropical island (Florianópolis, SC, Brazil). We identified the invertebrates and measured the litter breakdown rates using the litter bags approach. Litter bags containing 3 g of dry leaf of Alchornea triplinervia were deployed on forest rural and urban streams. Principal component analysis, based on physico‐chemical variables which, confirmed a gradient of degradation from forest to urban streams with intermediate values in rural areas. In accordance, shredder richness and abundance were lower in rural and urban than in forest streams. The land‐use changes led also to the dominance of tolerant generalist taxa (Chironomidae and Oligochaeta) reducing the taxonomic and functional diversity in these sites. Leaf‐litter breakdown rates decreased from forest to rural and finally to urban areas and were associated with changes in pH, water velocity, dissolved oxygen and abundance of leaf‐shredding invertebrates, although global decomposition rates did not differ between rural and urban streams. Overall, this study showed that land‐use changes, namely to rural and urban areas, have a strong impact on tropical streams ecosystems, in both processes and communities composition and structure. Despite of being apparently a smaller transformation of landscape, rural land use is comparable to urbanisation in terms of impact in stream functioning. It is thus critical to carefully plan urban development and maintain forest areas in the island of Florianópolis in order to preserve its natural biodiversity and aquatic ecosystems functioning.  相似文献   

15.
Ecological restoration is increasingly applied in tropical forests to mitigate biodiversity loss and recover ecosystem functions. In restoration ecology, functional richness, rather than species richness, often determines community assembly, and measures of functional diversity provide a mechanistic link between diversity and ecological functioning of restored habitat. Vertebrate animals are important for ecosystem functioning. Here, we examine the functional diversity of small‐to‐medium sized mammals to evaluate the diversity and functional recovery of tropical rainforest. We assess how mammal species diversity and composition and functional diversity and composition, vary along a restoration chronosequence from degraded pasture to “old‐growth” tropical rainforest in the Wet Tropics of Australia. Species richness, diversity, evenness, and abundance did not vary, but total mammal biomass and mean species body mass increased with restoration age. Species composition in restoration forests converged on the composition of old‐growth rainforest and diverged from pasture with increasing restoration age. Functional metrics provided a clearer pattern of recovery than traditional species metrics, with most functional metrics significantly increasing with restoration age when taxonomic‐based metrics did not. Functional evenness and dispersion increased significantly with restoration age, suggesting that niche complementarity enhances species' abundances in restored sites. The change in community composition represented a functional shift from invasive, herbivorous, terrestrial habitat generalists and open environment specialists in pasture and young restoration sites, to predominantly endemic, folivorous, arboreal, and fossorial forest species in older restoration sites. This shift has positive implications for conservation and demonstrates the potential of tropical forest restoration to recover rainforest‐like, diverse faunal communities.  相似文献   

16.
Exploitation of freshwater resources is essential for sustenance of human existence and alteration of rivers, lakes and wetlands has facilitated economic development for centuries. Consequently, freshwater biodiversity is critically threatened, with stream ecosystems being the most heavily affected. To improve the status of freshwater habitats, e.g. in the context of the European Water Framework Directive and the US Clean Water Act, it is essential to implement the most effective restoration measures and identify the most suitable indicators for restoration success. Herein, several active and passive bioindication approaches are reviewed in light of existing legal frameworks, current targets and applicable implementation of river restoration. Such approaches should move from the use of single biological indicators to more holistic ecological indicators simultaneously addressing communities, multiple life stages and habitat properties such as water quality, substrate composition and stream channel morphology. The proposed Proceeding Chain of Restoration (PCoR) can enable the integration of natural scientific, political and socioeconomic dimensions for restoration of aquatic ecosystems and associated services. Generally, an analysis that combines target species-based active bioindication with community-based passive bioindication and multivariate statistics seems to be most suitable for a holistic evaluation of restoration success, as well as for the monitoring of stream ecosystem health. Since the response of biological communities to changing environmental conditions can differ between taxonomic groups and rivers, assessments at the ecosystem scale should include several levels of biological organisation. A stepwise evaluation of the primary factors inducing disturbance or degradation is needed to integrate increasing levels of complexity from water quality assessments to the evaluation of ecological function. The proposed PCoR can provide a step-by-step guide for restoration ecologists, comprising all planning steps from the determination of the conservation objectives to the use of ecological indicators in post-restoration monitoring.  相似文献   

17.
Because it can uniquely furnish insights into nonuse values for ecosystem services, survey‐based Stated Preference (SP) valuation is widely used to estimate the benefits of ecological restoration. SP surveys ask respondents to select among restoration options yielding different ecological outcomes. This review examines the representation of ecological outcomes in SP studies seeking to quantify values for restoration of aquatic ecosystems. To promote the validity of ecological indicators used in SP valuation, we identified four standards: indicators should be measurable, interpretable, applicable, and comprehensive. We reviewed recent SP studies estimating the value of aquatic ecosystem services to assess whether ecological indicators in current use had these desirable properties. More than half of the 54 indicators reviewed were measurable, meaning referable to potentially precise quantification. About one‐third were interpretable, that is, presented in a way that facilitates understanding the effects of restoration. About three quarters of the indicators were applicable; SP valuation practitioners typically consult with natural scientists to ensure that indicators represent the effect of stressors on ecological systems and with focus groups to ensure that indicators have a connection with ecosystem services that contribute to public well‐being. While most of the SP studies employed diverse and potentially comprehensive indicators that could capture direct and indirect effects of restoration, and 6 of 20 studies used indicators that met all standards, shortcomings in the indicators were common. These problems can be rectified with attention to how natural scientists measure change and to relationships between restoration outcomes and characteristics of fully restored reference ecosystems.  相似文献   

18.
Degradation of groundwater-dependent ecosystems has raised a need for their restoration, but ecological responses to restoration are largely unknown. We evaluated the effectiveness of spring restoration using data from near-natural, restored, and human-impacted springs, the major impact being degradation of spring hydrology by forest drainage. We used both taxonomic (bryophytes, macroinvertebrates, and leaf-decomposing fungi) and functional (leaf breakdown) measures of restoration success. We expected that by reducing surface water input, restoration will improve spring hydrology and place spring ecosystems in a trajectory towards more natural conditions. Restored springs were thermally more stable than impacted springs and the contribution of surface water was greatly reduced. Bryophytes were more abundant in restored than in impacted springs but did not differ among restored and natural springs. Similarly, macroinvertebrate communities differed between restored and impacted springs whereas no difference was detected between restored and natural sites. Species diversity and functional attributes showed weaker responses to restoration. Our results suggest that restoration enhances spring habitat quality, and the first signs of biodiversity enhancement were also detectable only a few years post-restoration. Restoration clearly bears great promise as a conservation tool for the protection of this valuable component of regional freshwater biodiversity.  相似文献   

19.
Large animal species, which provide important ecological functions such as dispersal of seeds or top–down control of seed predators, are very vulnerable in fragmented forests, being unable to survive in small fragments, and facing increasing hunting pressure. The loss of large animals affects two main ecological processes crucial for the tree reproductive cycle: seed dispersal of large seeds (e.g. provided by tapirs) and control of seed predator population (e.g. provided by large cats). The changes in both processes are expected to increase seed mortality since seeds are not dispersed away from conspecifics (causing increased pre‐dispersal mortality due to negative density dependent effects) and/or face increased predation after a dispersal event (post‐dispersal mortality). Although an extensive body of empirical knowledge exists on seed predation, the link between seed loss and adult tree community composition and structure is not well established, as well as the temporal scale seed changes affect adults. Using an individual‐based forest model (FORMIND), we evaluate the long‐term consequences of increased pre and post‐dispersal seed mortality on the future forest biomass retention of a Brazilian northeastern Atlantic forest. Our results show that forest biomass is significantly affected after 80–93% pre‐dispersal loss of large seeds, or post‐dispersal predation densities of 20–25 predators per parent tree. Large‐seeded tree species are at increased risk of local extinction causing up to 26.2% loss of forest biomass when both pre and post‐dispersal processes are combined. However, these changes can last up to 100 years after the occurrence of defaunation. In summary we conclude that large animal loss has the potential to reduce future forest biomass and tree species‐richness by impacting seed survival, and should be considered in the planning of biodiversity friendly landscapes as well as in calculations of the global carbon budget.  相似文献   

20.
杨胜苏  刘卫柏 《生态学报》2021,41(16):6430-6439
实施洞庭湖区"山水林田湖草"生态修复工程,是践行生态文明理念、遵循自然规律、破解生态环境保护难题的关键措施。由于自然灾害及人类不合理利用等因素影响,洞庭湖区生态问题日益严重,对洞庭湖区生态系统均衡和可持续发展带来威胁。基于恢复生态学理论,以洞庭湖区为研究对象,采用物能循环和物能转化的生态学原则分析洞庭湖区存在土壤重金属污染、水环境、生物多样性与植被退化和农村土地利用的生态问题,明确了"山水林田湖草"生命共同体中各要素及相应形成的子系统存在的相互联系和相互制约的关系,厘清洞庭湖区生态系统的生态退化过程和生态退化机制,就此提出重构生态水体、重建生态地质地貌和重现生态景观的生态恢复策略,提出妥善解决和处理洞庭湖区的生态恢复及亟需进行环境整治问题,实现自然景观的恢复重构。通过构建洞庭湖区生态系统恢复的测度指标体系和洞庭湖区生态系统恢复的监测与管控,实现洞庭湖区"山水林田湖草"生态恢复的目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号