共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
A chimeric gene consisting of the 5 flanking sequences of a rice glutelin gene (Gt3) linked to the chloramphenicol acetyltransferase (CAT) coding segment was introduced into tobacco via Agrobacterium tumefaciens-mediated transformation. CAT enzyme activity could be detected in extracts from seeds as early as 8 days after flowering and obtained a maximum level at 16 days after flowering, the onset of overall protein accumulation. Significant expression of CAT activity in non-seed tissues occurred in some, but not all plants, suggesting possible chromosome position effects on non-seed tissue expression. A positive correlation was observed between expression levels in seeds and gene copy numbers.Author for correspondence 相似文献
3.
4.
A DNA clone containing the 5' part of the adenylate kinase (AK) gene was isolated from a rice genomic library, and its nucleotide sequence was determined. This clone consists of 5' upstream, five exons and four introns of the AK gene. All of the determined donor and receptor sites contained 'GT' and 'AG' consensus splice sequences. Transgenic tobacco plants harbouring a chimeric gene consisting of the 5' upstream sequence of the AK gene fused with the gene encoding phosphinothricin acetyl transferase were generated. They showed tolerance to glufosinate to a level four times higher than its commercial dose. 相似文献
5.
Activity of a maize ubiquitin promoter in transgenic rice 总被引:27,自引:0,他引:27
Maria-Jesús Cornejo Diane Luth Kathleen M. Blankenship Olin D. Anderson Ann E. Blechl 《Plant molecular biology》1993,23(3):567-581
We have used the maize ubiquitin 1 promoter, first exon and first intron (UBI) for rice (Oryza sativa L. cv. Taipei 309) transformation experiments and studied its expression in transgenic calli and plants. UBI directed significantly higher levels of transient gene expression than other promoter/intron combinations used for rice transformation. We exploited these high levels of expression to identify stable transformants obtained from callus-derived protoplasts co-transfected with two chimeric genes. The genes consisted of UBI fused to the coding regions of the uidA and bar marker genes (UBI:GUS and UBI:BAR). UBI:GUS expression increased in response to thermal stress in both transfected protoplasts and transgenic rice calli. Histochemical localization of GUS activity revealed that UBI was most active in rapidly dividing cells. This promoter is expressed in many, but not all, rice tissues and undergoes important changes in activity during the development of transgenic rice plants. 相似文献
6.
Sequences corresponding to 855 bp of 5 promoter region and the transit peptide from GK.1, a genomic clone encoding a 22 kDa -kafirin seed protein from sorghum, were translationally fused to a cloned -glucuronidase (GUS) coding sequence from uidA and transferred to tobacco via Agrobacterium tumefaciens-mediated transformation. No GUS expression was detectable at any stage of growth in stems or leaves of these plants. However, GUS expression was detected in both embryo and endosperm tissues of resulting tobacco seeds 10–15 days after flowering. Dissected tissues indicate endosperm expression was localized within the bulk endosperm and not within the parenchyma cell layer underlying the integument. These studies also demonstrate that within dissected tobacco embryos, expression from the kafirin promoter was restricted to the mesocotyl region. 相似文献
7.
8.
9.
A. J. M. Matzke E. M. Stöger J. P. Schernthaner M. A. Matzke 《Plant molecular biology》1990,14(3):323-332
10.
11.
12.
13.
Qun Zhu Peter W. Doerner Christopher J. Lamb 《The Plant journal : for cell and molecular biology》1993,3(2):203-212
A 1.5 kb promoter fragment from the rice (Oryza sativa L.) RCH10 gene, which encodes a basic endochitinase inducible by wounding and fungal elicitor, was translationally fused to the β-glucuronidase (GUS) reporter gene and transferred to tobacco by Agrobacterium tumefaciens-mediated leaf disc transformation. Wounding of leaves induced GUS activity from low basal levels, and addition of fungal elicitor to the wounded tissue caused a further marked activation of the gene fusion. During vegetative development high levels of GUS activity were observed in roots and moderate levels in stems. Histochemical analysis indicated that the promoter was active in vascular and epidermal tissue, and the root apical tip. In flowers, high levels of GUS activity were observed in stigmas, ovaries and pollen-containing anthers, but only low levels in sepals and petals. The promoter 5′-deleted to ?160 exhibited the same patterns of expression in floral organs, and was also strongly induced by wounding and elicitor, but GUS activity was markedly reduced in vegetative organs. More detailed 5′ deletions showed that a cis-element required for floral expression was located between ?160 and ?74, and a cis element sufficient for stress induction was located 3′ of ?74. This proximal region 3′ of ?74 was also sufficient for expression in transfected rice protoplasts derived from suspension cultured cells. These data indicate that the complex developmental and environmental regulation of RCH10 promoter activity involves several distinct cis-elements for vegetative expression, floral expression and stress induction, and that signal pathways for wound and elicitor induction are conserved between monocotyledonous and dicotyledonous plants. 相似文献
14.
15.
Plant non-specific lipid transfer proteins (nsLTPs) are encoded by a multigene family and support physiological functions,
which remain unclear. We adapted an efficient ligation-mediated polymerase chain reaction (LM-PCR) procedure that enabled
isolation of 22 novel Triticum
aestivum
nsLtp (TaLtp) genes encoding types 1 and 2 nsLTPs. A phylogenetic tree clustered the wheat nsLTPs into ten subfamilies comprising 1–7
members. We also studied the activity of four type 1 and two type 2 TaLtp gene promoters in transgenic rice using the β-Glucuronidase reporter gene. The activities of the six promoters displayed
both overlapping and distinct features in rice. In vegetative organs, these promoters were active in leaves and root vascular
tissues while no β-Glucuronidase (GUS) activity was detected in stems. In flowers, the GUS activity driven by the TaLtp7.2a, TaLtp9.1a, TaLtp9.2d, and TaLtp9.3e gene promoters was associated with vascular tissues in glumes and in the extremities of anther filaments whereas only the
TaLtp9.4a gene promoter was active in anther epidermal cells. In developing grains, GUS activity and GUS immunolocalization data evidenced
complex patterns of activity of the TaLtp7.1a, TaLtp9.2d, and TaLtp9.4a gene promoters in embryo scutellum and in the grain epicarp cell layer. In contrast, GUS activity driven by TaLtp7.2a, TaLtp9.1a, and TaLtp9.3e promoters was restricted to the vascular bundle of the embryo scutellum. This diversity of TaLtp gene promoter activity supports the hypothesis that the encoded TaLTPs possess distinct functions in planta. 相似文献
16.
Summary To understand the properties of the cauliflower mosaic virus (CaMV) 35S promoter in a monocotyledonous plant, rice (Oryza sativa L.), a transgenic plant and its progeny expressing the CaMV35S-GUS gene were examined by histochemical and fluorometric assays. The histochemical study showed that -glucuronidase (GUS) activity was primarily localized at or around the vascular tissue in leaf, root and flower organs. The activity was also detected in the embryo and endosperm of dormant and germinating seeds. The fluorometric assay of various organs showed that GUS activity in transgenic rice plants was comparable to the reported GUS activity in transgenic tobacco plants expressing the CaMV35S-GUS gene. The results indicate that the level of expression of the CaMV 35S promoter in rice is similar to that in tobacco, a dicotyledonous plant, suggesting that it is useful for expression of a variety of foreign genes in rice plants. 相似文献
17.
Ozone- and ethylene-induced regulation of a grapevine resveratrol synthase promoter in transgenic tobacco 总被引:1,自引:0,他引:1
Bernhard Grimmig Roland Schubert Regina Fischer Rüdiger Hain Peter H. Schreier Christian Betz Christian Langebartels Dieter Ernst Heinrich Sandermann 《Acta Physiologiae Plantarum》1997,19(4):467-474
Stilbene synthases (STSs) are enzymes that play a critical role in the biosynthesis of stilbene, phytoalexins in a small number
of unrelated plant species, and are induced by various biotic and abiotic stressors like pathogen attack, UV-irradiation or
ozone exposure. To investigate the molecular basis for ozone-induced plant stress responses, we have examined the promoter
of the grapevine resveratrol synthase (Vst1). In this report we summarize the influence of ozone on gene regulation. In transgenic tobacco a chimeric gene construct,
containing the Vst1 promoter combined with the β-glucuronidase (GUS) reporter gene, is rapidly induced by ozone (0.1 μl·l−1, 12 h). The same construct is also strongly induced by ethylene (20 μl·l−1, 12 h). Promoter deletion analysis of the 5′ flanking sequence identified a positive regulatory element between −430 bp and
−280 bp. This region contains ethylene-responsive enhancer elements, as well as an elicitor-responsive sequence in inverse
orientation. 相似文献
18.
Wu C Washida H Onodera Y Harada K Takaiwa F 《The Plant journal : for cell and molecular biology》2000,23(3):415-421
The -197 bp promoter of the rice seed storage protein gene, GluB-1, is capable of conferring endosperm-specific gene expression. This proximal 5' flanking region contains four motifs, GCN4, AACA, ACGT and Prolamin-box, which are conserved in many seed storage protein genes. We previously showed that multiple copies of GCN4 conferred endosperm expression pattern when fused to the -46 core promoter of CaMV 35S. In this paper we demonstrate, using a similar approach, that tandem repeated copies of any of the other three motifs are unable to direct expression in seeds as well as other tissues of transgenic rice plants. Mutational analysis of individual motifs in the -197 bp promoter resulted in remarkable reductions in promoter activity. These results indicate that the GCN4 motif acts as an essential element determining endosperm-specific expression and that the AACA, ACGT and Prolamin-box are involved in quantitative regulation of the GluB-1 gene. A set of gain-of-function experiments using transgenic rice showed that either the Prolamin-box or AACA, although often coupled with GCN4 in many genes, is insufficient to form a functional promoter unit with GCN4, whereas a combination of GCN4, AACA and ACGT motifs was found sufficient to confer a detectable level of endosperm expression. Taken together, our results provide direct insight into the importance of combinatorial interplay between cis-elements in regulating the expression of seed storage protein genes. 相似文献
19.
Su-Hyun Park Jin Seo Jeong Eun Hyang Han Mark C. F. R. Redillas Seung Woon Bang Harin Jung Youn Shic Kim Ju-Kon Kim 《Plant biotechnology reports》2013,7(3):339-344
Gene promoter(s) specialized in root tissues is an important component for crop biotechnology. In our current study, we report results of promoter analysis of the HPX1, a gene expressed predominantly in roots. The HPX1 promoter regions were predicted, linked to the gfp reporter gene, and transformed into rice. Promoter activities were analyzed in various organs and tissues of six independent transgenic HPX1:gfp plants using the fluorescent microscopy and q-RT-PCR methods. GFP fluorescence levels were high in root elongation regions but not in root apex and cap of the HPX1:gfp plants. Very low levels of GFP fluorescence were observed in anthers and leaves. Levels of promoter activities were 16- to 190-fold higher in roots than in leaves of the HPX1:gfp plants. The HPX1 promoter directs high levels of gene expression in root tissues producing GFP levels up to 0.39 % of the total soluble protein. Thus, the HPX1 promoter is predominantly active in the root elongation region during the vegetative stage of growth. 相似文献
20.
Calcineurin is a Ca2+- and calmodulin-dependent serine/threonine phosphatase and has multiple functions in animal cells including regulating ionic homeostasis. We generated transgenic rice plants that not only expressed a truncated form of the catalytic subunit of mouse calcineurin, but also were able to grow and fertilize normally in the field. Notably, the expression of the mouse calcineurin gene in rice resulted in its higher salt stress tolerance than the non-transgenic rice. Physiological studies have indicated that the root growth of transgenic plants was less inhibited than the shoot growth, and that less Na+ was accumulated in the roots of transgenic plants after a prolonged period of salt stress. These findings imply that the heterologous calcineurin plays a significant role in maintaining ionic homeostasis and the integrity of plant roots when exposed to salt. In addition, the calcineurin gene expression in the stems of transgenic plants correlated with the increased expression of the Rab16A gene that encodes a group 2-type late-embryogenesis-abundant (LEA) protein. Altogether our findings provide the first genetic and physiological evidence that expression of the mouse calcineurin protein functionally improves the salt stress tolerance of rice partly by limiting Na+ accumulation in the roots. 相似文献