首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
2.
Herein, we pursue the hypothesis that the structure of nordihydroguaiaretic acid (NDGA) can be refined for selective potency against the insulin-like growth factor 1 receptor (IGF-1R) as a potential therapeutic target for breast cancer while diminishing its action against other cellular targets. Thus, a set of NDGA analogs (7a-7h) was prepared and examined for inhibitory potency against IGF-1R kinase and an alternative target, 15-lipoxygenase (15 LOX). The anti-cancer effects of these compounds were determined by their ability to inhibit IGF-1 mediated cell growth of MCF-7 breast cancer cells. The design of the analogs was based upon a cursory Topliss approach in which one of NDGA's aromatic rings was modified with various substituents. Structural modification of one of the two catechol rings of NDGA was found to have little effect upon the inhibitory potency against both kinase activity of the IGF-1R and IGF-1 mediated cell growth of MCF-7 cells. 15-LOX was found to be most sensitive to structural modifications of NDGA. From the limited series of NDGA analogs examined, the compound that exhibited the greatest selectivity for IGF-1 mediated growth compared to 15-LOX inhibition was a cyclic analog 7h with a framework similar to a natural product isolated from Larrea divaricata. The results for 7h are significant because while NDGA displays biological promiscuity, 7h exhibits greater specificity toward the breast cancer target IGF-1R with that added benefit of possessing a 10-fold weaker potency against 15-LOX, an enzyme which has a purported tumor suppressing role in breast cancer. With increased specificity and potency, 7h may serve as a new lead in developing novel therapeutic agents for breast cancer.  相似文献   

3.
The estrogen receptor (ER) pathway and the epidermal growth factor receptor (EGFR) pathway play pivotal roles in breast cancer progression. Targeted therapies able to intercept ER or signaling downstream to EGFR and its kin, HER2, are routinely used to treat distinct groups of breast cancer patients. However, patient responses are limited by resistance to endocrine therapy, which may be due to compensatory HER2/EGFR signaling. This raises the possibility that simultaneous interception of HER2 and ER may enhance therapeutic efficacy. To address the question, we treated breast cancer cells with both fulvestrant (ICI 182780), an ER antagonist with no agonist effects, and lapatinib, an orally available tyrosine kinase inhibitor specific to EGFR and HER2. Our results indicate that the combination of drugs is especially effective when applied to HER2-overexpressing, ER-positive cancer cells. Interestingly, fulvestrant activated the mitogen-activated protein kinase (MAPK) pathway of these cells, but complete inhibition of MAPK signaling was observed on cotreatment with lapatinib. Taken together, our observations reinforce the possibility that the effectiveness of combining anti-ER and anti-HER2/EGFR drugs may be especially effective on a relatively small subtype of HER2-overexpressing, ER-positive tumors of the breast.  相似文献   

4.
Acquired resistance to tamoxifen has become a serious obstacle in breast cancer treatment. The underlying mechanism responsible for this condition has not been completely elucidated. In this study, a tamoxifen-resistant (Tam-R) MCF-7 breast cancer cell line was developed to mimic the occurrence of acquired tamoxifen resistance as seen in clinical practice. Increased expression levels of HER1, HER2 and the estrogen receptor (ER)-AIB1 complex were found in tamoxifen-resistant cells. EGF stimulation and gefitinib inhibition experiments further demonstrated that HER1/HER2 signaling and AIB1 were involved in the proliferation of cells that had acquired Tam resistance. However, when AIB1 was silenced with AIB1-siRNA in Tam-R cells, the cell growth stimulated by the HER1/HER2 signaling pathway was significantly reduced, and the cells were again found to be inhibited by tamoxifen. These results suggest that the AIB1 protein could be a limiting factor in the HER1/HER2-mediated hormone-independent growth of Tam-R cells. Thus, AIB1 may be a new therapeutic target, and the removal of AIB1 may decrease the crosstalk between ER and the HER1/HER2 pathway, resulting in the restoration of tamoxifen sensitivity in tamoxifen-resistant cells.  相似文献   

5.
《Cellular signalling》2014,26(1):70-82
Human MAP3K4 (MTK1) functions upstream of mitogen activated protein kinases (MAPKs). In this study we show MTK1 is required for human epidermal growth factor receptor 2/3 (HER2/HER3)-heregulin beta1 (HRG) induced cell migration in MCF-7 breast cancer cells. We demonstrate that HRG stimulation leads to association of MTK1 with activated HER3 in MCF-7 and T-47D breast cancer cells. Activated HER3 association with MTK1 is dependent on HER2 activation and is decreased by pre-treatment with the HER2 inhibitor, lapatinib. Moreover, we also identify the actin interacting region (AIR) on MTK1. Disruption of actin cytoskeletal polymerization with cytochalasin D inhibited HRG induced MTK1/HER3 association. Additionally, HRG stimulation leads to extracellular acidification that is independent of cellular proliferation. HRG induced extracellular acidification is significantly inhibited when MTK1 is knocked down in MCF-7 cells. Similarly, pre-treatment with lapatinib significantly decreased HRG induced extracellular acidification. Extracellular acidification is linked with cancer cell migration. We performed scratch assays that show HRG induced cell migration in MCF-7 cells. Knockdown of MTK1 significantly inhibited HRG induced cell migration. Furthermore, pre-treatment with lapatinib also significantly decreased cell migration. Cell migration is required for cancer cell metastasis, which is the major cause of cancer patient mortality. We identify MTK1 in the HER2/HER3-HRG mediated extracellular acidification and cell migration pathway in breast cancer cells.  相似文献   

6.
7.
Activation of IGF-1R can activate metalloproteinases which release heparin-binding EGF (Hb-EGF) and lead to EGFR-dependent MAPK activation in certain tissues. We postulated that this pathway is operative in E2-induced MAPK activation in breast cancer tissues. As evidence, we showed that E2 rapidly induced the phosphorylation of both IGF-1R and EGFR and that siRNA knockdown or selective inhibitors against either growth factor receptor inhibited E2-induced MAPK activation. The selective inhibitors or knockdown of either IGF-1R or EGFR significantly inhibited cell growth and reversed cell death protection induced by E2 in MCF-7 cells. Our data support the conclusion that the IGF-1R acts upstream of EGFR in a linear pathway which mediates E2 action on MAPK activation, cell growth stimulation and anti-apoptosis in breast cancer cells. During the process of development of tamoxifen resistance this pathway is up-regulated with increased sensitivity to activate EGFR for cell growth and protection against apoptosis. Surprisingly, translocation of ERα out of the nucleus into the cytoplasm, mediated by c-Src, occurs during development of resistance. This effect can be abrogated by administration of the c-Src inhibitor, PP2 which also restores sensitivity to tamoxifen.  相似文献   

8.
9.
The underlying mechanisms leading to antiestrogen resistance in estrogen-receptor α (ER)-positive breast cancer is still poorly understood. The aim of this study was therefore to identify biomarkers and novel treatments for antiestrogen resistant breast cancer. We performed a kinase inhibitor screen on antiestrogen responsive T47D breast cancer cells and T47D-derived tamoxifen and fulvestrant resistant cell lines. We found that dasatinib, a broad-spectrum kinase inhibitor, inhibited growth of the antiestrogen resistant cells compared to parental T47D cells. Furthermore western blot analysis showed increased expression and phosphorylation of Src in the resistant cells and that dasatinib inhibited phosphorylation of Src and also signaling via Akt and Erk in all cell lines. Immunoprecipitation revealed Src: ER complexes only in the parental T47D cells. In fulvestrant resistant cells, Src formed complexes with the Human Epidermal growth factor Receptor (HER)1 and HER2. Neither HER receptors nor ER were co-precipitated with Src in the tamoxifen resistant cell lines. Compared to treatment with dasatinib alone, combined treatment with dasatinib and fulvestrant had a stronger inhibitory effect on tamoxifen resistant cell growth, whereas dasatinib in combination with tamoxifen had no additive inhibitory effect on fulvestrant resistant growth. When performing immunohistochemical staining on 268 primary tumors from breast cancer patients who had received tamoxifen as first line endocrine treatment, we found that membrane expression of Src in the tumor cells was significant associated with reduced disease-free and overall survival. In conclusion, Src was identified as target for treatment of antiestrogen resistant T47D breast cancer cells. For tamoxifen resistant T47D cells, combined treatment with dasatinib and fulvestrant was superior to treatment with dasatinib alone. Src located at the membrane has potential as a new biomarker for reduced benefit of tamoxifen.  相似文献   

10.
The preparation of a series of novel analogues of the selective antiestrogen tamoxifen is reported. 1Z-alkoxyphenyl group in tamoxifen has been replaced by a N-alkoxypyrazole, while functionalised phenyl groups or heteroaromatics were introduced at the 2Z-position using sequential Suzuki cross coupling of 1,2-(bis)borylpinacol 1-phenylbutene with 4- or 5-iodo-1-N,N-dimethylaminoethyl or propyl-pyrazoles. Approximately 50 tamoxifen analogues were obtained and tested in an estrogen receptor (ERalpha) affinity assay. Several compounds exhibited binding affinities 2-5-fold lower than tamoxifen. Dose-response experiments with six selected compounds were carried out using two different human breast cancer cell lines, MCF-7 and the tamoxifen resistant cell line MCF-/TAM(R)-1. Both cell lines exhibited growth inhibition upon treatment with the tamoxifen analogues. Co-treatment of the cells, with estradiol and the individual compounds, were also performed. The results indicated that the observed growth inhibitory effect was mediated by the ERalpha. Analogues of the potent antiestrogen 4-hydroxytamoxifen (4-OHT) were synthesised where the 1E-4-hydroxyphenyl was replaced by a 1-hydroxypyrazol-4-yl group. However, modest growth inhibition of MCF-7 cells was observed upon treatment with these analogues. In contrast, 1Z-, 2Z-ringclosed tamoxifen analogue (59) was shown to possess antiproliferative effects on MCF-7 and MCF-/TAM(R)-1 cells in lower doses than tamoxifen.  相似文献   

11.
Overexpression of the ErbB2 receptor in one-third of human breast cancers contributes to the transformation of epithelial cells and predicts poor prognosis for breast cancer patients. We report that the overexpression of ErbB2 inhibits IGF-I-induced MAPK signaling. IGF-I-induced MAPK phosphorylation and MAPK kinase activity are reduced in ErbB2 overexpressing MCF-7/HER2-18 cells relative to control MCF-7/neo cells. In SKBR3/IGF-IR cells, reduction of ErbB2 by antisense methodology restores the IGF-I-induced MAPK activation. The inhibition of IGF-I-induced MAP kinase activation in ErbB2 overexpressing breast cancer cells is correlated with decreased IGF-I-induced Shc tyrosine-phosphorylation, leading to a decreased association of Grb2 with Shc and decreased Raf phosphorylation. However, IGF-I-induced tyrosine-phosphorylation of IGF-I receptor and IRS-I and AKT phosphorylation were unaffected by ErbB2 overexpression. Consistent with these results, we observed that the proportion of IGF-I-stimulated proliferation blocked by the MAPK inhibitor PD98059 fell from 82.6% in MCF-7/neo cells to 41.2% in MCF-7/HER2-18 cells. These data provide evidence for interplay between the IGF-IR and ErbB2 signaling pathways. They are consistent with the view that the IGF-IR mediated attenuation of trastuzumab-induced growth inhibition we recently described is dependent on IGF-I-induced PI3K signaling rather than IGF-I-induced MAPK signaling.  相似文献   

12.
Patients with ER/HER2-positive breast cancer have a poor prognosis and are less responsive to selective estrogen receptor modulators; this is presumably due to the crosstalk between ER and HER2. Fatty acid synthase (FASN) is essential for the survival and maintenance of the malignant phenotype of breast cancer cells. An intimate relationship exists between FASN, ER and HER2. We hypothesized that FASN may be the downstream effector underlying ER/HER2 crosstalk through the PI3K/AKT/mTOR pathway in ER/HER2-positive breast cancer. The present study implicated the PI3K/AKT/mTOR pathway in the regulation of FASN expression in ER/HER2-positive breast cancer cells and demonstrated that rapamycin, an mTOR inhibitor, inhibited FASN expression. Cerulenin, a FASN inhibitor, synergized with rapamycin to induce apoptosis and inhibit cell migration and tumorigenesis in ER/HER2-positive breast cancer cells. Our findings suggest that inhibiting the mTOR-FASN axis is a promising new strategy for treating ER/HER2-positive breast cancer.  相似文献   

13.
The calcium-activated chloride channel Ano1 (TMEM16A) is overexpressed in many tumors. Although Ano1 overexpression is found in breast cancer due to 11q13 amplification, it remains unclear whether signaling pathways are involved in Ano1 overexpression during breast cancer tumorigenesis in vivo. Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) have been known to contribute to breast cancer progression. It is unclear whether Ano1 is associated with clinical outcomes in breast cancer patients with different ER, PR and HER2 status. In the present study, we investigated the Ano1 expression in 431 patients with invasive ductal breast carcinoma and 46 patients with fibroadenoma, using immunohistochemistry, and analyzed the association between Ano1 expression and clinical characteristics and outcomes of breast cancer patients with different ER, PR, and HER2 status. Ano1 was overexpressed in breast cancer compared with fibroadenoma. Ano1 was significantly more associated with breast cancer with the lower clinical stage (stage I or II), or triple-negative status. Mostly importantly, Ano1 overexpression was associated with good prognosis in patients with the PR-positive or HER2-negative status, and in patients following tamoxifen treatment. Multivariate Cox regression analysis showed that Ano1 overexpression was a prognostic factor for longer overall survival in PR-positive or HER2-negative patients, and a predictive factor for longer overall survival in patients following tamoxifen treatment. Our findings suggest that Ano1 may be a potential marker for good prognosis in PR-positive or HER2-negative patients following tamoxifen treatment. The PR and HER2 status defines a subtype of breast cancer in which Ano1 overexpression is associated with good prognosis following tamoxifen treatment.  相似文献   

14.
《Translational oncology》2020,13(2):423-440
Tamoxifen is a successful endocrine therapy drug for estrogen receptor–positive (ER+) breast cancer. However, resistance to tamoxifen compromises the efficacy of endocrine treatment. In the present study, we identified potential tamoxifen resistance–related gene markers and investigated their mechanistic details. First, we established two ER + breast cancer cell lines resistant to tamoxifen, named MCF-7/TMR and BT474/TMR. Gene expression profiling showed that CXXC finger protein 4 (CXXC4) expression is lower in MCF-7/TMR cells than in MCF-7 cells. Furthermore, CXXC4 mRNA and protein expression are lower in the resistant cell lines than in the corresponding parental cell lines. We also investigated the correlation between CXXC4 and endocrine resistance in ER + breast cancer cells. CXXC4 knockdown accelerates cell proliferation in vitro and in vivo and renders breast cancer cells insensitive to tamoxifen, whereas CXXC4 overexpression inhibits cancer cell growth and increases tamoxifen sensitivity of resistant cells. In addition, we demonstrated that CXXC4 inhibits Wnt/β-catenin signaling in cancer cells by modulating the phosphorylation of GSK-3β, influencing the integrity of the β-catenin degradation complex. Silencing the CXXC4 gene upregulates expression of cyclinD1 and c-myc (the downstream targets of Wnt signaling) and promotes cell cycle progression. Conversely, ectopic expression of CXXC4 downregulates the expression of these proteins and arrests the cell cycle in the G0/G1 phase. Finally, the small-molecule inhibitor XAV939 suppresses Wnt signaling and sensitizes resistant cells to tamoxifen. These results indicate that components of Wnt pathway that are early in response to tamoxifen could be involved as an intrinsic factor of the transition to endocrine resistance, and inhibition of Wnt signaling may be an effective therapeutic strategy to overcome tamoxifen resistance.  相似文献   

15.
Currently, the standard of care for estrogen receptor (ER)-positive breast cancer is 5 years of tamoxifen (TAM) or an aromatase inhibitor (AI) such as anastrozole. New studies indicate that extending antiestrogen therapy beyond 5 years with sequential regimens will improve disease-free survival. Based on the emerging concept that longer therapies are better, we have developed sequential models of tamoxifen-resistant breast cancer in vivo to mimic the clinical scenario of long-term antiestrogen therapy. The goal of the current study was to investigate the consequences of long-term treatment with tamoxifen on the growth of breast tumors in athymic mice. The results demonstrate that there are distinct phases of resistance to tamoxifen that correlate with time of treatment and expression of HER2/neu mRNA. In the treatment phase, 17β-estradiol (E2) stimulated growth, while TAM inhibited growth of MCF-7 tumors (MCF-7E2). The withdrawal of treatment, mimicking the use of an AI, completely prevented growth. In Phase I resistance, the tumors (MCF-7TAMST) were growth-stimulated by either E2 or TAM, but inhibited by no treatment, fulvestrant, or E2 + fulvestrant. Phase II-resistant tumors (MCF-7TAMLT) were treated for more than 5 years and growth-stimulated by TAM. However, no treatment, fulvestrant, or E2 completely inhibited growth. Interestingly, the few tumors (MCF-7TAMLT) that survived in response to E2 were robustly re-stimulated by E2 after transplantation into new generations of athymic mice. These E2-stimulated tumors (MCF-7TAME) were inhibited by TAM in a dose-dependent similar to their parental tumors (MCF-7E2). In addition, the MCF-7TAME tumors were inhibited by either no treatment or fulvestrant. HER2/neu and HER3 mRNAs were over-expressed in TAM-stimulated MCF-7TAMLT tumors and remained high in E2-stimulated MCF-7TAME tumors. The data indicate that complete reversal of resistance to TAM can be achieved with the use of low dose E2 therapy. Also, these data suggest that over-expression of HER2/neu alone is insufficient to predict resistance to TAM. Based on the results, we suggest using an alternating treatment regimen, cycling antiestrogen with estrogen therapy to avoid drug-resistance.  相似文献   

16.
The antiestrogen tamoxifen has been widely used for decades as selective estrogen receptor (ER) modulator for ERalpha-positive breast tumors. Tamoxifen significantly reduces tumor recurrence by binding to the activation function-2 (AF-2) domain of the ER. Acquired resistance to tamoxifen in breast cancer patients is a serious therapeutic problem. Antiestrogen-resistant breast cancer often shows increased expression of the epidermal growth factor receptor (EGFR) family members, EGFR and ErbB2. In this report we now show that overexpression of EGFR or activated AKT-2 in MCF-7 cells leads to phosphorylation of Ser167 in the AF-1 domain of ERalpha, enhanced ER-amplified in breast cancer 1 (ER:AIB1) interaction in the presence of tamoxifen, and resistance to tamoxifen. In contrast, transfection of activated MAPK kinase, an immediate upstream activator of MAPK (ERK 1 and 2) into MCF-7 cells leads to phosphorylation of Ser118 in the AF-1 domain of ERalpha, inhibition of ER-amplified in breast cancer 1 (ER:AIB1) interaction in the presence of Tam, and maintenance of sensitivity to tamoxifen. Inhibition of AKT by short inhibitory RNA blocked Ser167 phosphorylation in ER and restored tamoxifen sensitivity. However, maximum sensitivity to tamoxifen was observed when both AKT and MAPK were inhibited. Taken together, these data demonstrate that different phosphorylation sites in the AF-1 domain of ERalpha regulate the agonistic and antagonistic actions of tamoxifen in human breast cancer cells.  相似文献   

17.
Tamoxifen provided a successful treatment for ER-positive breast cancer for many years. However, most breast tumors develop tamoxifen resistance and are eventually refractory to tamoxifen therapy. The molecular mechanisms underlying development of tamoxifen resistance have not been well established. Recently, we reported that breast cancer cells with high levels of ER-α36, a variant of ER-α, were resistant to tamoxifen and knockdown of ER-α36 expression in tamoxifen resistant cells with the shRNA method restored tamoxifen sensitivity, indicating that gained ER-α36 expression is one of the underlying mechanisms of tamoxifen resistance. Here, we found that tamoxifen induced expression of ER-α36-EGFR/HER2 positive regulatory loops and tamoxifen resistant MCF7 cells (MCF7/TAM) expressed enhanced levels of the loops. Disruption of the ER-α36-EGFR/HER2 positive regulatory loops with the dual tyrosine kinase inhibitor Lapatinib or ER-α36 down-regulator Broussoflavonol B in tamoxifen resistant MCF7 cells restored tamoxifen sensitivity. In addition, we also found both Lapatinib and Broussoflavonol B increased the growth inhibitory activity of tamoxifen in tumorsphere cells derived from MCF7/TAM cells. Our results thus demonstrated that elevated expression of the ER-α36-EGFR/HER2 loops is one of the mechanisms by which ER-positive breast cancer cells escape tamoxifen therapy. Our results thus provided a rational to develop novel therapeutic approaches for tamoxifen resistant patients by targeting the ER-α36-EGFR/HER2 loops.  相似文献   

18.
Trastuzumab is used for breast cancer patients with high expression levels of HER2 (human epidermal growth factor receptor 2)/neu; however, it has no effect on cancers with low levels of HER2/neu. SM (solamargine), a major steroidal alkaloid glycoside purified from Solanum incanum, triggered apoptosis of breast cancer cells (MCF-7 and SK-BR-3 cells) and non-cancerous breast epithelial cells (HBL-100 cells) within 3 h. To extend the application of trastuzumab in breast cancer patients, the regulation of HER2/neu expression by SM was investigated. SM significantly up-regulates HER2/neu expression in breast cancer cells with low and high expression levels of HER2/neu, and synergistically enhanced the effect of trastuzumab in inhibiting cell proliferation. Additionally, HER2/neu and TOP2A [TopoII (topoisomerase II) alpha] genes share the same amplicon on an identical chromosome. Notably, SM co-regulates HER2/neu and TopoIIalpha expression markedly, and enhances TopoII inhibitor-EPI (epirubicin)-induced cytotoxicity to breast cancer cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号