首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Islet amyloid polypeptide (IAPP) is synthesized in pancreatic β-cells and co-secreted with insulin. Aggregation and formation of IAPP-amyloid play a critical role in β-cell death in type 2 diabetic patients. Because Aβ-fibrils in Alzheimer disease activate the complement system, we have here investigated specific interactions between IAPP and complement factors. IAPP fibrils triggered limited activation of complement in vitro, involving both the classical and the alternative pathways. Direct binding assays confirmed that IAPP fibrils interact with globular head domains of complement initiator C1q. Furthermore, IAPP also bound complement inhibitors factor H and C4b-binding protein (C4BP). Recombinant C4BP mutants were used to show that complement control protein (CCP) domains 8 and 2 of the α-chain were responsible for the strong, hydrophobic binding of C4BP to IAPP. Immunostaining of pancreatic sections from type 2 diabetic patients revealed the presence of complement factors in the islets and varying degree of co-localization between IAPP fibrils and C1q, C3d, as well as C4BP and factor H but not membrane attack complex. Furthermore, C4BP enhanced formation of IAPP fibrils in vitro. We conclude that C4BP binds to IAPP thereby limiting complement activation and may be enhancing formation of IAPP fibrils from cytotoxic oligomers.  相似文献   

2.
Human C4b-binding protein (C4BP) protects host tissue, and those pathogens able to hijack this plasma glycoprotein, from complement-mediated destruction. We now show that the first two complement control protein (CCP) modules of the C4BP alpha-chain, plus the four residues connecting them, are necessary and sufficient for binding a bacterial virulence factor, the Streptococcus pyogenes M4 (Arp4) protein. Structure determination by NMR reveals two tightly coupled CCP modules in an elongated arrangement within this region of C4BP. Chemical shift perturbation studies demonstrate that the N-terminal, hypervariable region of M4 binds to a site including strand 1 of CCP module 2. This interaction is accompanied by an intermodular reorientation within C4BP. We thus provide a detailed picture of an interaction whereby a pathogen evades complement.  相似文献   

3.
The complement system consists of more than 40 proteins that participate in the inflammatory response and in pathogen killing. Complement inhibitors are necessary to avoid the excessive consumption and activation of this system on host cells. Leptospirosis is a worldwide zoonosis caused by spirochetes from the genus Leptospira. Pathogenic leptospires are able to escape from complement activation by binding to host complement inhibitors Factor H [FH] and C4b-binding protein (C4BP) while non-pathogenic leptospires are rapidly killed in the presence of fresh serum. In this study, we demonstrate that complement control protein domains (CCP) 7 and 8 of C4BP α-chain interact with the outer membrane proteins LcpA, LigA and LigB from the pathogenic leptospire L. interrogans. The interaction between C4BP and LcpA, LigA and LigB is sensitive to ionic strength and inhibited by heparin. We fine mapped the LigA and LigB domains involved in its binding to C4BP and heparin and found that both interactions are mediated through the bacterial immunoglobulin-like (Big) domains 7 and 8 (LigA7-8 and LigB7-8) of both LigA and LigB and also through LigB9-10. Therefore, C4BP and heparin may share the same binding sites on Lig proteins.  相似文献   

4.
Moraxella catarrhalis ubiquitous surface protein A2 (UspA2) mediates resistance to the bactericidal activity of normal human serum. In this study, an interaction between the complement fluid phase regulator of the classical pathway, C4b binding protein (C4BP), and M. catarrhalis mutants lacking UspA1 and/or UspA2 was analyzed by flow cytometry and a RIA. Two clinical isolates of M. catarrhalis expressed UspA2 at a higher density than UspA1. The UspA1 mutants showed a decreased C4BP binding (37.6% reduction), whereas the UspA2-deficient Moraxella mutants displayed a strongly reduced (94.6%) C4BP binding compared with the wild type. In addition, experiments with recombinantly expressed UspA1(50-770) and UspA2(30-539) showed that C4BP (range, 1-1000 nM) bound to the two proteins in a dose-dependent manner. The equilibrium constants (K(D)) for the UspA1(50-770) and UspA2(30-539) interactions with a single subunit of C4BP were 13 microM and 1.1 microM, respectively. The main isoform of C4BP contains seven identical alpha-chains and one beta-chain linked together with disulfide bridges, and the alpha-chains contain eight complement control protein (CCP) modules. The UspA1 and A2 bound to the alpha-chain of C4BP, and experiments with C4BP lacking CCP2, CCP5, or CCP7 showed that these three CCPs were important for the Usp binding. Importantly, C4BP bound to the surface of M. catarrhalis retained its cofactor activity as determined by analysis of C4b degradation. Taken together, M. catarrhalis interferes with the classical complement activation pathway by binding C4BP to UspA1 and UspA2.  相似文献   

5.
The anticoagulant vitamin K-dependent protein S (PS) circulates in plasma in two forms, 30% free and 70% being bound to the complement regulatory protein C4b-binding protein (C4BP). The major C4BP isoform consists of 7 α-chains and 1 β-chain (C4BPβ+), the chains being linked by disulfide bridges. PS binds to the β-chain with high affinity. In plasma, PS is in molar excess over C4BPβ+ and due to the high affinity, all C4BPβ+ molecules contain a bound PS. Taken together with the observation that PS-deficient patients have decreased levels of C4BPβ+, this raises the question of whether PS is important for secretion of the β-chain from the cell. To test this hypothesis, HEK293 cells were stably and transiently transfected with β-chain cDNA in combinations with cDNAs for PS and/or the α-chain. The concentration of β-chains in the medium increased after co-transfection with PS cDNA, but not by α-chain cDNA, suggesting secretion of the β-chains from the cells to be dependent on concomitant synthesis of PS, but not of the α-chains. Thus, β-chains that were not disulfide-linked to the α-chains were secreted in complex with PS, either as monomers or dimers. Pulse-chase demonstrated that the complexes between PS and β-chain were formed intracellularly, in the endoplasmic reticulum. In conclusion, our results demonstrate that successful secretion of β-chains depends on intracellular complex formation with PS, but not on the α-chains. This provides an explanation for the decreased β-chain levels observed in PS-deficient patients.  相似文献   

6.
C4b-binding protein (C4BP) inhibits all pathways of complement activation, acting as a cofactor to the serine protease factor I (FI) in the degradation of activated complement factors C4b and C3b. C4BP is a disulfide-linked polymer of seven alpha-chains and a unique beta-chain, the alpha- and beta-chains being composed of eight and three complement control protein (CCP) domains, respectively. In previous studies we have localized cofactor activity and binding of C4b to alpha-chain CCP1-3 of C4BP, whereas the binding of C3b required additionally CCP4. Likewise, introduced point mutations that decreased binding of C4b/C3b caused a decrease in cofactor activity. In the present study, we describe two mutants of C4BP, K126Q/K128Q and F144S/F149S, clustered on alpha-chain CCP3, which selectively lost their ability to act as cofactors in the cleavage of both C4b and C3b. Both mutants show the same binding affinity for C4b/C3b as measured by surface plasmon resonance and have the same inhibitory effect on formation and decay of the classical pathway C3-convertase as the wild type C4BP. It appears that C4b and C3b do not undergo the same conformational changes upon binding to the C4BP mutants as during the interaction with the wild type C4BP, which then results in the observed loss of the cofactor activity.  相似文献   

7.
Complement evasion by various mechanisms is important for microbial virulence and survival in the host. One strategy used by some pathogenic bacteria is to bind the complement inhibitor of the classical pathway, C4b-binding protein (C4BP). In this study, we have identified a novel interaction between nontypeable Haemophilus influenzae (NTHi) and C4BP, whereas the majority of the typeable H. influenzae (a-f) tested showed no binding. One of the clinical isolates, NTHi 506, displayed a particularly high binding of C4BP and was used for detailed analysis of the interaction. Importantly, a low C4BP-binding isolate (NTHi 69) showed an increased deposition of C3b followed by reduced survival as compared with NTHi 506 when exposed to normal human serum. The main isoform of C4BP contains seven identical alpha-chains and one beta-chain linked together with disulfide bridges. Each alpha-chain is composed of eight complement control protein (CCP) modules and we have found that the NTHi 506 strain did not interact with rC4BP lacking CCP2 or CCP7 showing that these two CCPs are important for the binding. Importantly, C4BP bound to the surface of H. influenzae retained its cofactor activity as determined by analysis of C3b and C4b degradation. Taken together, NTHi interferes with the classical complement activation pathway by binding to C4BP.  相似文献   

8.
C4b-binding protein (C4BP) is an important plasma inhibitor of the classical pathway of complement activation. Several bacterial pathogens bind C4BP, which may contribute to their virulence. In the present report we demonstrate that isolated type IV pili from Neisseria gonorrhoeae bind human C4BP in a dose-dependent and saturable manner. C4BP consists of seven identical alpha-chains and one beta-chain linked together with disulfide bridges. We found that pili bind to the alpha-chain of C4BP, which is composed of eight homologous complement control protein (CCP) domains. From the results of an inhibition assay with C4b and a competition assay in which we tested mutants of C4BP lacking individual CCPs, we concluded that the binding area for pili is localized to CCP1 and CCP2 of the alpha-chain. The binding between pili and C4BP was abolished at 0.25 M NaCl, implying that it is based mostly on ionic interactions, similarly to what have been observed for C4b-C4BP binding. Furthermore, the N-terminal part of PilC, a structural component of pili, appeared to be responsible for binding of C4BP. Membrane cofactor protein, previously shown to be a receptor for pathogenic N. gonorrhoeae on the surface of epithelial cells, competed with C4BP for binding to pili only at high concentrations, suggesting that different parts of pili are involved in these two interactions. Accordingly, high concentrations of C4BP were required to inhibit binding of N. gonorrhoeae to Chang conjunctiva cells, and no inhibition of binding was observed with cervical epithelial cells.  相似文献   

9.
Candida albicans binds and utilizes human complement inhibitors, such as C4b-binding protein (C4BP), Factor H, and FHL-1 for immune evasion. Here, we identify Candida pH-regulated antigen 1 (Pra1) as the first fungal C4BP-binding protein. Recombinant Pra1 binds C4BP, as shown by ELISA and isothermal titration calorimetry, and the Pra1-C4BP interaction is ionic in nature. The Pra1 binding domains within C4BP were localized to the complement control protein domain 4 (CCP4), CCP7, and CCP8. C4BP bound to Pra1 maintains complement-inhibitory activity. C4BP and Factor H bind simultaneously to Candida Pra1 and do not compete for binding at physiological levels. A Pra1-overexpressing C. albicans strain, which had about 2-fold Pra1 levels at the surface acquired also about 2-fold C4BP to the surface, compared with the wild type strain CAI4. A Pra1 knock-out strain showed ~22% reduced C4BP binding. C4BP captured by C. albicans from human serum inhibits C4b and C3b surface deposition and also maintains cofactor activity. In summary, Candida Pra1 represents the first fungal C4BP-binding surface protein. Pra1, via binding to C4BP, mediates human complement control, thereby favoring the immune and complement evasion of C. albicans.  相似文献   

10.
Escherichia coli is an important pathogen that causes meningitis in neonates. The development of bacteremia preceding the traversal across the blood-brain barrier is a prerequisite for this pathogen that obviously must survive the bactericidal activity of serum. Here we report that outer membrane protein A (OmpA) of Escherichia coli contributes to serum resistance by binding to C4b binding protein (C4bp), a complement fluid phase regulator. C4bp contains seven identical alpha-chains and one beta-chain linked together with disulfide bridges. We found that OmpA binds the alpha-chain of C4bp, which is composed of eight homologous complement control protein (CCP) modules. Binding studies using mutants of recombinant C4bp that lack one CCP at a time suggest that CCP3 is the major site of interaction with OmpA. Furthermore, we demonstrate that the N terminus of OmpA interacts with C4bp. Binding of C4bp to OmpA is not significantly inhibited in the presence of either C4b or heparin and is not salt sensitive, implying that it is hydrophobic in nature, suggesting a novel interaction between OmpA and C4bp. A compelling observation in this study is that synthetic peptides corresponding to CCP3 sequences block the binding of C4bp to OmpA and also significantly enhance serum bactericidal activity.  相似文献   

11.
C4b-binding protein (C4BP) is a regulator of the classical complement pathway, acting as a cofactor to factor I in the degradation of C4b. Computer modeling and structural analysis predicted a cluster of positively charged amino acids at the interface between complement control protein modules 1 and 2 of the C4BP alpha-chain to be involved in C4b binding. Three C4BP mutants, R39Q, R64Q/R66Q, and R39Q/R64Q/R66Q, were expressed and assayed for their ability to bind C4b and to function as factor I cofactors. The apparent affinities of R39Q, R64Q/R66Q, and R39Q/R64Q/R66Q for immobilized C4b were 15-, 50-, and 140-fold lower, respectively, than that of recombinant wild type C4BP. The C4b binding site demonstrated herein was also found to be a specific heparin binding site. In C4b degradation, the mutants demonstrated decreased ability to serve as factor I cofactors. In particular, the R39Q/R64Q/R66Q mutant was inefficient as cofactor for cleavage of the Arg937-Thr938 peptide bond in C4b. In contrast, the factor I mediated cleavage of Arg1317-Asn1318 bond was less affected by the C4BP mutations. In conclusion, we identify a cluster of amino acids that is part of a C4b binding site involved in the regulation of the complement system.  相似文献   

12.
Unconventional Ags, such as metals, stimulate T cells in a very specific manner. To delineate the binding landscape for metal-specific T cell recognition, alanine screens were performed on a set of Be-specific TCRs derived from the lung of a chronic beryllium disease patient. These TCRs are HLA-DP2-restricted and express nearly identical TCR Vβ5.1 chains coupled with different TCR α-chains. Site-specific mutagenesis of all amino acids comprising the CDRs of the TCRA and TCRB genes showed a dominant role for Vβ5.1 residues in Be recognition, with little contribution from the TCR α-chain. Solvent-exposed residues along the α-helices of the HLA-DP2 α- and β-chains were also mutated to alanine. Two β-chain residues, located near the proposed Be binding site of HLA-DP2, played a dominant role in T cell recognition with no contribution from the HLA-DP2 α-chain. These findings suggest that Be-specific T cells recognize Ag using an unconventional binding topology, with the majority of interactions contributed by TCR Vβ5.1 residues and the HLA-DP2 β1-chain. Thus, unusual docking topologies are not exclusively used by autoreactive T cells, but also for the recognition of unconventional metal Ags, such as Be.  相似文献   

13.
Complement regulator C4b-binding protein (C4BP) and the anticoagulant vitamin K-dependent protein S form a high affinity complex in human plasma. C4BP is composed of seven alpha-chains and a unique beta-chain, each chain comprising repeating complement control protein (CCP) modules. The binding site for protein S mainly involves the first of the three beta-chain CCPs (CCP1). However, recently it has been suggested that CCP2 of the beta-chain also contributes to the binding of protein S. To elucidate the structural background for the involvement of CCP2 in the protein S binding, several recombinant beta-chain CCP1-2 variants having mutations in CCP2 were expressed and tested for protein S binding. Mutations were chosen based on analysis of a homology model of the beta-chain and included R60A/R101A, D66A, L105A, F114A/I116A and H108A. All mutant proteins bound equally well as recombinant wild type to protein S. Several monoclonal antibodies against the beta-chain CCP2 were raised and their influence on protein S binding characterized. Taken together, the results suggest that the role of CCP2 in protein S binding is to orient and stabilize CCP1 rather than to be directly part of the binding site.  相似文献   

14.
The eighth component (C8) of guinea pig complement consists of three polypeptide chains, the α-, β-, and γ-chains with M.W. of 60,000, 60,000, and 24,000, respectively. The α- and γ-chains are bound by a disulfide bond(s) forming an α-γ subunit, which is linked noncovalently to the β-chain. The α-γ subunit and the β-chain were separated and purified from C8 by treatment with sodium dodecyl sulfate (SDS) and gel chromatography on Sephacryl S-300 in the presence of SDS. After removal of SDS, neither α-γ nor β showed the hemolytic activity of C8 when assayed independently, but showed significant activity in combination, indicating reconstitution of active C8. The recovery of hemolytic activity was 3.48%. When α-γ and β were incubated successively with EAC-7 with intervening washing, reconstitution of active C8 on the cells was insignificant, irrespective of the order of the reactions. α-γ and β did not bind to EAC-7 when added separately, but after recombination 7% of α-γ and 9% of β bound to EAC-7 when EAC-7 was in excess. These results indicate that the binding site of guinea pig C8 to the membrane-bound C5b-7 complex does not exist on either α-γ or β only but stretches over both or is formed on one subunit after recombination of the subunits.  相似文献   

15.
The formation of the complex between the d-fragment of the complement component C3 (C3d) and the modular complement receptor-2 (CR2) is important for cross-linking foreign antigens with surface-bound antibodies and C3d on the surface of B cells. The first two modules of CR2, complement control protein modules (CCPs), participate in non-bonded interactions with C3d. We have used computational methods to analyze the dynamic and electrostatic properties of the C3d-CR2(CCP1-2) complex. The interaction between C3d and CR2 is known to depend on pH and ionic strength. Also, the intermodular mobility of the CR2 modules has been questioned before. We performed a 10 ns molecular dynamics simulation to generate a relaxed structure from crystal packing effects for the C3d-CR2(CCP1-2) complex and to study the energetics of the C3d-CR2(CCP1-2) association. The MD simulation suggests a tendency for intermodular twisting in CR2(CCP1-2). We propose a two-step model for recognition and binding of C3d with CR2(CCP1-2), driven by long and short/medium-range electrostatic interactions. We have calculated the matrix of specific short/medium-range pairwise electrostatic free energies of interaction involved in binding and in intermodular communications. Electrostatic interactions may mediate allosteric effects important for C3d-CR2(CCP1-2) association. We present calculations for the pH and ionic strength-dependence of C3d-CR2(CCP1-2) ionization free energies, which are in overall agreement with experimental binding data. We show how comparison of the calculated and experimental data allows for the decomposition of the contributions of electrostatic from other effects in association. We critically compare predicted stabilities for several mutants of the C3d-CR2(CCP1-2) complex with the available experimental data for binding ability. Finally, we propose that CR2(CCP1-2) is capable of assuming a large array of intermodular topologies, ranging from closed V-shaped to open linear states, with similar recognition properties for C3d, but we cannot exclude an additional contact site with C3d.  相似文献   

16.
Leung E  Blom AM  Clemenza L  Isenman DE 《Biochemistry》2006,45(27):8378-8392
C4b-binding protein (C4BP) is a multimeric serum protein that is a potent regulator of the classical and lectin complement pathways. The binding site for C4b has been localized to complement control protein (CCP) domains 1-3 of the C4BP alpha-chain and, in particular, to a cluster of positively charged amino acids predicted to be at the interface between CCP 1 and CCP 2. To determine the regions of C4b contributing to C4BP binding, we have examined via surface plasmon resonance technology the binding of the C4c and C4dg subfragments of C4b to C4BP. At half-physiologic ionic strength, specific and saturable binding was observed for both C4c and C4dg. C4c exhibited much greater ionic strength sensitivity in its binding than did C4dg. Analysis of the effect on binding of the subfragments to various C4b-binding-defective C4BP mutants, together with cross-competition experiments, suggests that the subsites in C4BP for C4c and C4dg are adjacent, but distinct. Additionally, we observed synergy in subsite filling such that the presence of C4dg enhanced the extent of C4c binding over its basal level, and vice versa. The enhanced binding of C4c in the presence of C4dg was not due to an increase in affinity but rather reflected a 2-3-fold increase in the number of sites capable of binding C4c. This suggests the existence of a conformational equilibrium between high- and low-affinity states in the C4c binding subsite within each C4BP subunit, an equilibrium which is shifted in favor of the high-affinity state by the filling of the C4dg subsite.  相似文献   

17.
The primary structure of Rose-ringed Parakeet hemoglobin β-chain was established, completing the analysis of this hemoglobin. Comparisons with other avian β-chains show variations smaller than those for the corresponding α-chains. There are 11 amino acid exchanges in relationship to the only other characterized psittaciform β-chain, and a total of 35 positions are affected by differences among all avian β-chains analyzed (versus 61 for the α-chains). At three positions, the Psittacula β-chain has residues unique to this species. Three α1β1 contacts are modified, by substitutions at positions β51, β116, and β125.  相似文献   

18.
Streptococcus pyogenes AP1, a strain of the highly virulent M1 serotype, uses exclusively protein H to bind the complement inhibitor C4b-binding protein (C4BP). We found a strong correlation between the ability of AP1 and its isogenic mutants lacking protein H to inhibit opsonization with complement C3b and binding of C4BP. C4BP bound to immobilized protein H or AP1 bacteria retained its cofactor activity for degradation of 125I-C4b. Furthermore, C4b deposited from serum onto AP1 bacterial surfaces was processed into C4c/C4d fragments, which did not occur on strains unable to bind C4BP. Recombinant C4BP mutants, which (i) lack certain CCP domains or (ii) have mutations in single aa as well as (iii) mutants with additional aa between different CCP domains were used to determine that the binding is mainly mediated by a patch of positively charged amino acid residues at the interface of domains CCP1 and CCP2. Using recombinant protein H fragments, we narrowed down the binding site to the N-terminal domain A. With a peptide microarray, we identified one single 18-amino acid-long peptide comprising residues 92–109, which specifically bound C4BP. Biacore was used to determine KD = 6 × 10−7 m between protein H and a single subunit of C4BP. C4BP binding also correlated with elevated levels of adhesion and invasion to endothelial cells. Taken together, we identified the molecular basis of C4BP-protein H interaction and found that it is not only important for decreased opsonization but also for invasion of endothelial cells by S. pyogenes.  相似文献   

19.
C4b-binding protein (C4BP) is a regulator of the classical complement pathway C3 convertase (C4bC2a complex). It is a disulfide-linked polymer of seven alpha-chains and a unique beta-chain; the alpha- and beta-chains are composed of eight and three complement control protein (CCP) domains, respectively. To elucidate the importance of the polymeric nature of C4BP and the structural requirements for the interaction between C4b and the alpha-chain, 19 recombinant C4BP variants were created. Six truncated monomeric variants, nine polymeric variants in which individual CCPs were deleted, and finally, four variants in which double alanine residues were introduced between CCPs were functionally characterized. The smallest truncated C4BP variant still active in regulating fluid phase C4b comprised CCP1-3. The monomeric variants were less efficient than polymeric C4BP in degrading C4b on cell surfaces. All three N-terminal CCP domains contributed to the binding of C4b and were important for full functional activity; CCP2 and CCP3 were the most important. The spatial arrangements of the first CCPs were found to be important, as introduction of alanine residues between CCPs 1 and 2, CCPs 2 and 3, and CCPs 3 and 4 resulted in functional impairment. The results presented here elucidate the structural requirements of individual CCPs of C4BP, as well as their spatial arrangements within and between subunits for expression of full functional activity.  相似文献   

20.
Ail is a 17-kDa chromosomally encoded outer membrane protein that mediates serum resistance (complement resistance) in the pathogenic Yersiniae (Yersinia pestis, Y. enterocolitica, and Y. pseudotuberculosis). In this article, we demonstrate that Y. pseudotuberculosis Ail from strains PB1, 2812/79, and YPIII/pIB1 (serotypes O:1a, O:1b, and O:3, respectively) can bind the inhibitor of the classical and lectin pathways of complement, C4b-binding protein (C4BP). Binding was observed irrespective of serotype tested and independently of YadA, which is the primary C4BP receptor of Y. enterocolitica. Disruption of the ail gene in Y. pseudotuberculosis resulted in loss of C4BP binding. Cofactor assays revealed that bound C4BP is functional, because bound C4BP in the presence of factor I cleaved C4b. In the absence of YadA, Ail conferred serum resistance to strains PB1 and YPIII, whereas serum resistance was observed in strain 2812/79 in the absence of both YadA and Ail, suggesting additional serum resistance factors. Ail from strain YPIII/pIB1 alone can mediate serum resistance and C4BP binding, because its expression in a serum-sensitive laboratory strain of Escherichia coli conferred both of these phenotypes. Using a panel of C4BP mutants, each deficient in a single complement control protein domain, we observed that complement control protein domains 6-8 are important for binding to Ail. Binding of C4BP was unaffected by increasing heparin or salt concentrations, suggesting primarily nonionic interactions. These results indicate that Y. pseudotuberculosis Ail recruits C4BP in a functional manner, facilitating resistance to attack from complement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号