首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heating spores of non-proteolytic strains of Clostridium botulinum at 85°C, followed by enumeration of survivors on a highly nutrient medium indicated a 5 decimal kill in less than 2 min. The inclusion of lysozyme or egg yolk emulsion in the recovery medium substantially increased apparent spore heat-resistance, with as little as 0.1 μg lysozyme/ml sufficient to give an increase in the number of survivors. After heating at 85°C for 2 min between 0.1% and 1% of the spores of 11 strains (5 type B, 4 type E, 2 type F) formed colonies on medium containing 10 μg lysozyme/ml. Enumeration of survivors on a medium containing lysozyme showed that heating at 85°C for 5 min resulted in an estimated 2.6 decimal kill of spores of strain 17B (type B). These findings are important in the assessment of heat-treatments required to ensure the safety with respect to non-proteolytic Clostridium botulinum of processed (pasteurized) refrigerated foods for extended storage such as sous-vide foods.  相似文献   

2.
A rapid method for the determination of bacterial fatty acid composition   总被引:10,自引:1,他引:9  
Heat treatment of spores of non-proteolytic strains of Clostridium botulinum at 75–90°C, and enumeration of survivors on a nutrient medium containing lysozyme gave biphasic survival curves. A majority of spores were inactivated rapidly by heating, and the apparent heat-resistance of these spores was similar to that observed by enumeration on medium without lysozyme. A minority of spores showed much greater heat-resistance, due to the fact that the spore coat was permeable to lysozyme, which diffused into the spore from the medium and replaced the heat-inactivated germination system. The proportion of heated spores permeable to lysozyme was between 0.2 and 1.4% for spores of strains 17B (type B) and Beluga (type E), but was about 20% for spores of strain Foster B96 (type E). After treatment of heated spores with alkaline thioglycolate, all were permeable to lysozyme. D-values for heated spores that were permeable to lysozyme (naturally and after treatment with thioglycolate) were: for strain 17B, D85°C, 100 min; D90°C, 18.7 min; D95°C, 4.4 min; for strain Beluga, D85°C, 46 min; D90°C, 11.8 min; D95°C, 2.8 min. The z-values for these spores of strains 17B and Beluga were 7.6°C and 8.3°C.  相似文献   

3.
AIMS: Limited information is available on the germination triggers for spores of non-proteolytic Clostridium botulinum. An automated system was used to study the effect of a large number of potential germinants, of temperature and pH, and aerobic and anaerobic conditions, on germination of spores of non-proteolytic Cl. botulinum types B, E and F. METHODS AND RESULTS: A Bioscreen analyser was used to measure germination by decrease in optical density. Results were confirmed by phase-contrast light microscopy. Spores of strains producing type B, E and F toxin gave similar results. Optimum germination occurred in L-alanine/L-lactate, L-cysteine/L-lactate and L-serine/L-lactate (50 mmol l(-1) of each). A further 12 combinations of factors induced germination. Sodium bicarbonate, sodium thioglycollate and heat shock each enhanced germination, but were not essential. Germination was similar in aerobic and anaerobic conditions. The optimum pH range was 5.5-8.0, germination occurred at 1-40 degrees C, but not at 50 degrees C, and was optimal at 20-25 degrees C. CONCLUSIONS: The automated system enabled a systematic study of germination requirements, and provided an insight into germination in spores of non-proteolytic Cl. botulinum. SIGNIFICANCE AND IMPACT OF THE STUDY: The results extend understanding of germination of non-proteolytic Cl. botulinum spores, and provide a basis for improving detection of viable spores.  相似文献   

4.
Refrigerated processed foods of extended durability rely on a mild heat treatment combined with refrigerated storage to ensure microbiological safety and quality. The principal microbiological safety risk in foods of this type is non-proteolytic Clostridium botulinum. In this article the combined effect of mild heat treatment and refrigerated storage on the time to growth and probability of growth from spores of non-proteolytic Cl. botulinum is described. Spores of non-proteolytic Cl. botulinum (two strains each of type B, E and F) were heated at 90°C for between 0 and 60 min and subsequently incubated at 5°, 10° or 30°C in PYGS broth in the presence or absence of lysozyme. The number of spores that resulted in turbidity depended on the combination of heat treatment, incubation time and incubation temperature they received. Heating at 90°C for 1 or more min ensured a 106 reduction when spores were subsequently incubated at 5°C for up to 23 weeks. Heating at 90°C for 60 min ensured a 106 reduction over 23 weeks when subsequent incubation was at 10°C in the presence of added lysozyme. The same treatment did not reduce the spore population by 106 when subsequent incubation was at 30°C.  相似文献   

5.
Heating spores of non-proteolytic Clostridium botulinum at 85C for 2 min followed by plating on a standard laboratory medium reduced the count of viable spores by a factor of greater than 104. A similar result was obtained when the plating medium was supplemented with juice from courgette, carrot or mung bean sprout. When plating was on media supplemented with hen egg white lysozyme or juice from turnip, swede, flat bean, cabbage or potato, heating at 85C for 10 min did not reduce the viable count by a factor of 104. Thus these vegetable juices increased the measured heat resistance of spores of non-proteolytic Cl. botulinum . These findings are relevant to the safety of minimally processed (e.g. sous-vide ) foods.  相似文献   

6.
The requirement of ultrahigh temperature (UHT)-treated Clostridium perfringens spores for lysozyme and the sensitivity of heated and unheated spores to lysozyme were studied. The UHT-treated spores requiring lysozyme for germination and colony formation originated from only a small portion of the non-UHT-treated spore population. This raised a question of whether the requirement for lysozyme was natural to the spores or was induced by the UHT treatments. However, these spores did not require lysozyme for germination before UHT treatment, which confirmed that the requirement for lysozyme had been induced by the UHT treatment. Only 1 to 2% of the spores were naturally sensitive to lysozyme; therefore, the mere addition of lysozyme to the plating medium did not permit the enumeration of all survivors. Treatment of UHT-treated spores with ethylenediaminetetraacetate (EDTA) sensitized the spores to lysozyme and increased by 10- to 100-fold the number of survivors that were detected on a medium containing lysozyme. Under the heating conditions used, spores that were naturally sensitive to lysozyme and spores that required EDTA treatment were equally heat resistant.  相似文献   

7.
The inactivation of Clostridium perfringens type A spores (three strains of different heat resistances) at ultrahigh temperatures was studied. Aqueous spore suspensions were heated at 85 to 135 C by the capillary tube method. When survivors were enumerated on the standard plating medium, the spores appeared to have been rapidly inactivated at temperatures above 100 C. The addition of lysozyme to the plating medium did not affect the recovery of spores surviving the early stages of heating, but lysozyme was required for maximal recovery of spores surviving extended heat treatments. The percentage of survivors requiring lysozyme for colony formation increased greatly with longer exposure times or increasing treatment temperature. Time-survivor curves indicated that each spore suspension was heterogeneous with respect to the heat resistance of spore outgrowth system or in the sensitivity of the spores to lysozyme. Recovery of survivors on the lysozyme containing medium revealed greater heat resistance for one strain than has been reported for spores of many mesophilic aerobes and anaerobes. The spores of all three strains were more resistant to heat inactivation when suspended in phosphate buffer, but a greater percentage of the survivors required lysozyme for colony formation.  相似文献   

8.
The mechanism(s) of chemical manipulation of the heat resistance of Clostridium perfringens type A spores was studied. Spores were converted to various ionic forms by base-exchange technique and these spores were heated at 95°C. Of the four ionic forms, i.e. Ca2+, Na+, H+ and native, only hydrogen spores appeared to have been rapidly inactivated at this temperature, when survivors were enumerated on the ordinary plating medium. However, the recovery of the survivors was improved when the plating medium was supplemented with lysozyme, and more dramatically when the heated spores were pretreated with alkali followed by plating in the medium containing lysozyme. In contrast to crucial damage to germination, in particular to spore lytic enzyme, no appreciable amount of DPA was released from the heat-damaged H-spores. These results suggest that a germination system is involved in the thermal inactivation of the ionic forms of spores, and that exchangeable cation load plays a role in protection from thermal damage of the germination system within the spore. An enhancement of thermal stability of spore lytic enzyme in the presence of a high concentration of NaCl was consistent with the hypothesis.  相似文献   

9.
Lysozyme in the recovery medium increased the recovery of heated spores, thereby raising the measured heat resistance of type E Clostridium botulinum spores about 1,800-fold and type A spores up to 3-fold.  相似文献   

10.
Nonproteolytic strains of Clostridium botulinum will grow at refrigeration temperatures and thus pose a potential hazard in minimally processed foods. Spores of types B, E, and F strains were used to inoculate an anaerobic meat medium. The effects of various combinations of pH, NaCl concentration, addition of lysozyme, heat treatment (85 to 95 degrees C), and incubation temperature (5 to 16 degrees C) on time until growth were determined. No growth occurred after spores were heated at 95 degrees C, but lysozyme improved recovery from spores heated at 85 and 90 degrees C.  相似文献   

11.
Hypochlorite-treated Clostridium botulinum 12885A spores, but not buffer-treated spores, could be germinated with lysozyme, indicating that their coats are made permeable to lysozyme by hypochlorite treatment so that the cortex is accessible. Hypochlorite-treated spores and spores extracted with 8 M urea-2-mercaptoethanol (pH 3.0) were sensitive to certain components of recovery media, but spores sensitized to lysozyme by other treatments were not. These data indicate that hypochlorite does more than increase coat permeability to lysozyme. Scanning electron microscopy revealed a more open-appearing surface of hypochlorite-treated spores, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that a greater amount of protein was removed from hypochlorite-treated and other lysozyme-sensitized spores than from buffer-treated spores. The data suggest that spore coat proteins may be removed by hypochlorite treatment, and this may be responsible for the sensitivity of spores and for their observed ability to germinate in lysozyme.  相似文献   

12.
L und , B.M., G raham , A.F., G eorge , S.M. & B rown , D. 1990. The combined effect of incubation temperature, pH and sorbic acid on the probability of growth of non-proteolytic, type B Clostridium botulinum. Journal of Applied Bacteriology 69 , 481–492.
It has been reported that non-proteolytic strains of Clostridium botulinum will grow at 3.3°C, and they are therefore of concern in relation to certain chilled foods. The effects of combinations of inhibitory factors may be used to reduce the risk of growth of these bacteria in foods. The combined effect of pH values between 4.8 and 7.0, temperatures between 6° and 30°C, and sorbic acid concentrations up to 2270 mg/1 on the probability of growth from a single spore of non-proteolytic, type B strains in a culture medium has been determined. A mathematical model has been developed that enables the effect of varying combinations of these factors on the probability of growth of non-proteolytic, type B Cl. botulinum to be predicted.  相似文献   

13.
The heat treatment necessary to inactivate spores of non-proteolytic Clostridium botulinum in refrigerated, processed foods may be influenced by the occurrence of lysozyme in these foods. Spores of six strains of non-proteolytic Cl. botulinum were inoculated into tubes of an anaerobic meat medium, to give 106 spores per tube. Hen egg white lysozyme (0–50 μg ml-1) was added, and the tubes were given a heat treatment equivalent to 19·8 min at 90°C, cooled, and incubated at 8°, 12°, 16° and 25°C for up to 93 d. In the absence of added lysozyme, neither growth nor toxin formation were observed. A 6–D inactivation was therefore achieved. In tubes to which lysozyme (5–50 μg ml-1) had been added prior to heating, growth and toxin formation were observed. With lysozyme added at 50 μg ml-1, growth was first observed after 68 d at 8°C, 31 d at 12°C, 24 d at 16°C, and 9 d at 25°C. Thus, in these circumstances, a heat treatment equivalent to 19·8 min at 90°C was not sufficient, on its own, to give a 6–D inactivation. A combination of the heat treatment, maintenance at less than 12°C, and a shelf-life not more than 4 weeks reduced the risk of growth of non-proteolytic Cl. botulinum by a factor of 106.  相似文献   

14.
It has been reported that non-proteolytic strains of Clostridium botulinum will grow at 3.3 degrees C, and they are therefore of concern in relation to certain chilled foods. The effects of combinations of inhibitory factors may be used to reduce the risk of growth of these bacteria in foods. The combined effect of pH values between 4.8 and 7.0, temperatures between 6 degrees and 30 degrees C, and sorbic acid concentrations up to 2270 mg/l on the probability of growth from a single spore of non-proteolytic, type B strains in a culture medium has been determined. A mathematical model has been developed that enables the effect of varying combinations of these factors on the probability of growth of non-proteolytic, type B Cl. botulinum to be predicted.  相似文献   

15.
Low resolution pyrolysis gas-liquid chromatography could differentiate the following groups of Clostridium botulinum and related organisms: (1) Cl. botulinum type A. proteolytic types B and F and Cl. sporogenes ; (2) Cl. botulinum types C and D. and (3) Cl. botulinum type E and non-proteolytic types B and F. Toxin types A and B could be distinguished from type E and from type F.  相似文献   

16.
Radiation survival data of proteolytic (Walls 8G-F) and non-proteolytic (Eklund 83F) type F spores of Clostridium botulinum were compared with dose-response data of radiation-resistant type A (33A) and B (40B) spores. Strain Eklund 83F was as resistant as strain 33A, whereas strain Walls 8G-F was the most sensitive of the four strains tested. The methods suggested for computing both an initial shoulder and a D value for the dose-survival curves yielded results comparable to the graphic techniques used to obtain these two parameters.  相似文献   

17.
Radiation survival data of proteolytic (Walls 8G-F) and non-proteolytic (Eklund 83F) type F spores of Clostridium botulinum were compared with dose-response data of radiation-resistant type A (33A) and B (40B) spores. Strain Eklund 83F was as resistant as strain 33A, whereas strain Walls 8G-F was the most sensitive of the four strains tested. The methods suggested for computing both an initial shoulder and a D value for the dose-survival curves yielded results comparable to the graphic techniques used to obtain these two parameters.  相似文献   

18.
Growth and toxin production by proteolytic and non-proteolytic strains of Clostridium botulinum have been followed in 28 cooked puréed vegetables prepared under strict anaerobic conditions and incubated at 30°C for up to 60 d. Toxin production was confirmed in 25 of the cooked vegetables inoculated with a suspension of spores of proteolytic strains of types A and B, and in 13 inoculated with a suspension of spores of non-proteolytic strains of types B, E and F. For both proteolytic and non-proteolytic strains, a trend was identified correlating growth and toxin production with the pH of the cooked puréed vegetables.  相似文献   

19.
The mechanism by which potassium sorbate inhibits Bacillus cereus T and Clostridium botulinum 62A spore germination was investigated. Spores of B. cereus T were germinated at 35 degrees C in 0.08 M sodium-potassium phosphate buffers (pH 5.7 and 6.7) containing various germinants (L-alanine, L-alpha-NH2-n-butyric acid, and inosine) and potassium sorbate. Spores of C. botulinum 62A were germinated in the same buffers but with 10 mM L-lactic acid, 20 mM sodium bicarbonate, L-alanine or L-cysteine, and potassium sorbate. Spore germination was monitored by optical density measurements at 600 nm and phase-contrast microscopy. Inhibition of B. cereus T spore germination was observed when 3,900 micrograms of potassium sorbate per ml was added at various time intervals during the first 2 min of spore exposure to the pH 5.7 germination medium. C. botulinum 62A spore germination was inhibited when 5,200 micrograms of potassium sorbate per ml was added during the first 30 min of spore exposure to the pH 5.7 medium. Potassium sorbate inhibition of germination was reversible for both B. cereus T and C. botulinum 62A spores. Potassium sorbate inhibition of B. cereus T spore germination induced by L-alanine and L-alpha-NH2-n-butyric acid was shown to be competitive in nature. Potassium sorbate was also a competitive inhibitor of L-alanine- and L-cysteine-induced germination of C. botulinum 62A spores.  相似文献   

20.
Yeast extract agar, pork infusion agar, and modifications of these media were used to recover heated Clostridium botulinum spores. The D- and z-values were determined. Two type A strains and one type B strain of C. botulinum were studied. In all cases the D-values were largest when the spores were recovered in yeast extract agar, compared to the D-values for spores recovered in pork infusion agar. The z-values for strains 62A and A16037 were largest when the spores were recovered in pork infusion agar. The addition of sodium bicarbonate and sodium thioglycolate to pork infusion agar resulted in D-values for C. botulinum 62A spores similar to those for the same spores recovered in yeast extract agar. The results suggest that sodium bicarbonate and sodium thioglycolate should be added to recovery media for heated C. botulinum spores to obtain maximum plate counts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号