首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Myosin VI has an unexpectedly large swing of its lever arm (powerstroke) that optimizes its unique reverse direction movement. The basis for this is an unprecedented rearrangement of the subdomain to which the lever arm is attached, referred to as the converter. It is unclear at what point(s) in the myosin VI ATPase cycle rearrangements in the converter occur, and how this would effect lever arm position. We solved the structure of myosin VI with an ATP analogue (ADP.BeF3) bound in its nucleotide-binding pocket. The structure reveals that no rearrangement in the converter occur upon ATP binding. Based on previously solved myosin structures, our structure suggests that no reversal of the powerstroke occurs during detachment of myosin VI from actin. The structure also reveals novel features of the myosin VI motor that may be important in maintaining the converter conformation during detachment from actin, and other features that may promote rapid rearrangements in the structure following actin detachment that enable hydrolysis of ATP.  相似文献   

2.
Molecular motors such as myosins are allosteric enzymes that power essential motility functions in the cell. Structural biology is an important tool for deciphering how these motors work. Myosins produce force upon the actin-driven conformational changes controlling the sequential release of the hydrolysis products of ATP (Pi followed by ADP). These conformational changes are amplified by a 'lever arm', which includes the region of the motor known as the converter and the adjacent elongated light chain binding region. Analysis of four structural states of the motor provides a detailed understanding of the rearrangements and pathways of communication in the motor that are necessary for detachment from the actin track and repriming of the motor. However, the important part of the cycle in which force is produced remains enigmatic and awaits new high-resolution structures. The value of a structural approach is particularly evident from clues provided by the structural states of the reverse myosin VI motor. Crystallographic structures have revealed that rearrangements within the converter subdomain occur, which explains why this myosin can produce a large stroke in the opposite direction to all other myosins, despite a very short lever arm. By providing a detailed understanding of the motor rearrangements, structural biology will continue to reveal essential information and help solve current enigma, such as how actin promotes force production, how motors are tuned for specific cellular roles or how motor/cargo interactions regulate the function of myosin in the cell.  相似文献   

3.
We present the first in silico model of the weak binding actomyosin in the initial powerstroke state, representing the actin binding-induced major structural changes in myosin. First, we docked an actin trimer to prepowerstroke myosin then relaxed the complex by a 100-ns long unrestrained molecular dynamics. In the first few nanoseconds, actin binding induced an extra primed myosin state, i.e. the further priming of the myosin lever by 18° coupled to a further closure of switch 2 loop. We demonstrated that actin induces the extra primed state of myosin specifically through the actin N terminus-activation loop interaction. The applied in silico methodology was validated by forming rigor structures that perfectly fitted into an experimentally determined EM map of the rigor actomyosin. Our results unveiled the role of actin in the powerstroke by presenting that actin moves the myosin lever to the extra primed state that leads to the effective lever swing.  相似文献   

4.
BackgroundMyosin II, the motor protein driving muscle contraction, uses energy of ATP hydrolysis to produce movement along actin. The key step of energy transduction is the powerstroke, involving rotation of myosin's lever while myosin is attached to actin. Macroscopic measurements indicated high thermodynamic efficiency for energy conversion. However, single-molecule experiments indicated lower efficiency, provoking a long-standing discrepancy.MethodsBased on the Fluctuation-Dissipation Theorem, we built a sufficiently detailed but low degree-of-freedom model reconstructing the entire mechanoenzymatic cycle.ResultsWe show that a high axial stiffness of the lever during an initial, experimentally yet unrevealed part of the powerstroke results in a short-time, ratchet-like Kramers effect, and is responsible for the missing efficiency. The second part of the powerstroke is an Eyring-like relaxation that dominantly contributes to lever rotation, but produces only a minor part of the work.ConclusionsThe model reveals the structural background of myosin's capability to function as a robust molecular engine and a very precise load sensor as well. Our model also suggests an explanation for the malfunction of myosins harboring mutations that lead to hypertrophic cardiomyopathies with most severe clinical prognosis.General significanceThe model explains how a force-transmitting device within a biological motor can enable high energetic efficiency.  相似文献   

5.
Myosin VI is expressed in a variety of cell types and is thought to play a role in membrane trafficking and endocytosis, yet its motor function and regulation are not understood. The present study clarified mammalian myosin VI motor function and regulation at a molecular level. Myosin VI ATPase activity was highly activated by actin with K(actin) of 9 microm. A predominant amount of myosin VI bound to actin in the presence of ATP unlike conventional myosins. K(ATP) was much higher than those of other known myosins, suggesting that myosin VI has a weak affinity or slow binding for ATP. On the other hand, ADP markedly inhibited the actin-activated ATPase activity, suggesting a high affinity for ADP. These results suggested that myosin VI is predominantly in a strong actin binding state during the ATPase cycle. p21-activated kinase 3 phosphorylated myosin VI, and the site was identified as Thr(406). The phosphorylation of myosin VI significantly facilitated the actin-translocating activity of myosin VI. On the other hand, Ca(2+) diminished the actin-translocating activity of myosin VI although the actin-activated ATPase activity was not affected by Ca(2+). Calmodulin was not dissociated from the heavy chain at high Ca(2+), suggesting that a conformational change of calmodulin upon Ca(2+) binding, but not its physical dissociation, determines the inhibition of the motility activity. The present results revealed the dual regulation of myosin VI by phosphorylation and Ca(2+) binding to calmodulin light chain.  相似文献   

6.
Myosin VI (MVI) is a dimeric molecular motor that translocates backwards on actin filaments with a surprisingly large and variable step size, given its short lever arm. A recent x-ray structure of MVI indicates that the large step size can be explained in part by a novel conformation of the converter subdomain in the prepowerstroke state, in which a 53-residue insert, unique to MVI, reorients the lever arm nearly parallel to the actin filament. To determine whether the existence of the novel converter conformation could contribute to the step-size variability, we used a path-based free-energy simulation tool, the string method, to show that there is a small free-energy difference between the novel converter conformation and the conventional conformation found in other myosins. This result suggests that MVI can bind to actin with the converter in either conformation. Models of MVI/MV chimeric dimers show that the variability in the tilting angle of the lever arm that results from the two converter conformations can lead to step-size variations of ∼12 nm. These variations, in combination with other proposed mechanisms, could explain the experimentally determined step-size variability of ∼25 nm for wild-type MVI. Mutations to test the findings by experiment are suggested.  相似文献   

7.
Myosin VI is a member of a superfamily of actin-based motors with at least 18 different sub-types or classes. Myosins are best known as proteins that use ATP-hydrolysis-mediated conformational changes to move along actin filaments. Because of this property, some myosins, including myosins I, V, and VI, are thought to be transporters of vesicle or protein cargoes. Myosin VI has been implicated in many seemingly different processes through functional studies in flies, worms and mammals. In several cases, its role is not easily explained by transport along actin. In addition, some of the biochemical and biophysical properties of myosin VI suggest other mechanisms of action. In this review, we summarize recent data that suggest diverse functions for myosin VI and offer an explanation for how myosin VI may function similarly in all of them. We hypothesize that the main function of myosin VI is to bind tightly to actin, stabilizing actin cytoskeletal structures and linking actin structures to membranes and protein complexes.  相似文献   

8.
Myosins constitute a superfamily of motor proteins that convert energy from ATP hydrolysis into mechanical movement along the actin filaments. Phylogenetic analysis currently places myosins into 17 classes based on class-specific features of their conserved motor domain. Traditionally, the myosins have been divided into two classes depending on whether they form monomers or dimers. The conventional myosin of muscle and nonmuscle cells forms class II myosins. They are complex molecules of four light chains bound to two heavy chains that form bipolar filaments via interactions between their coiled-coil tails (type II). Class I myosins are smaller monomeric myosins referred to as unconventional myosins. Now, at least 15 other classes of unconventional myosins are known. How many myosins are needed to ensure the proper development and function of eukaryotic organisms? Thus far, three types of myosins were found in budding yeast, six in the nematode Caenorhabditis elegans, and at least 12 in human. Here, we report on the identification and classification of Drosophila melanogaster myosins. Analysis of the Drosophila genome sequence identified 13 myosin genes. Phylogenetic analysis based on the sequence comparison of the myosin motor domains, as well as the presence of the class-specific domains, suggests that Drosophila myosins can be divided into nine major classes. Myosins belonging to previously described classes I, II, III, V, VI, and VII are present. Molecular and phylogenetic analysis indicates that the fruitfly genome contains at least five new myosins. Three of them fall into previously described myosin classes I, VII, and XV. Another myosin is a homolog of the mouse and human PDZ-containing myosins, forming the recently defined class XVIII myosins. PDZ domains are named after the postsynaptic density, disc-large, ZO-1 proteins in which they were first described. The fifth myosin shows a unique domain composition and a low homology to any of the existing classes. We propose that this is classified when similar myosins are identified in other species.  相似文献   

9.
Structural and functional characteristics of the motor proteins of the actomyosin motility system, myosins, which can be grouped into 15 classes, are presented in brief. The structure of the myosin molecule is considered: a conservative motor domain of the head with ATP- and actin-binding sites, a head segment associated with light chains, and a tail, which is variable in various myosins performing different functions. We address the progress in the studies of myosin functioning as a motor in the in vitroassay systems. Not only animal and prokaryotic organisms but also Characean algae and plant pollen tubes contributed considerably to these studies as sources of actin and myosin. Higher-plant myosins are characterized. The data are presented concerning the interaction between some myosin forms and other actin-binding proteins and, on the other hand, the phosphoinositol signal transduction pathway, the integral plasmalemmal proteins, and the proteins of the extracellular matrix. The most important idea formulated in the review is that a dynamic reorganization of the actin cytoskeleton is a structural basis for physiological processes in plants.  相似文献   

10.
How myosin VI coordinates its heads during processive movement   总被引:3,自引:0,他引:3       下载免费PDF全文
A processive molecular motor must coordinate the enzymatic state of its two catalytic domains in order to prevent premature detachment from its track. For myosin V, internal strain produced when both heads of are attached to an actin track prevents completion of the lever arm swing of the lead head and blocks ADP release. However, this mechanism cannot work for myosin VI, since its lever arm positions are reversed. Here, we demonstrate that myosin VI gating is achieved instead by blocking ATP binding to the lead head once it has released its ADP. The structural basis for this unique gating mechanism involves an insert near the nucleotide binding pocket that is found only in class VI myosin. Reverse strain greatly favors binding of ADP to the lead head, which makes it possible for myosin VI to function as a processive transporter as well as an actin-based anchor. While this mechanism is unlike that of any other myosin superfamily member, it bears remarkable similarities to that of another processive motor from a different superfamily--kinesin I.  相似文献   

11.
We have extended the X-ray structure determination of the complete scallop myosin head in the pre-power stroke state to 2.6 A resolution, allowing an atomic comparison of the three major (weak actin binding) states of various myosins. We can now account for conformational differences observed in crystal structures in the so-called "pliant region" at the motor domain-lever arm junction between scallop and vertebrate smooth muscle myosins. A hinge, which may contribute to the compliance of the myosin crossbridge, has also been identified for the first time within the regulatory light-chain domain of the lever arm. Analysis of temperature factors of key joints of the motor domain, especially the SH1 helix, provides crystallographic evidence for the existence of the "internally uncoupled" state in diverse isoforms. The agreement between structural and solution studies reinforces the view that the unwinding of the SH1 helix is a part of the cross-bridge cycle in many myosins.  相似文献   

12.
Elastic lever-arm model for myosin V   总被引:1,自引:0,他引:1  
Vilfan A 《Biophysical journal》2005,88(6):3792-3805
We present a mechanochemical model for myosin V, a two-headed processive motor protein. We derive the properties of a dimer from those of an individual head, which we model both with a four-state cycle (detached; attached with ADP.Pi; attached with ADP; and attached without nucleotide) and alternatively with a five-state cycle (where the powerstroke is not tightly coupled to the phosphate release). In each state the lever arm leaves the head at a different, but fixed, angle. The lever arm itself is described as an elastic rod. The chemical cycles of both heads are coordinated exclusively by the mechanical connection between the two lever arms. The model explains head coordination by showing that the lead head only binds to actin after the powerstroke in the trail head and that it only undergoes its powerstroke after the trail head unbinds from actin. Both models (four- and five-state) reproduce the observed hand-over-hand motion and fit the measured force-velocity relations. The main difference between the two models concerns the load dependence of the run length, which is much weaker in the five-state model. We show how systematic processivity measurement under varying conditions could be used to distinguish between both models and to determine the kinetic parameters.  相似文献   

13.
Myosin is a molecular motor and a member of a protein family comprising at least 18 classes. There is an about 1,000-fold difference in the in vitro sliding velocity between the fastest myosin and the slowest one. Previous studies revealed that the hydrophobic triplet in the motor domain (Val534, Phe535, and Pro536 in Dictyostelium myosin) is important for the strong binding of myosin to actin. We studied the role of the triplet in the sliding motion of myosin by means of site directed mutagenesis because the sliding velocity is determined by the time that myosin interacts with actin strongly. We produced mutant Dictyostelium myosins and subfragment-1s that have the triplet sequences of various classes of myosin with different sliding velocities. The V(max) and K(actin) values of the actin-activated ATPase for all these mutant subfragment-1s were lower than those of the wild-type Dictyostelium myosin. The mutant myosins exhibited much lower sliding velocities than the wild type. The time that the mutant subfragment-1s are in the strongly bound state did not correlate well with the sliding velocity. Our results suggested that (i) the hydrophobic triplet alone does not determine the sliding velocity of myosin, (ii) the size of the amino acid side chain in the triplet is crucial for the ATPase activity and the motility of myosin, and (iii) the hydrophobic triplet is important not only for strong binding to actin but also for the structural change of the myosin motor domain during the power stroke.  相似文献   

14.
Myosin VI: cellular functions and motor properties   总被引:2,自引:0,他引:2  
Myosin VI has been localized in membrane ruffles at the leading edge of cells, at the trans-Golgi network compartment of the Golgi complex and in clathrin-coated pits or vesicles, indicating that it functions in a wide variety of intracellular processes. Myosin VI moves along actin filaments towards their minus end, which is the opposite direction to all of the other myosins so far studied (to our knowledge), and is therefore thought to have unique properties and functions. To investigate the cellular roles of myosin VI, we identified various myosin VI binding partners and are currently characterizing their interactions within the cell. As an alternative approach, we have expressed and purified full-length myosin VI and studied its in vitro properties. Previous studies assumed that myosin VI was a dimer, but our biochemical, biophysical and electron microscopic studies reveal that myosin VI can exist as a stable monomer. We observed, using an optical tweezers force transducer, that monomeric myosin VI is a non-processive motor which, despite a relatively short lever arm, generates a large working stroke of 18 nm. Whether monomer and/or dimer forms of myosin VI exist in cells and their possible functions will be discussed.  相似文献   

15.
G Cuda  E Pate  R Cooke    J R Sellers 《Biophysical journal》1997,72(4):1767-1779
Using in vitro motility assays, we examined the sliding velocity of actin filaments generated by pairwise mixings of six different types of actively cycling myosins. In isolation, the six myosins translocated actin filaments at differing velocities. We found that only small proportions of a more slowly translating myosin type could significantly inhibit the sliding velocity generated by a myosin type that translocated filaments rapidly. In other experiments, the addition of noncycling, unphosphorylated smooth and nonmuscle myosin to actively translating myosin also inhibited the rapid sliding velocity, but to a significantly reduced extent. The data were analyzed in terms of a model derived from the original working cross-bridge model of A.F. Huxley. We found that the inhibition of rapidly translating myosins by slowly cycling was primarily dependent upon only a single parameter, the cross-bridge detachment rate at the end of the working powerstroke. In contrast, the inhibition induced by the presence of noncycling, unphosphorylated myosins required a change in another parameter, the transition rate from the weakly attached actomyosin state to the strongly attached state at the beginning of the cross-bridge power stroke.  相似文献   

16.
Xu J  Root DD 《Biophysical journal》2000,79(3):1498-1510
The molecular mechanism of the powerstroke in muscle is examined by resonance energy transfer techniques. Recent models suggesting a pre-cocking of the myosin head involving an enormous rotation between the lever arm and the catalytic domain were tested by measuring separation distances among myosin subfragment-2, the nucleotide site, and the regulatory light chain in the presence of nucleotide transition state analogs. Only small changes (<0.5 nm) were detected that are consistent with internal conformational changes of the myosin molecule, but not with extreme differences in the average lever arm position suggested by some atomic models. These results were confirmed by stopped-flow resonance energy transfer measurements during single ATP turnovers on myosin. To examine the participation of actin in the powerstroke process, resonance energy transfer between the regulatory light chain on myosin subfragment-1 and the C-terminus of actin was measured in the presence of nucleotide transition state analogs. The efficiency of energy transfer was much greater in the presence of ADP-AlF(4), ADP-BeF(x), and ADP-vanadate than in the presence of ADP or no nucleotide. These data detect profound differences in the conformations of the weakly and strongly attached cross-bridges that appear to result from a conformational selection that occurs during the weak binding of the myosin head to actin.  相似文献   

17.
Members of the myosin superfamily of actin-based motor proteins were previously thought to move only towards the barbed end of the actin filament. In an extraordinary reversal of this dogma, an abundant and widespread unconventional myosin known as myosin VI has recently been shown to move towards the pointed end of the actin filament - the opposite direction of all other characterized myosins. This discovery raises novel and intriguing questions about the molecular mechanisms of reversal and the biological roles of this 'backwards' myosin.  相似文献   

18.
Crystal structures of the myosin motor domain in the presence of different nucleotides show the lever arm domain in two basic angular states, postulated to represent prestroke and poststroke states, respectively (Rayment, I. (1996) J. Biol. Chem. 271, 15850-15853; Dominguez, R., Freyzon, Y., Trybus, K. M., and Cohen, C. (1998) Cell 94, 559-571). Contact is maintained between two domains, the relay and the converter, in both of these angular states. Therefore it has been proposed by Dominguez et al. (cited above) that this contact is critical for mechanically driving the angular change of the lever arm domain. However, structural information is lacking on whether this contact is maintained throughout the actin-activated myosin ATPase cycle. To test the functional importance of this interdomain contact, we introduced cysteines into the sequence of a "cysteine-light" myosin motor at position 499 on the lower cleft and position 738 on the converter domain (Shih, W. M., Gryczynski, Z., Lakowicz, J. L., and Spudich, J. A. (2000) Cell 102, 683-694). Disulfide cross-linking could be induced. The cross-link had minimal effects on actin binding, ATP-induced actin release, and actin-activated ATPase. These results demonstrate that the relay/converter interface remains intact in the actin strongly bound state of myosin and throughout the entire actin-activated myosin ATPase cycle.  相似文献   

19.
Early sea urchin development requires a dynamic reorganization of both the actin cytoskeleton and cytoskeletal interactions with cellular membranes. These events may involve the activities of multiple members of the superfamily of myosin motor proteins. Using RT-PCR with degenerate myosin primers, we identified 11 myosin mRNAs expressed in unfertilized eggs and coelomocytes of the sea urchin Strongylocentrotus purpuratus. Seven of these sea urchin myosins belonged to myosin classes Igamma, II, V, VI, VII, IX, and amoeboid-type I, and the remaining four may be from novel classes. Sea urchin myosins-V, -VI, -VII, and amoeboid-type-I were either completely or partially cloned and their molecular structures characterized. Sea urchin myosins-V, -VI, -VII, and amoeboid-type-I shared a high degree of sequence identity with their respective family members from vertebrates and they retained their class-specific structure and domain organization. Analysis of expression of myosin-V, -VI, -VII, and amoeboid-type-I mRNAs during development revealed that each myosin mRNA displayed a distinct temporal pattern of expression, suggesting that myosins might be involved in specific events of early embryogenesis. Interestingly, the onset of gastrulation appeared to be a pivotal point in modulation of myosin mRNA expression. The presence of multiple myosin mRNAs in eggs and embryos provides insight into the potential involvement of multiple specific motor proteins in the actin-dependent events of embryo development.  相似文献   

20.
Myosin VI,an actin motor for membrane traffic and cell migration   总被引:4,自引:0,他引:4  
The actin cytoskeleton and associated myosin motor proteins are essential for the transport and steady-state localization of vesicles and organelles and for the dynamic remodeling of the plasma membrane as well as for the maintenance of differentiated cell-surface structures. Myosin VI may be expected to have unique cellular functions, because it moves, unlike almost all other myosins, towards the minus end of actin filaments. Localization and functional studies indicate that myosin VI plays a role in a variety of different intracellular processes, such as endocytosis and secretion as well as cell migration. These diverse functions of myosin VI are mediated by interaction with a range of different binding partners .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号