首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The 2.1 A resolution crystal structure of flavin reductase P with the inhibitor nicotinamide adenine dinucleotide (NAD) bound in the active site has been determined. NAD adopts a novel, folded conformation in which the nicotinamide and adenine rings stack in parallel with an inter-ring distance of 3.6 A. The pyrophosphate binds next to the flavin cofactor isoalloxazine, while the stacked nicotinamide/adenine moiety faces away from the flavin. The observed NAD conformation is quite different from the extended conformations observed in other enzyme/NAD(P) structures; however, it resembles the conformation proposed for NAD in solution. The flavin reductase P/NAD structure provides new information about the conformational diversity of NAD, which is important for understanding catalysis. This structure offers the first crystallographic evidence of a folded NAD with ring stacking, and it is the first enzyme structure containing an FMN cofactor interacting with NAD(P). Analysis of the structure suggests a possible dynamic mechanism underlying NADPH substrate specificity and product release that involves unfolding and folding of NADP(H).  相似文献   

2.
Russell TR  Demeler B  Tu SC 《Biochemistry》2004,43(6):1580-1590
The homodimeric NADH:flavin oxidoreductase from Aminobacter aminovorans is an NADH-specific flavin reductase herein designated FRD(Aa). FRD(Aa) was characterized with respect to purification yields, thermal stability, isoelectric point, molar absorption coefficient, and effects of phosphate buffer strength and pH on activity. Evidence from this work favors the classification of FRD(Aa) as a flavin cofactor-utilizing class I flavin reductase. The isolated native FRD(Aa) contained about 0.5 bound riboflavin-5'-phosphate (FMN) per enzyme monomer, but one bound flavin cofactor per monomer was obtainable in the presence of excess FMN or riboflavin. In addition, FRD(Aa) holoenzyme also utilized FMN, riboflavin, or FAD as a substrate. Steady-state kinetic results of substrate titrations, dead-end inhibition by AMP and lumichrome, and product inhibition by NAD(+) indicated an ordered sequential mechanism with NADH as the first binding substrate and reduced FMN as the first leaving product. This is contrary to the ping-pong mechanism shown by other class I flavin reductases. The FMN bound to the native FRD(Aa) can be fully reduced by NADH and subsequently reoxidized by oxygen. No NADH binding was detected using 90 microM FRD(Aa) apoenzyme and 300 microM NADH. All results favor the interpretation that the bound FMN was a cofactor rather than a substrate. It is highly unusual that a flavin reductase using a sequential mechanism would require a flavin cofactor to facilitate redox exchange between NADH and a flavin substrate. FRD(Aa) exhibited a monomer-dimer equilibrium with a K(d) of 2.7 microM. Similarities and differences between FRD(Aa) and certain flavin reductases are discussed.  相似文献   

3.
A novel phenol hydroxylase (PheA) that catalyzes the first step in the degradation of phenol in Bacillus thermoglucosidasius A7 is described. The two-protein system, encoded by the pheA1 and pheA2 genes, consists of an oxygenase (PheA1) and a flavin reductase (PheA2) and is optimally active at 55 degrees C. PheA1 and PheA2 were separately expressed in recombinant Escherichia coli BL21(DE3) pLysS cells and purified to apparent homogeneity. The pheA1 gene codes for a protein of 504 amino acids with a predicted mass of 57.2 kDa. PheA1 exists as a homodimer in solution and has no enzyme activity on its own. PheA1 catalyzes the efficient ortho-hydroxylation of phenol to catechol when supplemented with PheA2 and FAD/NADH. The hydroxylase activity is strictly FAD-dependent, and neither FMN nor riboflavin can replace FAD in this reaction. The pheA2 gene codes for a protein of 161 amino acids with a predicted mass of 17.7 kDa. PheA2 is also a homodimer, with each subunit containing a highly fluorescent FAD prosthetic group. PheA2 catalyzes the NADH-dependent reduction of free flavins according to a Ping Pong Bi Bi mechanism. PheA2 is structurally related to ferric reductase, an NAD(P)H-dependent reductase from the hyperthermophilic Archaea Archaeoglobus fulgidus that catalyzes the flavin-mediated reduction of iron complexes. However, PheA2 displays no ferric reductase activity and is the first member of a newly recognized family of short-chain flavin reductases that use FAD both as a substrate and as a prosthetic group.  相似文献   

4.
Kim SH  Hisano T  Iwasaki W  Ebihara A  Miki K 《Proteins》2008,70(3):718-730
The two-component enzyme, 4-hydroxyphenylacetate 3-monooxygenase, catalyzes the conversion of 4-hydroxyphenylacetate to 3,4-dihydroxyphenylacetate. In the overall reaction, the oxygenase component (HpaB) introduces a hydroxyl group into the benzene ring of 4-hydroxyphenylacetate using molecular oxygen and reduced flavin, while the reductase component (HpaC) provides free reduced flavins for HpaB. The crystal structures of HpaC from Thermus thermophilus HB8 in the ligand-free form, the FAD-containing form, and the ternary complex with FAD and NAD(+) were determined. In the ligand-free form, two large grooves are present at the dimer interface, and are occupied by water molecules. A structural analysis of HpaC containing FAD revealed that FAD has a low occupancy, indicating that it is not tightly bound to HpaC. This was further confirmed in flavin dissociation experiments, showing that FAD can be released from HpaC. The structure of the ternary complex revealed that FAD and NAD(+) are bound in the groove in the extended and folded conformation, respectively. The nicotinamide ring of NAD(+) is sandwiched between the adenine ring of NAD(+) and the isoalloxazine ring of FAD. The distance between N5 of the isoalloxazine ring and C4 of the nicotinamide ring is about 3.3 A, sufficient to permit hydride transfer. The structures of these three states are essentially identical, however, the side chains of several residues show small conformational changes, indicating an induced fit upon binding of NADH. Inactivity with respect to NADPH can be explained as instability of the binding of NADPH with the negatively charged 2'-phosphate group buried inside the complex, as well as a possible repulsive effect by the dipole of helix alpha1. A comparison of the binding mode of FAD with that in PheA2 from Bacillus thermoglucosidasius A7, which contains FAD as a prosthetic group, reveals remarkable conformational differences in a less conserved loop region (Gly83-Gly94) involved in the binding of the AMP moiety of FAD. These data suggest that variations in the affinities for FAD in the reductases of the two-component flavin-diffusible monooxygenase family may be attributed to difference in the interaction between the AMP moiety of FAD and the less conserved loop region which possibly shows structural divergence.  相似文献   

5.
Escherichia coli general NAD(P)H:flavin oxidoreductase (Fre) does not have a bound flavin cofactor; its flavin substrates (riboflavin, FMN, and FAD) are believed to bind to it mainly through the isoalloxazine ring. This interaction was real for riboflavin and FMN, but not for FAD, which bound to Fre much tighter than FMN or riboflavin. Computer simulations of Fre.FAD and Fre.FMN complexes showed that FAD adopted an unusual bent conformation, allowing its ribityl side chain and ADP moiety to form an additional 3.28 H-bonds on average with amino acid residues located in the loop connecting Fbeta5 and Falpha1 of the flavin-binding domain and at the proposed NAD(P)H-binding site. Experimental data supported the overlapping binding sites of FAD and NAD(P)H. AMP, a known competitive inhibitor with respect to NAD(P)H, decreased the affinity of Fre for FAD. FAD behaved as a mixed-type inhibitor with respect to NADPH. The overlapped binding offers a plausible explanation for the large K(m) values of Fre for NADH and NADPH when FAD is the electron acceptor. Although Fre reduces FMN faster than it reduces FAD, it preferentially reduces FAD when both FMN and FAD are present. Our data suggest that FAD is a preferred substrate and an inhibitor, suppressing the activities of Fre at low NADH concentrations.  相似文献   

6.
Free reduced flavins are involved in a variety of biological functions. They are generated from NAD(P)H by flavin reductase via co-factor flavin bound to the enzyme. Although recent findings on the structure and function of flavin reductase provide new information about co-factor FAD and substrate NAD, there have been no reports on the substrate flavin binding site. Here we report the structure of TTHA0420 from Thermus thermophilus HB8, which belongs to flavin reductase, and describe the dual binding mode of the substrate and co-factor flavins. We also report that TTHA0420 has not only the flavin reductase motif GDH but also a specific motif YGG in C terminus as well as Phe-41 and Arg-11, which are conserved in its subclass. From the structure, these motifs are important for the substrate flavin binding. On the contrary, the C terminus is stacked on the NADH binding site, apparently to block NADH binding to the active site. To identify the function of the C-terminal region, we designed and expressed a mutant TTHA0420 enzyme in which the C-terminal five residues were deleted (TTHA0420-ΔC5). Notably, the activity of TTHA0420-ΔC5 was about 10 times higher than that of the wild-type enzyme at 20-40 °C. Our findings suggest that the C-terminal region of TTHA0420 may regulate the alternative binding of NADH and substrate flavin to the enzyme.  相似文献   

7.
Okai M  Kudo N  Lee WC  Kamo M  Nagata K  Tanokura M 《Biochemistry》2006,45(16):5103-5110
4-Hydroxyphenylacetate (4-HPA) is oxidized as an energy source by two component enzymes, the large component (HpaB) and the small component (HpaC). HpaB is a 4-HPA monooxygenase that utilizes FADH(2) supplied by a flavin reductase HpaC. We determined the crystal structure of HpaC (ST0723) from the aerobic thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7 in its three states [NAD(P)(+)-free, NAD(+)-bound, and NADP(+)-bound]. HpaC exists as a homodimer, and each monomer was found to contain an FMN. HpaC preferred FMN to FAD because there was not enough space to accommodate the AMP moiety of FAD in its flavin-binding site. The most striking difference between the NAD(P)(+)-free and the NAD(+)/NADP(+)-bound structures was observed in the N-terminal helix. The N-terminal helices in the NAD(+)/NADP(+)-bound structures rotated ca. 20 degrees relative to the NAD(P)(+)-free structure. The bound NAD(+) has a compact folded conformation with nearly parallel stacking rings of nicotinamide and adenine. The nicotinamide of NAD(+) stacked the isoalloxazine ring of FMN so that NADH could directly transfer hydride. The bound NADP(+) also had a compact conformation but was bound in a reverse direction, which was not suitable for hydride transfer.  相似文献   

8.
One of the major processes for aerobic biodegradation of aromatic compounds is initiated by Rieske dioxygenases. Benzoate dioxygenase contains a reductase component, BenC, that is responsible for the two-electron transfer from NADH via FAD and an iron-sulfur cluster to the terminal oxygenase component. Here, we present the structure of BenC from Acinetobacter sp. strain ADP1 at 1.5 A resolution. BenC contains three domains, each binding a redox cofactor: iron-sulfur, FAD and NADH, respectively. The [2Fe-2S] domain is similar to that of plant ferredoxins, and the FAD and NADH domains are similar to members of the ferredoxin:NADPH reductase superfamily. In phthalate dioxygenase reductase, the only other Rieske dioxygenase reductase for which a crystal structure is available, the ferredoxin-like and flavin binding domains are sequentially reversed compared to BenC. The BenC structure shows significant differences in the location of the ferredoxin domain relative to the other domains, compared to phthalate dioxygenase reductase and other known systems containing these three domains. In BenC, the ferredoxin domain interacts with both the flavin and NAD(P)H domains. The iron-sulfur center and the flavin are about 9 A apart, which allows a fast electron transfer. The BenC structure is the first determined for a reductase from the class IB Rieske dioxygenases, whose reductases transfer electrons directly to their oxygenase components. Based on sequence similarities, a very similar structure was modeled for the class III naphthalene dioxygenase reductase, which transfers electrons to an intermediary ferredoxin, rather than the oxygenase component.  相似文献   

9.
dTDP-6-deoxy-L-lyxo-4-hexulose reductase (RmlD) catalyzes the final step in the conversion of dTDP-D-glucose to dTDP-L-rhamnose in an NAD(P)H- and Mg2+-dependent reaction. L-rhamnose biosynthesis is an antibacterial target. The structure of RmlD from Salmonella enterica serovar Typhimurium has been determined, and complexes with NADH, NADPH, and dTDP-L-rhamnose are reported. RmlD differs from other short chain dehydrogenases in that it has a novel dimer interface that contains Mg2+. Enzyme catalysis involves hydride transfer from the nicotinamide ring of the cofactor to the C4'-carbonyl group of the substrate. The substrate is activated through protonation by a conserved tyrosine. NAD(P)H is bound in a solvent-exposed cleft, allowing facile replacement. We suggest a novel role for the conserved serine/threonine residue of the catalytic triad of SDR enzymes.  相似文献   

10.
Pejchal R  Sargeant R  Ludwig ML 《Biochemistry》2005,44(34):11447-11457
Methylenetetrahydrofolate reductases (MTHFRs; EC 1.7.99.5) catalyze the NAD(P)H-dependent reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate) using flavin adenine dinucleotide (FAD) as a cofactor. The initial X-ray structure of Escherichia coli MTHFR revealed that this 33-kDa polypeptide is a (betaalpha)(8) barrel that aggregates to form an unusual tetramer with only 2-fold symmetry. Structures of reduced enzyme complexed with NADH and of oxidized Glu28Gln enzyme complexed with CH(3)-H(4)folate have now been determined at resolutions of 1.95 and 1.85 A, respectively. The NADH complex reveals a rare mode of dinucleotide binding; NADH adopts a hairpin conformation and is sandwiched between a conserved phenylalanine, Phe223, and the isoalloxazine ring of FAD. The nicotinamide of the bound pyridine nucleotide is stacked against the si face of the flavin ring with C4 adjoining the N5 of FAD, implying that this structure models a complex that is competent for hydride transfer. In the complex with CH(3)-H(4)folate, the pterin ring is also stacked against FAD in an orientation that is favorable for hydride transfer. Thus, the binding sites for the two substrates overlap, as expected for many enzymes that catalyze ping-pong reactions, and several invariant residues interact with both folate and pyridine nucleotide substrates. Comparisons of liganded and substrate-free structures reveal multiple conformations for the loops beta2-alpha2 (L2), beta3-alpha3 (L3), and beta4-alpha4 (L4) and suggest that motions of these loops facilitate the ping-pong reaction. In particular, the L4 loop adopts a "closed" conformation that allows Asp120 to hydrogen bond to the pterin ring in the folate complex but must move to an "open" conformation to allow NADH to bind.  相似文献   

11.
Maize ferredoxin-NADP(+) reductase (FNR) consists of flavin adenine dinucleotide (FAD) and NADP(+) binding domains with a FAD molecule bound noncovalently in the cleft between these domains. The structural changes of FNR induced by dissociation of FAD have been characterized by a combination of optical and biochemical methods. The CD spectrum of the FAD-depleted FNR (apo-FNR) suggested that removal of FAD from holo-FNR produced an intermediate conformational state with partially disrupted secondary and tertiary structures. Small angle x-ray scattering indicated that apo-FNR assumes a conformation that is less globular in comparison with holo-FNR but is not completely chain-like. Interestingly, the replacement of tyrosine 95 responsible for FAD binding with alanine resulted in a molecular form similar to apo-protein of the wild-type enzyme. Both apo- and Y95A-FNR species bound to Cibacron Blue affinity resin, indicating the presence of a native-like conformation for the NADP(+) binding domain. On the other hand, no evidence was found for the existence of folded conformations in the FAD binding domains of these proteins. These results suggested that FAD-depleted FNR assumes a partially folded structure with a residual NADP(+) binding domain but a disordered FAD binding domain.  相似文献   

12.
Phenol hydroxylase that catalyzes the conversion of phenol to catechol in Rhodococcus erythropolis UPV-1 was identified as a two-component flavin-dependent monooxygenase. The two proteins are encoded by the genes pheA1 and pheA2, located very closely in the genome. The sequenced pheA1 gene was composed of 1,629 bp encoding a protein of 542 amino acids, whereas the pheA2 gene consisted of 570 bp encoding a protein of 189 amino acids. The deduced amino acid sequences of both genes showed high homology with several two-component aromatic hydroxylases. The genes were cloned separately in cells of Escherichia coli M15 as hexahistidine-tagged proteins, and the recombinant proteins His6PheA1 and His6PheA2 were purified and its catalytic activity characterized. His6PheA1 exists as a homotetramer of four identical subunits of 62 kDa that has no phenol hydroxylase activity on its own. His6PheA2 is a homodimeric flavin reductase, consisting of two identical subunits of 22 kDa, that uses NAD(P)H in order to reduce flavin adenine dinucleotide (FAD), according to a random sequential kinetic mechanism. The reductase activity was strongly inhibited by thiol-blocking reagents. The hydroxylation of phenol in vitro requires the presence of both His6PheA1 and His6PheA2 components, in addition to NADH and FAD, but the physical interaction between the proteins is not necessary for the reaction.  相似文献   

13.
The conserved sequence motif "RxY(T)(S)xx(S)(N)" coordinates flavin binding in NADH:cytochrome b(5) reductase (cb(5)r) and other members of the flavin transhydrogenase superfamily of oxidoreductases. To investigate the roles of Y93, the third and only aromatic residue of the "RxY(T)(S)xx(S)(N)" motif, that stacks against the si-face of the flavin isoalloxazine ring, and P92, the second residue in the motif that is also in close proximity to the FAD moiety, a series of rat cb(5)r variants were produced with substitutions at either P92 or Y93, respectively. The proline mutants P92A, G, and S together with the tyrosine mutants Y93A, D, F, H, S, and W were recombinantly expressed in E. coli and purified to homogeneity. Each mutant protein was found to bind FAD in a 1:1 cofactor:protein stoichiometry while UV CD spectra suggested similar secondary structure organization among all nine variants. The tyrosine variants Y93A, D, F, H, and S exhibited varying degrees of blue-shift in the flavin visible absorption maxima while visible CD spectra of the Y93A, D, H, S, and W mutants exhibited similar blue-shifted maxima together with changes in absorption intensity. Intrinsic flavin fluorescence was quenched in the wild type, P92S and A, and Y93H and W mutants while Y93A, D, F, and S mutants exhibited increased fluorescence when compared to free FAD. The tyrosine variants Y93A, D, F, and S also exhibited greater thermolability of FAD binding. The specificity constant (k(cat)/K(m)(NADH)) for NADH:FR activity decreased in the order wild type > P92S > P92A > P92G > Y93F > Y93S > Y93A > Y93D > Y93H > Y93W with the Y93W variant retaining only 0.5% of wild-type efficiency. Both K(s)(H4NAD) and K(s)(NAD+) values suggested that Y93A, F, and W mutants had compromised NADH and NAD(+) binding. Thermodynamic measurements of the midpoint potential (E degrees ', n = 2) of the FAD/FADH(2) redox couple revealed that the potentials of the Y93A and S variants were approximately 30 mV more positive than that of wild-type cb(5)r (E degrees ' = -268 mV) while that of Y93H was approximately 30 mV more negative. These results indicate that neither P92 nor Y93 are critical for flavin incorporation in cb(5)r and that an aromatic side chain is not essential at position 93, but they demonstrate that Y93 forms contacts with the FAD that effectively modulate the spectroscopic, catalytic, and thermodynamic properties of the bound cofactor.  相似文献   

14.
Apoenzyme of the major NAD(P)H-utilizing flavin reductase FRG/FRase I from Vibrio fischeri was prepared. The apoenzyme bound one FMN cofactor per enzyme monomer to yield fully active holoenzyme. The FMN cofactor binding resulted in substantial quenching of both the flavin and the protein fluorescence intensities without any significant shifts in the emission peaks. In addition to FMN binding (K(d) 0.5 microM at 23 degrees C), the apoenzyme also bound 2-thioFMN, FAD and riboflavin as a cofactor with K(d) values of 1, 12, and 37 microM, respectively, at 23 degrees C. The 2-thioFMN containing holoenzyme was about 40% active in specific activity as compared to the FMN-containing holoenzyme. The FAD- and riboflavin-reconstituted holoenzymes were also catalytically active but their specific activities were not determined. FRG/FRase I followed a ping-pong kinetic mechanism. It is proposed that the enzyme-bound FMN cofactor shuttles between the oxidized and the reduced form during catalysis. For both the FMN- and 2-thioFMN-containing holoenzymes, 2-thioFMN was about 30% active as compared to FMN as a substrate. FAD and riboflavin were also active substrates. FRG/FRase I was shown by ultracentrifugation at 4 degrees C to undergo a monomer-dimer equilibrium, with K(d) values of 18.0 and 13.4 microM for the apo- and holoenzymes, respectively. All the spectral, ligand equilibrium binding, and kinetic properties described above are most likely associated with the monomeric species of FRG/FRase I. Many aspects of these properties are compared with a structurally and functionally related Vibrio harveyi NADPH-specific flavin reductase FRP.  相似文献   

15.
The binding of pyridine nucleotide to human erythrocyte glutathione reductase, an enzyme of known three-dimensional structure, requires some movement of the side chain of Tyr197. Moreover, this side chain lies very close to the isoalloxazine ring of the FAD cofactor. The analogous residue, Ile184, in the homologous enzyme Escherichia coli lipoamide dehydrogenase has been altered by site-directed mutagenesis to a tyrosine residue (I184Y) [Russell, G. C., Allison, N., Williams, C. H., Jr., & Guest, J.R. (1989) Ann. N.Y. Acad. Sci. 573, 429-431]. Characterization of the altered enzyme shows that the rate of the pyridine nucleotide half-reaction has been markedly reduced and that the spectral properties have been changed to mimic those of glutathione reductase. Therefore, Ile184 is shown to be an important residue in modulating the properties of the flavin in lipoamide dehydrogenase. Turnover in the dihydrolipoamide/NAD+ reaction is decreased by 10-fold and in the NADH/lipoamide reaction by 2-fold in I184Y lipoamide dehydrogenase. The oxidized form of I184Y shows remarkable changes in the fine structure of the visible absorption and circular dichroism spectra and also shows nearly complete quenching of FAD fluorescence. The spectral properties of the altered enzyme are thus similar to those of glutathione reductase and very different from those of wild-type lipoamide dehydrogenase. On the other hand, spectral evidence does not reveal any change in the amount of charge-transfer stabilization at the EH2 level. Stopped-flow data indicate that, in the reduction of I184Y by NADH, the first step, reduction of the flavin, is only slightly slowed but the subsequent two-electron transfer to the disulfide is markedly inhibited.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In the biosynthesis of several anthracyclines, aromatic polyketides produced by many Streptomyces species, the aglycone core is modified by a specific flavin adenine dinucleotide (FAD)- and NAD(P)H-dependent aklavinone-11-hydroxylase. Here, we report the crystal structure of a ternary complex of this enzyme from Streptomyces purpurascens, RdmE, with FAD and the substrate aklavinone. The enzyme is built up of three domains, a FAD-binding domain, a domain involved in substrate binding, and a C-terminal thioredoxin-like domain of unknown function. RdmE exhibits structural similarity to aromatic hydroxylases from the p-hydroxybenzoate hydroxylase family, but unlike most other related enzymes, RdmE is a monomer. The substrate is bound in a hydrophobic pocket in the interior of the enzyme, and access to this pocket is provided through a different route than for the isoalloxazine ring of FAD—the backside of the ligand binding cleft. The architecture of the substrate binding pocket and the observed enzyme-aklavinone interactions provide a structural explanation for the specificity of the enzyme for non-glycosylated substrates with C9-R stereochemistry. The isoalloxazine ring of the flavin cofactor is bound in the “out” conformation but can be modeled in the “in” conformation without invoking large conformational changes of the enzyme. This model places the flavin ring in a position suitable for catalysis, almost perpendicular to the tetracyclic ring system of the substrate and with a distance of the C4a carbon atom of the isoalloxazine ring to the C-11 carbon atom of the substrate of 4.8 Å. The structure suggested that a Tyr224-Arg373 pair might be involved in proton abstraction at the C-6 hydroxyl group, thereby increasing the nucleophilicity of the aromatic ring system and facilitating electrophilic attack by the perhydroxy-flavin intermediate. Replacement of Tyr224 by phenylalanine results in inactive enzyme, whereas mutants at position Arg373 retain catalytic activity close to wild-type level. These data establish an essential role of residue Tyr224 in catalysis, possibly in aligning the substrate in a position suitable for catalysis.  相似文献   

17.
Roma GW  Crowley LJ  Davis CA  Barber MJ 《Biochemistry》2005,44(41):13467-13476
Cytochrome b5 reductase (cb5r), a member of the ferredoxin:NADP+ reductase family of flavoprotein transhydrogenases, catalyzes the NADH-dependent reduction of cytochrome b5. Within this family, a conserved "GxGxxP" sequence motif has been implicated in binding reduced pyridine nucleotides. However, Glycine 179, a conserved residue in cb5r primary structures, precedes this six-residue "180GxGxxP185" motif that has been identified as binding the adenosine moiety of NADH. To investigate the role of G179 in NADH complex formation and NAD(P)H specificity, a series of rat cb5r variants were generated, corresponding to G179A, G179P, G179T, and G179V, recombinantly expressed in Escherichia coli and purified to homogeneity. Each mutant protein was found to incorporate FAD in a 1:1 cofactor/protein stoichiometry and exhibited absorption and CD spectra that were identical to those of wild-type cb5r, indicating both correct protein folding and similar flavin environments, while oxidation-reduction potentials for the FAD/FADH2 couple (n = 2) were also comparable to the wild-type protein (E(o)' = -272 mV). All four mutants showed decreased NADH:ferricyanide reductase activities, with kcat decreasing in the order WT > G179A > G179P > G179T > G179V, with the G179V variant retaining only 1.5% of the wild-type activity. The affinity for NADH also decreased in the order WT > G179A > G179P > G179T > G179V, with the Km(NADH) for G179V 180-fold greater than that of the wild type. Both Ks(H4NAD) and Ks(NAD+) values confirmed that the G179 mutants had both compromised NADH- and NAD+-binding affinities. Determination of the NADH/NADPH specificity constant for the various mutants indicated that G179 also participated in pyridine nucleotide selectivity, with the G179V variant preferring NADPH approximately 8000 times more than wild-type cb5r. These results demonstrated that, while G179 was not critical for either flavin incorporation or maintenance of the appropriate flavin environment in cb5r, G179 was required for both effective NADH/NADPH selectivity and to maintain the correct orientation and position of the conserved cysteine in the proline-rich "CGpppM" motif that is critical for optimum NADH binding and efficient hydride transfer.  相似文献   

18.
NADPH:ferredoxin reductase (AvFPR) is involved in the response to oxidative stress in Azotobacter vinelandii. The crystal structure of AvFPR has been determined at 2.0 A resolution. The polypeptide fold is homologous with six other oxidoreductases whose structures have been solved including Escherichia coli flavodoxin reductase (EcFldR) and spinach, and Anabaena ferredoxin:NADP+ reductases (FNR). AvFPR is overall most homologous to EcFldR. The structure is comprised of a N-terminal six-stranded antiparallel beta-barrel domain, which binds FAD, and a C-terminal five-stranded parallel beta-sheet domain, which binds NADPH/NADP+ and has a classical nucleotide binding fold. The two domains associate to form a deep cleft where the NADPH and FAD binding sites are juxtaposed. The structure displays sequence conserved motifs in the region surrounding the two dinucleotide binding sites, which are characteristic of the homologous enzymes. The folded over conformation of FAD in AvFPR is similar to that in EcFldR due to stacking of Phe255 on the adenine ring of FAD, but it differs from that in the FNR enzymes, which lack a homologous aromatic residue. The structure of AvFPR displays three unique features in the environment of the bound FAD. Two features may affect the rate of reduction of FAD: the absence of an aromatic residue stacked on the isoalloxazine ring in the NADPH binding site; and the interaction of a carbonyl group with N10 of the flavin. Both of these features are due to the substitution of a conserved C-terminal tyrosine residue with alanine (Ala254) in AvFPR. An additional unique feature may affect the interaction of AvFPR with its redox partner ferredoxin I (FdI). This is the extension of the C-terminus by three residues relative to EcFldR and by four residues relative to FNR. The C-terminal residue, Lys258, interacts with the AMP phosphate of FAD. Consequently, both phosphate groups are paired with a basic group due to the simultaneous interaction of the FMN phosphate with Arg51 in a conserved FAD binding motif. The fourth feature, common to homologous oxidoreductases, is a concentration of 10 basic residues on the face of the protein surrounding the active site, in addition to Arg51 and Lys258.  相似文献   

19.
Acyl-CoA oxidase (ACO) catalyzes the first and rate-determining step of the peroxisomal beta-oxidation of fatty acids. The crystal structure of ACO-II, which is one of two forms of rat liver ACO (ACO-I and ACO-II), has been solved and refined to an R-factor of 20.6% at 2.2-A resolution. The enzyme is a homodimer, and the polypeptide chain of the subunit is folded into the N-terminal alpha-domain, beta-domain, and C-terminal alpha-domain. The X-ray analysis showed that the overall folding of ACO-II less C-terminal 221 residues is similar to that of medium-chain acyl-CoA dehydrogenase (MCAD). However, the N-terminal alpha- and beta-domains rotate by 13 with respect to the C-terminal alpha-domain compared with those in MCAD to give a long and large crevice that accommodates the cofactor FAD and the substrate acyl-CoA. FAD is bound to the crevice between the beta- and C-terminal domains with its adenosine diphosphate portion interacting extensively with the other subunit of the molecule. The flavin ring of FAD resides at the active site with its si-face attached to the beta-domain, and is surrounded by active-site residues in a mode similar to that found in MCAD. However, the residues have weak interactions with the flavin ring due to the loss of some of the important hydrogen bonds with the flavin ring found in MCAD. The catalytic residue Glu421 in the C-terminal alpha-domain seems to be too far away from the flavin ring to abstract the alpha-proton of the substrate acyl-CoA, suggesting that the C-terminal domain moves to close the active site upon substrate binding. The pyrimidine moiety of flavin is exposed to the solvent and can readily be attacked by molecular oxygen, while that in MCAD is protected from the solvent. The crevice for binding the fatty acyl chain is 28 A long and 6 A wide, large enough to accommodate the C23 acyl chain.  相似文献   

20.
The NAD(P)H:flavin oxidoreductase from Escherichia coli, named Fre, is a monomer of 26.2 kDa that catalyzes the reduction of free flavins using NADPH or NADH as electron donor. The enzyme does not contain any prosthetic group but accommodates both the reduced pyridine nucleotide and the flavin in a ternary complex prior to oxidoreduction. The specificity of the flavin reductase for the pyridine nucleotide was studied by steady-state kinetics using a variety of NADP analogs. Both the nicotinamide ring and the adenosine part of the substrate molecule have been found to be important for binding to the polypeptide chain. However, in the case of NADPH, the 2'-phosphate group destabilized almost completely the interaction with the adenosine moiety. Moreover, NADPH and NMNH are very good substrates for the flavin reductase, and we have shown that both these molecules bind to the enzyme almost exclusively by the nicotinamide ring. This provides evidence that the flavin reductase exhibits a unique mode for recognition of the reduced pyridine nucleotide. In addition, we have shown that the flavin reductase selectively transfers the pro-R hydrogen from the C-4 position of the nicotinamide ring and is therefore classified as an A-side-specific enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号