首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本研究应用免疫组织化学方法系统地观察了P物质(SP)、亮氨酸脑啡肽(L-ENK)在豚鼠耳蜗的分布以及SP、L-ENK免疫反应阳性神经纤维与Corti's器毛细胞之间的关系,结果表明:SP的免疫反应活性(SP-IR)存在于耳蜗螺旋神经节的部分神经细胞及传入神经纤维中,在Corti's器的毛细胞下方亦可见SP免疫反应阳性纤维;L-ENK的免疫反应活性(ENK-IR)存在于耳蜗的传出神经纤维中。节内螺旋束、内螺旋束、隧道螺旋束、横贯纤维均含有大量的L-ENK免疫反应阳性纤维,Cort's器中的L-ENK免疫反应阳性终末与毛细胞之间具有密切接触,由此提示,SP可能为听觉初级传入神经递质之一;L-ENK作为传出神经递质或调质对听觉传入起调控作用。  相似文献   

2.
H Nawa  D W Sah 《Neuron》1990,4(2):279-287
An intriguing question regarding neuronal development is how neurons choose which neurotransmitter and/or peptide to express among over 40 candidates. We find that heart cell conditioned medium (CM) induces a number of neuropeptides and/or their precursor mRNAs, as well as acetylcholine, in cultured rat sympathetic neurons: substance P, somatostatin, vasoactive intestinal polypeptide, enkephalin derivatives, and cholecystokinin, but not neuropeptide Y. Different patterns of peptide induction were observed for CMs from primary cultures of heart, gut, and skin. Acetylcholine and substance P were induced most effectively by serum-free heart cell CM; enkephalin derivatives were induced most effectively by skin cell CM; and somatostatin and vasoactive intestinal polypeptide were induced equally well by all of the CMs. These observations suggest the possibility that many distinct, diffusible factors can influence the choice of transmitter and/or peptide phenotype in developing neurons.  相似文献   

3.
Rat trigeminal ganglion neurons projecting to the oral mucosa or to tooth pulps have different cell diameters and contain different chemical markers. In the present paper we examine whether trigeminal ganglion neurons sending axons to gingiva or tooth pulps in the lower jaw of the cichlid Tilapia mariae differ in a similar way. Retrograde tracing with fluorescent latex microspheres revealed labelled gingival and pulpal neurons in the caudal part of the trigeminal ganglion. The gingival neurons had a unimodal size distribution (peak 11 μm; range 8–14 μm) and the pulpal neurons exhibited a bimodal size distribution (peaks 12 and 25 μm; range 10–40 μm). Immunohistochemistry revealed a calcitonin gene-related peptide-like immunoreactivity in some 40% of the gingival neurons and a substance P-like immunoreactivity in 30%. Of the small pulpal neurons about 60% exhibited a calcitonin gene-related peptide-like immunoreactivity and 15% showed a substance P-like immunoreactivity. Of the large pulpal neurons some 70% exhibited a calcitonin gene-related peptide-like immunoreactivity. These neurons did not show a substance P-like immunoreactivity. In some animals a few trigeminal ganglion neurons showed a neuropeptide Y- or a vasoactive intestinal polypeptide-like immunoreactivity. Perikarya with a tyrosine hydroxylase- or a choline acetyl transferase-like immunoreactivity were not observed. We conclude that gingiva and tooth pulps in the lower jaw of T. mariae are innervated by trigeminal ganglion neurons, the cell diameters and neuropeptide contents of which differ in a pattern similar to that in the rat. Hence, this seems to represent a conserved evolutionary pattern.  相似文献   

4.
J Davies  A Dray 《Life sciences》1980,27(22):2037-2042
The effects of substance P and an enkephalin analogue administered by electrophoresis into the substantia gelatinosa have been examined on the synaptic responses of dorsal horn neurons evoked by peripheral stimulation. Extracellular neuronal firing was studied in cats under pentobarbitone anesthesia. The enkephalin produced naloxone-reversible depression of responses to noxious heat stimulation without affecting responses to non-noxious stimuli. Substance P caused a selective enhancement or depression of noxious responses. It was tentatively concluded that substance P may modify the release of a sensory transmitter and produce direct post synaptic changes in membrane excitability.  相似文献   

5.
Responses to substance P application were studied with intracellular recording techniques in in vitro preparations of trigeminal root ganglion neurons of guinea pigs. Perfusion of substance P in micromolar concentrations markedly depolarized neurons and reduced their input conductances. Also, the threshold for spikes evoked by injections of depolarizing current pulses was decreased. Single electrode voltage-clamp recordings showed that substance P increased inward, and decreased outward currents evoked by hyperpolarizing voltage steps from holding potentials near rest. Depolarizing responses to substance P were attenuated in Na+-deficient solutions. The excitatory actions of this endogenous peptide on the perikarya of primary sensory neurons give rise to the possibility of physiological actions of substance P at multiple sites in the trigeminal system.  相似文献   

6.
Immunohistochemistry and radioimmunoassay (RIA) revealed that corticotropin releasing factor (CRF)-like immunoreactivity was found to be colocalized with substance P (SP)-, somatostatin (SST)- and leu-enkephalin (LENK)-like immunoreactivity in the dorsal root- and trigeminal ganglia, the dorsal horn of the spinal cord (laminae I and II), the substantia gelatinosa, and at the lateral border of the spinal nucleus and in the tractus spinalis of the trigeminal nerve. These peptides were also located in fast blue labeled cells of the trigeminal ganglion following injection of the dye into the spinal trigeminal area. This indicates that there are possible sensory projections of these peptides into the spinal trigeminal area. Capsaicin treatment of neonatal rats resulted in a marked decrease in the density of CRF-, SP-, VIP- and CCK-containing neurons in the above mentioned hindbrain areas, whereas SST- and LENK-immunoreactivity were not changed. RIA revealed that, compared to controls, CRF, SP and VIP concentrations in these areas were decreased in rats pretreated with capsaicin, while SST levels were increased; CCK and LENK levels were unchanged. It is concluded that the primary afferent neurons of the nucleus and tractus spinalis of the trigeminal nerve are richly endowed with a number of peptides some of which are sensitive to capsaicin action. The close anatomical proximity of these peptide containing neurons suggests the possibility of a coexistance of one or more of these substances.  相似文献   

7.
A membrane-bound enkephalin-degrading aminopeptidase was purified from the longitudinal muscle layer of the guinea pig small intestine by four steps of column chromatography using L-tyrosine beta-naphthylamide. The molecular weight of the enzyme was estimated to be 105,000 by gel filtration. The maximum activity was observed between pH 6.5 and 7.0. The Km value for leucine-enkephalin was 137 microM. The aminopeptidase activity toward aminoacyl beta-naphthylamide substrates was restricted to basic, neutral, and aromatic aminoacyl derivatives. No action was detected on acidic amino acid and proline derivatives. The enzyme was potently inhibited by the aminopeptidase inhibitors actinonin, amastatin, and bestatin, and bioactive peptides such as angiotensin III, substance P, and Met-Lys-bradykinin. The enzyme activity was also inhibited by the antibody against the purified serum enkephalin-degrading aminopeptidase of guinea pig at concentrations similar to those at which activity was observed toward serum enkephalin-degrading aminopeptidase and renal aminopeptidase M. The enzyme rapidly hydrolyzed Leu-enkephalin and Met-enkephalin with the sequential removal of the N-terminal amino acid residues. The enzyme also hydrolyzed two enkephalin derivatives, angiotensin III and neurokinin A. However, neurotensin, substance P, and bradykinin were not cleaved. These properties indicated that the membrane-bound enkephalin-degrading aminopeptidase in the longitudinal muscle layer of the small intestine is similar to the serum enkephalin-degrading aminopeptidase and resembles aminopeptidase M. It is therefore suggested to play an important role in the metabolism of some bioactive peptides including enkephalin in peripheral nervous systems in vivo.  相似文献   

8.
研究用荧光金(FG)逆行追踪与免疫荧光组化染色相结合的双标技术对大鼠脑干向延髓网状背侧亚核(SRD)的5┐羟色胺(5┐HT)能、P物质(SP)能和亮氨酸┐脑啡肽(L┐ENK)能投射进行了观察。将FG注入SRD后,FG逆标神经元主要见于中脑导水管周围灰质、脑干中缝核簇(中缝背核、中缝正中核、中缝桥核、中缝大核、中缝隐核和中缝苍白核)、巨细胞网状核α部、延髓网状结构的内侧部和外侧部、延髓外侧网状核、三叉神经脊束核尾侧亚核和孤束核。5┐羟色胺(5┐HT)样、P物质(SP)样和亮氨酸脑啡肽(L┐ENK)样阳性神经元主要见于中脑导水管周围灰质、脑干中缝核簇和巨细胞网状核α部;此外,SP样和L┐ENK样阳性神经元还见于臂旁核、背外侧被盖核和孤束核。FG逆标并呈5┐HT样、SP样或L┐ENK样阳性的双标神经元也主要见于中脑导水管周围灰质、脑干中缝核簇和巨细胞网状核α部,尤其是位于延髓中缝核团内的双标神经元数量较多。本研究的结果说明SRD内的5┐HT样、SP样和L┐ENK样阳性终末主要来自中脑导水管周围灰质、脑干中缝核簇和巨细胞网状核α部,向SRD发出5┐HT能、SP能和L┐ENK能投射的上述核团对SRD发挥“弥漫性伤害抑  相似文献   

9.
The mode of action of the excitatory neuropeptide substance P was studied on the circular muscle of the guinea pig ileum in vitro. Atropine or tetrodotoxin strongly inhibited substance P-induced phasic contractions. The atropine-resistant part of the circular response was blocked by tetrodotoxin. A newly-developed method for quantitative evaluation revealed a rightward displacement of the substance P concentration-response curve, as well as a strong depression of the maximum effect, in the presence of atropine. These results indicate that cholinergic (and probably also non-cholinergic) excitatory neurons mediate phasic contractions due to substance P. The tonic component of the substance P-induced contraction was slightly reduced by atropine.  相似文献   

10.
11.
Capsaicin stimulates chemosensitive peripheral pain receptors, and neonatal administration produces degeneration of a population of primary afferent fibres. It has been shown previously that the effects of capsaicin are accompanied by the loss of substance P from areas of primary afferent termination and that enkephalin is not depleted from such areas. However, a number of other peptides are thought to be contained in sensory fibre systems and so we have used immunohistochemistry to examine the effect of capsaicin on the distribution of five different peptides in the substantia gelatinosa of the spinal trigeminal nucleus and spinal cord. Neonatal capsaicin treatment produces a depletion of somatostatin and cholecystokinin immunofluorescence in addition to substance P, but enkephalin and neurotensin immunofluorescence are not depleted. The implications of this result for theories of peptide involvement in nociceptive mechanisms are discussed.  相似文献   

12.
When either substance P or vasoactive intestinal peptide was injected into an acutely decentralized intrathoracic sympathetic ganglion, short-lasting augmentation of cardiac chronotropism and inotropism was induced. These augmentations were induced before the fall in systemic arterial pressure occurred which was a consequence of these peptides leaking into the systemic circulation in enough quantity to alter peripheral vascular resistance directly. When similar volumes of normal saline were injected into an intrathoracic ganglion, no significant cardiac changes were induced. When substance P or vasoactive intestinal peptide was administered into an intrathoracic ganglion, similar cardiac augmentations were induced either before or after the intravenous administration of hexamethonium. In contrast, when these peptides were injected into an intrathoracic ganglion in which the beta-adrenergic blocking agent timolol (0.1 mg/0.1 ml of normal saline) had been administered no cardiac augmentation occurred. These data imply that in the presence of beta-adrenergic blockade intraganglionic administration of substance P or vasoactive intestinal peptide does not modify enough intrathoracic neurons to alter cardiac chronotropism and inotropism detectably. When neuropeptide Y was injected into an intrathoracic ganglion, no cardiac changes occurred. However, when cardiac augmentations were induced by sympathetic preganglionic axon stimulation these were enhanced following the intraganglionic administration of neuropeptide Y. As this effect occurred after timolol was administered into the ipsilateral ganglia, but not after intravenous administration of hexamethonium, it is proposed that the effects of neuropeptide Y are dependent upon functioning intrathoracic ganglionic nicotinic cholinergic synaptic mechanisms. Intravenous administration of either morphine or [D-ala2,D-leu5]enkephalin acetate did not alter the capacity of the preganglionic sympathetic axons to augment the heart when stimulated. Following the intravenous administration of naloxone, the positive inotropic cardiac responses induced by efferent preganglionic sympathetic axonal stimulation were enhanced minimally in control states and significantly following hexamethonium administration. Thus, it appears that enkephalins are involved in the modulation of intrathoracic ganglion neurons regulating the heart, perhaps via modification of beta-adrenergic receptors. Taken together these data indicate that substance P, vasoactive intestinal peptide, neuropeptide Y, or enkephalins modify intrathoracic ganglionic neurons which are involved in efferent sympathetic cardiac regulation.  相似文献   

13.
A Kawabata  M Sasa  H Ujihara  S Takaori 《Life sciences》1990,47(15):1355-1363
Electrophysiological studies were performed to determine whether or not enkephalin modulates the activities of medial vestibular nucleus (MVN) neurons responding to horizontal pendular rotation using alpha-chloralose anesthetized cats. The effects of microiontophoretically applied drugs were examined in type I and type II neurons identified according to responses to horizontal, sinusoidal rotation; type I and type II neurons showed an increase and decrease in firing with rotation ipsilateral to the recording site and vice versa with contralateral rotation, respectively. Iontophoretic application of enkephalin suppressed spike firing induced by rotation of the animals in type I neuron, but not in type II neuron. The spike firing induced by iontophoretically applied glutamate was also inhibited during the application of enkephalin. The inhibition by enkephalin of both rotation- and glutamate-induced firing was antagonized by naloxone which was given simultaneously. These results suggest that enkephalin acts on MVN type I neuron to inhibit transmission from the vestibule, thereby controlling vestibulo-ocular reflex.  相似文献   

14.
We determined the effects of trigeminal nerve denervation on the noncholinergic, nonadrenergic response to electrical transmural stimulation of the isolated rabbit iris sphincter muscle. The left ophthalmic nerve (first branch of the trigeminal nerve) was cut at the intracranial, peripheral site of the trigeminal ganglion and five to ten days later, the iris sphincter muscle isolated from the left eye (operated side) was found to produce a fast cholinergic contraction in response to electrical transmural stimulation and there was no evidence of noncholinergic, nonadrenergic contractions. On the other hand, in the iris sphincter muscle isolated from the right eye (control side), electrical transmural stimulation produced both cholinergic and noncholinergic, nonadrenergic contractile responses. Capsaicin and bradykinin produced noncholinergic, nonadrenergic contractile responses in the muscle from the control side, while in the iris sphincter from the trigeminally denervated eye there was no such response to application of these drugs. Exogenous substance P (SP) and carbachol produced a strong contractile response in both the trigeminally innervated and denervated sphincter muscles. Somatostatin, vasoactive intestinal polypeptide (VIP) and enkephalin were without effects. These observations suggest that the noncholinergic, nonadrenergic responses to electrical transmural stimulation are derived from the trigeminal nerve and that the mediator involved is probably SP or a related peptide.  相似文献   

15.
Neurons in the caudalmost ventrolateral medulla (cmVLM) respond to noxious stimulation. We previously have shown most efferent projections from this locus project to areas implicated either in the processing or modulation of pain. Here we show the cmVLM of the rat receives projections from superficial laminae of the medullary dorsal horn (MDH) and has neurons activated with capsaicin injections into the temporalis muscle. Injections of either biotinylated dextran amine (BDA) into the MDH or fluorogold (FG)/fluorescent microbeads into the cmVLM showed projections from lamina I and II of the MDH to the cmVLM. Morphometric analysis showed the retrogradely-labeled neurons were small (area 88.7 μm(2)±3.4) and mostly fusiform in shape. Injections (20-50 μl) of 0.5% capsaicin into the temporalis muscle and subsequent immunohistochemistry for c-Fos showed nuclei labeled in the dorsomedial trigeminocervical complex (TCC), the cmVLM, the lateral medulla, and the internal lateral subnucleus of the parabrachial complex (PBil). Additional labeling with c-Fos was seen in the subnucleus interpolaris of the spinal trigeminal nucleus, the rostral ventrolateral medulla, the superior salivatory nucleus, the rostral ventromedial medulla, and the A1, A5, A7 and subcoeruleus catecholamine areas. Injections of FG into the PBil produced robust label in the lateral medulla and cmVLM while injections of BDA into the lateral medulla showed projections to the PBil. Immunohistochemical experiments to antibodies against substance P, the substance P receptor (NK1), calcitonin gene regulating peptide, leucine enkephalin, VRL1 (TPRV2) receptors and neuropeptide Y showed that these peptides/receptors densely stained the cmVLM. We suggest the MDH- cmVLM projection is important for pain from head and neck areas. We offer a potential new pathway for regulating deep pain via the neurons of the TCC, the cmVLM, the lateral medulla, and the PBil and propose these areas compose a trigeminoreticular pathway, possibly the trigeminal homologue of the spinoreticulothalamic pathway.  相似文献   

16.
用追踪和免疫电镜技术研究三叉神经尾侧亚核(Vc)内P物质受体(SPR)阳性神经元与初级传入和下行投射之间的突触联系。光镜观察发现,在Vc浅层,SPR阳性神经元的分布与RMg下行投射终末的分布有重叠。电镜观察发现,三叉初级传入终末和SPR阳性神经元树突形成非对称性轴树突触;RMg下行投射终末与SPR阳性神经元树突也形成非对称性轴树突触,提示RMg下行投射纤维可能通过直接作用于丘脑投射神经元对三叉初级传入的伤害性信息进行调控。  相似文献   

17.
P Panula  P Emson  J Y Wu 《Histochemistry》1980,69(2):169-179
The presence of cells exhibiting leucine-enkephalin-, substance P- and glutamate decarboxylase-like immunoreactivity was demonstrated in dissociated cultures from newborn rat neostriatum. The size and shape of the enkephalin-immunoreactive cells varied, but they were generally larger than substance P- and glutamate decarboxylase-immunoreactive cells, which formed relatively uniform cell populations. Cells of apparently non-neuronal origin did not show any immunoreactivity. It is unlikely that enkephalin is present in the same cells that contain substance P or glutamate decarboxylase because of morphological differences between these cells. The possible coexistence of substance P and glutamate decarboxylase in the same cells however, could not be excluded. The results of this study confirm that the cell bodies of neurons containing three possible neurotransmitters are located in the neostriatum.  相似文献   

18.
The colocalization of immunoreactivities to substance P and calcitonin gene-related peptide (CGRP) in nervous structures and their correlation with other peptidergic structures were studied in the stellate ganglion of the guinea pig by the application of double-labelling immunofluorescence. Three types of fibre were distinguished. (1) Substance P+/CGRP+ fibres, which sometimes displayed additional immunoreactivity for enkephalin, constituted a small fibre population of sensory origin, as deduced from retrograde labelling of substance P+/CGRP+ dorsal root ganglion cells. (2) Substance P+/CGRP fibres were more frequent; some formed baskets around non-catecholaminergic perikarya that were immunoreactive to vasoactive intestinal polypeptide (VIP). (3) CGRP+/substance P fibres were most frequent and were mainly distributed among tyrosine hydroxylase (TH)-immunoreactive cell bodies. The peptide content of fibre populations (2) and (3) did not correspond to that of sensory ganglion cells retrogradely labelled by tracer injection into the stellate ganglion. Therefore, these fibres are throught to arise from retrogradely labelled preganglionic sympathetic neurons of the spinal cord, in which transmitter levels may have been too low for immunohistochemical detection of substance P or CGRP. CGRP-immunoreactivity but no substance P-immunolabelling was observed in VIP-immunoreactive postganglionic neurons. Such cell bodies were TH-negative and were spared by substance P-immunolabelled fibre baskets. Retrograde tracing with Fast Blue indicated that the sweat glands in the glabrous skin of the forepaw were the targets of these neurons. The streptavidin-biotin-peroxidase method at the electron-microscope level demonstrated that immunoreactivity to substance P and CGRP was present in dense-cored vesicles of 50–130 nm diameter in varicosities of non-myelinated nerve fibres in the stellate ganglion. No statistically significant difference in size was observed between vesicles immunolabelled for substance P and CGRP. Immunoreactive varicosities formed axodendritic and axosomatic synaptic contacts, and unspecialized appositions to non-reactive neuronal dendrites, somata, and axon terminals. Many varicosities were partly exposed to the interstitial space. The findings provide evidence for different pathways utilizing substance P and/or CGRP in the guinea-pig stellate ganglion.  相似文献   

19.
L Chen  L Y Huang 《Neuron》1991,7(2):319-326
mu opioids, such as morphine and certain enkephalin analogs, are known to modulate glutamate-evoked activity in dorsal horn neurons in the spinal cord and caudal brain stem. Yet the molecular mechanism by which this modulation occurs is not understood. We examined the interactions between glutamate and a selective mu opioid receptor agonist, D-Ala2-MePhe4-Gly-ol5-enkephalin (DAGO), in spinal trigeminal neurons in thin medullary slices of rats. DAGO caused a sustained increase in glutamate-activated currents that are mediated by N-methyl-D-aspartate receptors. Intracellularly applied protein kinase C (PKC) mimics the effect of DAGO, and a specific PKC inhibitor interrupts the sustained potentiation produced by DAGO. Thus, PKC plays a key role in mediating the action of mu opioid peptides.  相似文献   

20.
Morphine produces a multiphasic modulation of K+-evoked substance P release from trigeminal slices and dorsal root ganglion neurons in culture. We now found that the C-fiber stimulant, capsaicin (1 M), evoked release of substance P that was inhibited, enhanced and inhibited by 0.1 nM, 1 M, and 10 M morphine, respectively. This morphine's multiphasic effect was blocked by naloxone (100 nM). Neonatal treatment with capsaicin produced thermal hypoalgesia and abolished the multiphasic effect of morphine on substance P release evoked by 50 mM K+. These findings suggest that the multiphasic modulation of substance P release by morphine is dependent on C-type afferents and may be of relevance to nociception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号