首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The specific binding of [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([ 3H]8-OH-DPAT) to 5-hydroxytryptamine (5-HT)-related sites was investigated in several regions of the rat brain. Marked differences were observed in the characteristics of binding to membranes from hippocampus, striatum, and cerebral cortex. Hippocampal sites exhibited the highest affinity (KD approximately 2 nM) followed by the cerebral cortex (KD approximately 6 nM) and the striatum (KD approximately 10 nM). Ascorbic acid inhibited specific [3H]8-OH-DPAT binding in all three regions but millimolar concentrations of Ca2+, Mg2+, and Mn2+ enhanced specific binding to hippocampal membranes, whereas only Mn2+ increased it in the cerebral cortex and all three cations inhibited specific binding to striatal membranes. Guanine nucleotides (0.1 mM GDP, GTP) inhibited binding to hippocampal and cortical membranes only. As intracerebral 5,7-dihydroxytryptamine markedly decreased [3H]8-OH-DPAT binding sites in the striatum, but not in the hippocampus, the striatal sites appear to be on serotoninergic afferent fibers. In contrast, in the hippocampus the sites appear to be on postsynaptic 5-HT target cells, as local injection of kainic acid decreased their density. Both types of sites appear to be present in the cerebral cortex. The postsynaptic hippocampal [3H]8-OH-DPAT binding sites are probably identical to the 5-HT1A subsites, but the relationship between the presynaptic binding sites and the presynaptic autoreceptors controlling 5-HT release deserves further investigation.  相似文献   

2.
5-Hydroxytryptamine1A (5-HT1A) receptor proteins were identified by a novel approach in which photoaffinity labeling technique was used in conjunction with affinity column chromatography. 5-HT1A receptors were solubilized from bovine frontal cortical membranes with 0.3% digitonin and 0.1% Nonidet P-40, and bound effectively to 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP)-coupled Affi-Gel 10 in a time-dependent manner. PAPP was shown previously to be a selective ligand for the 5-HT1A receptor. Two protein bands with molecular masses of approximately 55,000 and 38,000 daltons revealed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis were eluted from the affinity column with either 1 mM 5-HT or 1 microM [3H]1-[2-(4-azidophenyl)ethyl]-4-(3-trifluoromethyl-phenyl)piperazine ([3H]p-azido-PAPP). [3H]p-Azido-PAPP is a selective photoaffinity labeling probe for the 5-HT1A receptor. The intensity of these two protein bands and the incorporation of [3H]p-azido-PAPP into these two proteins decreased significantly when the solubilized fraction was preincubated with excess 5-HT or PAPP (saturating all 5-HT1A receptors) prior to affinity column chromatography. These results suggest strongly that these two proteins are related to the 5-HT1A receptor protein. The isoelectric points of the photolabeled 5-HT1A receptor proteins were 6.0 and 6.5.  相似文献   

3.
Serotonin1 (5-hydroxytryptamine1, 5-HT1) binding sites have been solubilized from bovine brain cortex using a mixture of 0.1% Nonidet P-40 and 0.3% digitonin in a low-salt buffer containing 0.1% ascorbic acid. The affinity of [3H]5-HT for the soluble cortical binding sites (2.1 nM) is identical to its affinity at membrane-bound binding sites (2.1 nM). [3H]8-Hydroxy-2-(di-n-propylamino)tetralin ([3H]DPAT), a selective 5-HT1a radioligand, also binds to soluble cortical binding sites with high affinity (1.8 nM) comparable with its affinity in the crude membranes (1.7 nM). A significant correlation exists in the rank order potency of serotonergic agents for [3H]5-HT binding and for [3H]DPAT binding to crude and soluble membranes. The density of [3H]DPAT binding sites relative to the [3H]5-HT sites in the solubilized cortical membranes (35%) corresponds well with the proportion of 5-HT1a sites in the crude membranes determined by spiperone displacement (33%), suggesting that both the 5-HT1a and 5-HT1b binding sites have been cosolubilized. [3H]5-HT binding in the soluble preparations was inhibited by GTP, suggesting that a receptor complex may have been solubilized. [3H]Spiperone-specific binding was not detectable in this preparation, suggesting that 5-HT2 sites were not cosolubilized.  相似文献   

4.
Serotonin 5-HT1A receptors in rat hippocampal membranes were solubilized by 10 mM 3-[3-(cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) and chromatographed on various gels in an attempt to design a relevant protocol for their (partial) purification. In particular, an affinity gel made of the 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) derivative 8-methoxy-2-[(N-propyl, N-butylamino)amino]tetralin (8-MeO-N-PBAT) coupled to Affigel 202 was specially developed for this purpose. First, studies of the effects of various compounds (detergents, lipids, reducing agents, sugars, etc.) on the specific binding of [3H]8-OH-DPAT and on the rate of heat-induced inactivation of solubilized 5-HT1A sites led to a buffer composed of 50 mM Tris-HCl, 50 microM dithiothreitol, 1 mM CHAPS, 10% glycerol, 0.1 mM MnCl2, and 50 micrograms/ml of cholesteryl hemisuccinate, pH 7.4, ensuring a high degree of stability of solubilized 5-HT1A sites, compatible with chromatographic analyses for 2-4 days at 4 degrees C. Adsorption and subsequent elution of [3H]8-OH-DPAT specific binding sites were found with several chromatographic gels, including wheat germ agglutinin-agarose, phenyl-Sepharose, hydroxylapatite-Ultrogel, diethylaminoethyl (DEAE)-Sepharose, and DEAE-Sephacel. Similarly, 8-MeO-N-PBAT-Affigel 202 allowed the adsorption and subsequent elution (by 1 mM 5-HT) of active 5-HT1A binding sites solubilized from rat hippocampal membranes. The two-step chromatography using 8-MeO-N-PBAT-Affigel 202 followed by wheat germ agglutinin-agarose gave a fraction enriched (by at least 400-fold) in 5-HT1A sites. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this partially purified fraction revealed a major protein band with Mr close to 60,000.  相似文献   

5.
Previous studies on central 5-hydroxytryptamine1A (5-HT1A) receptors have consistently shown the existence of a GTP-insensitive component of agonist binding, i.e., binding of [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT) that persists in the presence of 0.1 mM GTP or guanylylimidodiphosphate (GppNHp). The molecular basis for this apparent heterogeneity was investigated pharmacologically and biochemically in the present study. The GppNHp-insensitive component of [3H]8-OH-DPAT binding increased spontaneously by exposure of rat hippocampal membranes or their 3-[3-(cholamidopropyl)dimethylammonio]-1-propane sulfonate-soluble extracts to air; it was reduced by preincubation of solubilized 5-HT1A binding sites in the presence of dithiothreitol and, in contrast, reversibly increased by preincubation in the presence of various oxidizing reagents like sodium tetrathionate or hydrogen peroxide. In addition, exposure of hippocampal soluble extracts to short-cross-linking reagents specific for thiols produced an irreversible increase in the proportion of GppNHp-insensitive over total [3H]8-OH-DPAT binding. The pharmacological properties of this GppNHp-insensitive component of [3H]8-OH-DPAT binding were similar to those of 5-HT1A sites in the absence of nucleotide. Sucrose gradient sedimentation of solubilized 5-HT1A binding sites treated by dithiothreitol or sodium tetrathionate showed that oxidation prevented the dissociation by GTP of the complex formed by the 5-HT1A receptor binding subunit (R[5-HT1A]) and a guanine nucleotide-binding protein (G protein). Moreover, the oxidation of -SH groups by sodium tetrathionate did not prevent the inactivation of [3H]8-OH-DPAT specific binding by N-ethylmaleimide, in contrast to that expected from an interaction of both reagents with the same -SH groups on the R[5-HT1A]-G protein complex. These data suggest that the appearance of GTP-insensitive [3H]8-OH-DPAT specific binding occurs as a result of the (spontaneous) oxidation of essential -SH groups (different from those preferentially inactivated by N-ethylmaleimide) on the R[5-HT1A]-G protein complex.  相似文献   

6.
1-[2-(4-Aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP) inhibits [3H]5-hydroxytryptamine (5-HT, serotonin) binding to 5-HT1A and 5-HT1B sites in rat brain with apparent equilibrium dissociation constants (KD) of 2.9 and 328 nM, respectively. [3H]PAPP was synthesized, its binding to central serotonin receptors was examined, and its potential usefulness as a 5-HT1A receptor radioligand was evaluated. With either 10 microM 5-HT or 1 microM 8-hydroxy-2-(di-n-propylamino)tetralin to define nonspecific binding, [3H]PAPP bound to a single class of sites in rat cortical membranes with a KD of 1.6 nM and a maximal binding density (Bmax) of 162 fmol/mg of protein. d-Lysergic acid diethylamide and 5-HT, two nonselective inhibitors of [3H]5-HT binding, displaced 1 nM [3H]PAPP with a potency that matched their affinity for 5-HT1 receptors. Spiperone and 8-hydroxy-2-(di-n-propylamino)tetralin, two compounds that discriminate [3H]5-HT binding to 5-HT1A and 5-HT1B sites, inhibited [3H]PAPP binding in accordance with their much higher affinities for the 5-HT1A receptor subtype. Furthermore, the ability of N-(m-trifluoromethylphenyl)piperazine and ketanserin to inhibit [3H]PAPP binding reflected their low affinities for the 5-HT1A receptor. Several nonserotonergic compounds were also found to be relatively poor displacers of [3H]PAPP binding. The regional distribution of serotonin-sensitive [3H]PAPP sites correlated with the densities of 5-HT1A receptors in the cortex, hippocampus, corpus striatum, and cerebellum of the rat. These results indicate that [3H]PAPP binds selectively and with high affinity to 5-HT1A receptor sites in rat brain.  相似文献   

7.
[3H]Spiroxatrine: A 5-HT1A Radioligand with Agonist Binding Properties   总被引:1,自引:0,他引:1  
Spiroxatrine has been reported to be a 5-HT1A serotonin receptor antagonist. Therefore [3H]spiroxatrine was synthesized and its 5-HT1A receptor binding properties in homogenates of rat hippocampal membranes were characterized with the expectation that it would be the first 5-HT1A antagonist radioligand. [3H]8-Hydroxydipropylaminotetralin [( 3H]8-OH-DPAT), a well-characterized 5-HT1A agonist radioligand, was studied in parallel for comparative purposes. Scatchard analyses of saturation studies of [3H]spiroxatrine and [3H]8-OH-DPAT binding produced KD values of 0.9 nM and 1.8 nM, with Bmax values of 424 and 360 fmol/mg protein, respectively. A highly significant correlation (r = 0.98; p less than 0.001) exists between Ki values obtained for a series of drugs in competing for [3H]-spiroxatrine and [3H]8-OH-DPAT binding. Of special interest was the observation that 5-HT1A agonists such as serotonin, 8-OH-DPAT, and ipsapirone competed with equal high affinities for [3H]spiroxatrine or [3H]8-OH-DPAT-labelled 5-HT1A receptors. [3H]Spiroxatrine and [3H]8-OH-DPAT binding to 5-HT1A receptors was inhibited by guanosine 5'-(beta,gamma-imido)triphosphate (a nonhydrolyzable analog of GTP) in a concentration-dependent manner whereas adenosine 5'-(beta,gamma-imido)triphosphate (a nonhydrolyzable analog of ATP) had no effect. The similarities in the 5-HT1A receptor radiolabelling properties of [3H]spiroxatrine and [3H]8-OH-DPAT, i.e., the high affinities of agonists and the guanyl nucleotide sensitivity, indicate that [3H]spiroxatrine has "agonist-like" binding properties in its interaction with the 5-HT1A receptor.  相似文献   

8.
The binding of [3H]5-hydroxytryptamine (5-HT, serotonin) to cerebellar membranes was examined after preincubation of [3H]5-HT in the presence or absence of ascorbate. The tissue preparation was identical in all experiments and consisted of rat cerebellar homogenates in Tris-HCl buffer with 0.1% ascorbate. Cerebellar membranes were used because of their low density of 5-HT1 binding sites. In the presence of ascorbate during a 4-h preincubation period, minimal specific binding of 2 nM [3H]5-HT is detected. Similar results are obtained with equimolar concentrations of other antioxidants (butylated hydroxytoluene, sodium dithionite, and sodium metabisulfite). Apparent specific binding increases 14-fold following a 4-h preincubation of [3H]5-HT in the absence of ascorbate. The increase in apparent specific [3H]5-HT binding is time-dependent and plateaus after 4-6 h of preincubation. When ascorbate is present during the 4-h preincubation, Scatchard analysis of [3H]5-HT binding reveals a KD value of 3.0 +/- 0.3 nM and a Bmax value of 1.9 +/- 0.2 pmol/g tissue. When ascorbate is absent during the preincubation, the KD is essentially unchanged at 3.6 +/- 0.1 nM but the Bmax is significantly increased to 36.5 +/- 7 pmol/g tissue. Drug competition studies reveal that the apparent specific "[3H]5-HT binding" in the absence of ascorbate appears to be displaced by nanomolar concentrations of hydroxylated tryptamines (5-HT, bufotenine) but not by nonhydroxylated tryptamines (5-methoxytryptamine, tryptamine). HPLC analysis demonstrates that [3H]5-HT is essentially destroyed by a 4-h incubation at 22 degrees C in the absence of ascorbate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Rat hippocampal 5-hydroxytryptamine1A (5-HT1A) binding sites were solubilized with a yield of 34% using 3-[3-(cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS, 10 mM) as detergent. Kinetic analyses of [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT) binding indicated that the 5-HT1A sites exhibit the same properties in the soluble form as in the membrane-bound form. Furthermore, a positive correlation (r = 0.988) was found between the respective pIC50 values of a series of agonists and antagonists to inhibit [3H]8-OH-DPAT binding to either soluble or membrane-bound 5-HT1A sites. Gel filtration through Sephacryl S-400 as well as chromatography on wheat germ agglutinin (WGA)-agarose did not affect the modulation by guanine nucleotides (5'-guanylylimidodiphosphate) of [3H]8-OH-DPAT binding which suggests that the 5-HT1A binding subunit is a glycoprotein tightly attached to a G protein even in its soluble form. The [3H]8-OH-DPAT binding material eluted from Sephacryl S-400 had an apparent molecular mass of 155 kilodaltons, as expected from a heterodimer with one binding subunit (approximately 60 kilodaltons) and one G protein (approximately 80 kilodaltons). Marked enrichment in 5-HT1A binding sites relative to other soluble proteins was found in the peak fractions eluted from Sephacryl S-400 (by sixfold) and WGA-agarose (by 26-fold) columns, suggesting that these chromatographic steps might be of interest for the purification of central 5-HT1A receptors.  相似文献   

10.
We studied [3H]N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine [( 3H]TCP) binding to human frontal cortex obtained at autopsy from 10 histologically normal controls and eight histopathologically verified cases with Alzheimer-type dementia (ATD). Extensively washed membrane preparations were used to minimize the effects of endogenous substances. In ATD frontal cortex, the total concentration (Bmax) of [3H]TCP binding sites was significantly reduced by 40-50%. The apparent dissociation constant (KD) values showed no significant change. The reduction in binding capacity was also apparent in Triton X-100-treated membrane preparations, and there was a linear correlation between the number of [3H]TCP binding sites and that of N-methyl-D-aspartate (NMDA)-sensitive [3H]glutamate binding sites. [3H]TCP binding sites spared in ATD brains retained the affinity for the ligand and the reactivity to NMDA, L-glutamate, and glycine. These results suggest that the primary change in NMDA receptor-ion channel complex in ATD brains is the reduction of its number, possibly reflecting the loss of neurons bearing these receptor complexes, and that the functional linkage within the receptor complexes spared in ATD brains remains normal.  相似文献   

11.
A number of 5-hydroxytryptamine (5-HT) uptake inhibitors have been shown to displace the binding of [3H]imipramine to rat cortical membranes in a complex manner with Hill slopes less than unity. Norzimeldine displaced the binding of [3H]imipramine in a biphasic manner with IC50 values for the two components of about 30 nM and 30 microM. This latter site alone was found in tissues that had been treated with a protease. Binding to both of these sites was displaced by 10 microM desipramine. The protease-sensitive [3H]imipramine binding sites were found to be saturable, high-affinity binding sites with a KD of 8 nM. The number of these sites varied between brain regions and was positively correlated with the regional distribution of [14C]5-HT but not [3H]noradrenaline uptake. This was not the case however for the protease-resistant but desipramine-displaceable binding sites. Since most previous [3H]imipramine binding studies have been performed with high concentrations of desipramine (10 microM) to define "specific binding," these data would suggest that either protease-sensitivity or displacability by 1 microM norzimeldine would give more reliable estimates of the specific binding.  相似文献   

12.
The binding of the 5-hydroxytryptamine (5-HT, serotonin) uptake inhibitor [3H]paroxetine to rat cortical homogenates has been characterized. The effect of tissue concentration was examined and, with 0.75 mg wet weight tissue/ml in a total volume of 1,600 microliter, the binding was optimized with an apparent dissociation constant (KD) of 0.03-0.05 nM. Competition experiments with 5-HT, citalopram, norzimeldine, and desipramine revealed a high (90%) proportion of displaceable binding that fitted a single-site binding model. Fluoxetine and imipramine revealed, in addition to a high-affinity (nanomolar) site, also a low-affinity (micromolar) site representing approximately 10% of the displaceable binding. The specificity of the [3H]paroxetine binding was emphasized by the fact that 5-HT was the only active neurotransmitter bound and that the serotonin S1 and S2 antagonist methysergide was without effect on the binding. Both 5-HT- and fluoxetine-sensitive [3H]paroxetine binding was completely abolished after protease treatment, suggesting that the binding site is of protein nature. Saturation studies with 5-HT (100 microM) sensitive [3H]paroxetine binding were also consistent with a single-site binding model, and the binding was competitively inhibited by 5-HT and imipramine. The number of binding sites (Bmax) for 5-HT-sensitive [3H]paroxetine and [3H]imipramine binding was the same, indicating that the radioligands bind to the same sites. Lesion experiments with p-chloroamphetamine resulted in a binding in frontal and parietal cortices becoming undetectable and a greater than 60% reduction in the striatum and hypothalamus, indicating a selective localization on 5-HT terminals. Together these findings suggest that [3H]paroxetine specifically and selectively labels the substrate recognition site for 5-HT uptake in rat brain.  相似文献   

13.
Citalopram, a selective serotonin (5-HT) uptake inhibitor with antidepressant properties, was found to bind with high affinity to the 5-HT transporter from human neuronal and platelet membranes. At 20 degrees C, KD was about 1.5 nM in both tissues. [3H]Citalopram bound to rat neuronal membranes with higher affinity than to human neuronal and platelet membranes; at 20 degrees C KD was about 0.7 nM. The Bmax value for the binding of [3H]citalopram to platelet membranes was close to that found using the 5-HT uptake inhibitors [3H]imipramine and [3H]paroxetine, suggesting that all three 5-HT uptake inhibitors bind to the 5-HT transporter. The dissociation rate of [3H]citalopram increased twofold with each 4-5 degree C increase in temperature in both human and rat membranes, although at any given temperature, the dissociation rate was about four times faster in the human neuronal and platelet membranes than in rat neuronal membranes.  相似文献   

14.
Abstract: With [3H]guanosine triphosphate ([3H]GTP) and [3H]β, γ -imidoguanosine 5′-triphosphate ([3H]GppNHp) as the labelled substrates, both the binding and the catabolism of guanine nucleotides have been studied in various brain membrane preparations. Both labelled nucleotides bound to a single class of noninteracting sites (KD= 0.1-0.5 μm ) in membranes from various brain regions (hippocampus, striatum, cerebral cortex). Unlabelled GTP, GppNHp, and guanosine diphosphate (GDP) but not guanosine monophosphate (GMP) and guanosine competitively inhibited the specific binding of [3H]guanine nucleotides. Calcium (0.1–5 mm ) partially prevented the binding of [3H]GTP and [3H]GppNHp to hippocampal and striatal membranes. This resulted from both an increased catabolism of [3H]GTP (into [3H]guanosine) and the likely formation of Ca-guanine nucleotide2- complexes. The blockade of guanine nucleotide catabolism was responsible for the enhanced binding of [3H]GTP to hippocampal membranes in the presence of 0.1 mm -ATP or 0.1 mm -GMP. Striatal lesions with kainic acid produced both a 50% reduction of the number of specific guanine nucleotide binding sites and an acceleration of [3H]GTP and [3H]GppNHp catabolism (into [3H]guanosine) in membranes from the lesioned striatum. This suggests that guanine nucleotide binding sites were associated (at least in part) with intrinsic neurones whereas the catabolising enzyme(s) would be (mainly) located to glial cells (which proliferate after kainic acid lesion). The characteristics of the [3H]guanine nucleotide binding sites strongly suggest that they may correspond to the GTP subunits regulating neurotransmitter receptors including those labelled with [3H]5-hydroxytryptamine ([3H]5-HT) in the rat brain.  相似文献   

15.
Certain neuroleptic drugs, such as spiperone and (+) butaclamol, can discriminate between two populations of [3H]5-hydroxytryptamine ([3H]5-HT) binding sites in rat brain. The butyrophenone neuroleptic spiperone shows the greatest selectivity for these two binding sites, having at least a 3000-fold difference between its dissociation constants (2-12 nM versus 35,000 nM) for the high- and low-affinity sites, respectively. Inhibition of [3H]5-HT binding by spiperone in rat frontal cortex and corpus striatum yields distinctly biphasic inhibition curves with Hill slopes significantly less than unity. Results from nonlinear regression analysis of these inhibition studies were consistent with a two-site model in each brain region. In the frontal cortex the high-affinity neuroleptic sites comprised about 60% of the total [3/H]5-HT binding sites whereas in the corpus striatum they accounted for only 20% of the sites. Furthermore, saturation studies of [3H]5-HT binding assayed in the absence or presence of 1 μM-spiperone (a concentration that completely blocks the high-affinity site while having minimal activity at the low-affinity site) reveal a parallel shift in the Scatchard plot with no change in the dissociation constant of [3H]5-HT, but a significant decrease (64% in frontal cortex or 28% in corpus striatum) in the number of specific binding sites. These observations are consistent with the existence of at least two populations of [3H]5-HT binding sites having a differential regional distribution in rat brain.  相似文献   

16.
Specific binding sites with pharmacological properties typical of serotonin 5-HT3 receptors were identified in membranes of the murine hybridoma cell line NG 108-15, using [3H]zacopride as a ligand. Optimal solubilization of these sites (yield, 50%) could be achieved using the detergent 3-[3-(cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) at 24 mM plus 0.5 M NaCl in 25 mM Tris-HCl, pH 7.4. Specific [3H]zacopride binding to soluble sites in the 100,000-g CHAPS extract was saturable and showed characteristics (Bmax = 425 +/- 81 fmol/mg of protein; KD = 0.19 +/- 0.02 nM) closely related to those of membrane-bound sites (Bmax = 932 +/- 183 fmol/mg of protein; KD = 0.60 +/- 0.03 nM). Determination of association (k+1 = 0.17 nM min-1) and dissociation (k-1 = 0.02 min-1) rate constants for the soluble sites gave a KD value of 0.12 nM, a result consistent with that calculated from saturation studies. As assessed from the displacement potencies (IC50) of 10 different drugs, the pharmacological profile of [3H]zacopride specific binding sites was essentially the same (r = 0.99) in the CHAPS-soluble extract and in cell membranes, although some increase in the affinity for 5-HT3 antagonists (zacopride, ICS 205-930, and MDL 72222) and decrease in the affinity for 5-HT3 agonists (2-methyl-5-hydroxytryptamine and phenylbiguanide) were noted for the soluble sites. Sucrose density gradient sedimentation of the CHAPS-soluble extract gave a Svedberg coefficient of 12S for the material with [3H]zacopride specific binding capacity. Chromatographic analyses using Sephacryl S-400 and wheat germ agglutinin-agarose columns indicated marked enrichment (by 2.5- and 10-fold, respectively) in [3H]zacopride specific binding activity in the corresponding eluates compared with the starting soluble extract, a finding suggesting that both steps are of potential interest for the partial purification of solubilized 5-HT3 receptors. Two soluble materials with apparent molecular masses of approximately 600 and approximately 36 kDa were found to bind [3H]zacopride specifically in the Sephacryl S-400 eluate. Interestingly, molecular mass determination by radiation inactivation of [3H]zacopride binding sites in frozen NG 108-15 cells gave a value of approximately 35 kDa.  相似文献   

17.
Seasonal rhythmicity in the occurrence of acute depressive episodes and the therapeutic efficacy of light exposure suggest the possible involvement of the pineal gland or other biological oscillators in the pathophysiology of depressive illness. We have performed studies to clarify whether different light/dark (LD) cycle schedules may induce changes in the biochemical targets of antidepressants in the rat CNS. In particular, we have investigated the effect of short- (LD 8:16) or long-day (LD 14:10) photoperiods on different biochemical parameters of serotonergic neurons. A significant increase in the density of [3H]imipramine ([3H]IMI) binding and in the Vmax of 5-[3H]hydroxytryptamine (5-[3H]HT) uptake was found in the hypothalamus of LD 8:16-with respect to LD 14:10-exposed rats, whereas no difference was found in the kinetic properties of postsynaptic 5-HT receptors and in 5-HT metabolism in the hypothalami and cerebral cortices of rats exposed to the two different photoperiods. A seasonal rhythm of [3H]IMI binding sites and 5-HT uptake seems to exist only in certain brain areas, such as the hypothalamus, because no differences were found in the cerebral cortex of LD 14:10- and LD 8:16-accustomed rats. [3H]IMI binding and 5-HT uptake were significantly increased in the hypothalamus of rats accustomed to a light/dark-inverted cycle (DL 10:14) and killed 6 h after the stopping of lighting in comparison to rats exposed to normal LD 14:10 cycles and killed 6 h after the beginning of lighting. Therefore, a circadian modification of the serotonergic presynaptic sites seems to be present and related to light/dark exposure. Because the existence of endogenous compounds able to modulate [3H]IMI binding and 5-HT uptake, other than 5-HT, has been postulated in the mammalian brain, the involvement of these substances in the periodic changes observed could be suggested.  相似文献   

18.
A synthetic derivative of gamma-aminobutyric acid (GABA), SR 95531 [2-(3'-carboxy-2'-propyl)-3-amino-6-p-methoxyphenylpyridazinium bromide], has recently been reported, on the basis of biochemical and in vivo microiontophoretic studies, to be a potent, selective, competitive, and reversible GABAA antagonist. In the present study, the binding of [3H]SR 95531 to washed, frozen, and thawed rat brain membranes was characterized. Specific binding was linear with tissue concentrations, had a pH optimum at neutrality, and was maximal at 4 degrees C after 30 min of incubation. Pretreatment of the membranes with Triton X-100 resulted in a 50% decrease of specific binding. Addition of iodide, thiocyanate, or nitrate to the incubation mixture decreased the affinity of [3H]SR 95531 for its binding site; Na+ had no effect. Subcellular fractionation showed that 74% of the P2 binding was in synaptosomes; 31% of the total homogenate binding was in P2 and 50% in P3. The binding of [3H]SR 95531 was saturable; Scatchard analysis of the saturation isotherm revealed two apparent populations of binding sites (KD of 6.34 nM and Bmax of 0.19 pmol/mg of protein; KD of 32 nM and Bmax of 0.81 pmol/mg of protein). The binding of [3H]SR 95531 was reversible, and association and dissociation kinetics confirmed the existence of two binding sites. Only GABAA ligands were effective displacers of [3H]SR 95531. GABAA antagonists were relatively more potent in displacing [3H]SR 95531 than [3H]GABA; the inverse was true for GABAA agonists. There were marked regional differences in the distribution of binding sites: hippocampus = cerebral cortex greater than thalamus = olfactory bulb = hypothalamus = amygdala = striatum greater than pons-medulla and cerebellum. The surprisingly low density of binding sites in the cerebellum was owing to a marked reduction of Bmax values at both the high- and the low-affinity binding sites. In conclusion, the present results demonstrate specific, high-affinity, saturable, and reversible binding of [3H]SR 95531 to rat brain membranes and strongly suggest that this radioligand labels the GABAA receptor site in its antagonist conformation.  相似文献   

19.
[3H]WIN 35,065-2 binding to striatal membranes was characterized, primarily by centrifugation assay. Like [3H]cocaine, [3H]WIN 35,065-2 binds to both high- and low-affinity sites. [3H]WIN 35,065-2, however, exhibits consistently higher affinities than [3H]cocaine. Saturation experiments indicate a low-affinity binding site with an apparent KD of approximately 160 nM and a Bmax of 135 fmol/mg of tissue. A high-affinity site has also been identified with an apparent KD of 5.6 nM and a Bmax of 5.2 fmol/mg of tissue. The specific-to-nonspecific binding ratios with [3H]WIN 35,065-2 were higher than with [3H]cocaine in both centrifugation and filtration assays. Pharmacological characterization suggests that [3H]WIN 35,065-2 binds to the dopamine transporter. Mazindol, GBR 12909, nomifensine, and (-)-cocaine are potent inhibitors of [3H]WIN 35,065-2 binding. In contrast, the norepinephrine transporter ligand desipramine is a weak inhibitor, and the serotonin transporter ligand citalopram does not inhibit binding. The effect of sodium on binding was examined under conditions in which (a) the low-affinity site was primarily (87%) occupied and (b) approximately 50% of both sites were occupied. The results indicate that both sites are sodium dependent. Injection of 6-hydroxydopamine into the striatum results in a significant loss of both high- and low-affinity sites, a finding suggesting that both sites are on dopaminergic nerve terminals. Taken together, these data are consistent with the presence of multiple cocaine binding sites associated with the dopamine transporter.  相似文献   

20.
A superfusion system employed to measure the K+-stimulated release of [3H]5-hydroxytryptamine [(3H]5-HT, [3H]serotonin) from a synaptosomal-rich spinal cord tissue preparation was carefully characterized, then used to examine the regulation of spinal 5-HT release. Spinal 5-HT release is apparently modulated by an autoreceptor. Exogenous 5-HT depressed, in a concentration-dependent manner, the K+-stimulated release of [3H]5-HT. Similarly, lysergic acid diethylamide (LSD) produced a concentration-dependent decrease in [3H]5-HT release. Methiothepin and quipazine blocked the inhibition of release induced by exogenous 5-HT. The 5-HT2 receptor antagonists spiperone and ketanserin failed to alter the action of 5-HT at the spinal 5-HT autoreceptor. Spiperone and ketanserin were shown, however, to alter the storage of [3H]5-HT. When used in concentrations greater than 10 nM, the drugs evoked increases in basal [3H]5-HT and [3H]5-hydroxyindoleacetic acid ( [3H]5-HIAA) effluxes which were independent of the presence of calcium ions. A good agreement existed between the potencies of drugs for modifying autoreceptor function and their abilities to compete for high-affinity [3H]5-HT binding in the spinal cord (designated 5-HT1). Furthermore quipazine, in concentrations that preferentially interact with the 5-HT1B subtype, antagonized the actions of exogenous 5-HT on K+-stimulated release. Spiperone, in a concentration that approximated the affinity constant of 5-HT1A sites for the drug, was ineffective in altering the ability of exogenous 5-HT to modulate K+-stimulated [3H]5-HT release. These results suggest that 5-HT1B sites are associated with serotonergic autoreceptor function in the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号