首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
Brain-retrocerebral complexes of female crickets,Gryllus bimaculatus andAcheta domesticus, treated with antibody to allatostatin-1 from a cockroach,Diploptera punctata, show extensive immunoreactivity. The results suggest that allatostatins or allatostatin-like molecules are produced in neurosecretory cells of the brain and are delivered to the corpora allata through nervous connections and/or via haemolymph. Radiochemical measurements of juvenile hormone III biosynthesis by isolated corpora cardiaca-corpora allata complexes from adultG. bimaculatus have been used to demonstrate an in vitro sensitivity of these glands to allatostatin-1 fromD. punctata. Allatostatin-1 is a relatively potent inhibitor of juvenile hormone III biosynthesis in corpora allata of both young adult females and males. In glands taken from 3-day virgin females, 50% inhibition of hormone biosynthesis is reached at ca. 3 nmol·l-1 allatostatin-1. The inhibitory action of allatostatin-1 is rapid, dose-dependent and reversible. Addition of 200 mol·l-1 farnesol to the incubation medium prevents inhibition of juvenile hormone III biosynthesis by allatostatin-1. Juvenile hormone III biosynthesis by isolated corpora allata of 3-day female house crickets,A. domesticus, is also susceptible to inhibition by 1 mol·l-1 allatostatin-1.Abbreviations ASB2 Diploptera punctata allatostatin-5 - CA corpora allata - CC corpora cardiaca - Dip A-1 Diploptera punctata allatostatin-1 - HEPES 4-(2-hydroxyethyl)piperazine-1-ethanesulphonic acid - JH juvenile hormone(s) - Mas-AS Manduca sexta allatostatin - MF methyl farnesoate - NCA nervus corporis allati - NCC nervus corporis cardiaci - SEM standard error of mean - TRIS Tris(hydroxymethyl)aminomethane  相似文献   

2.
Retrograde and orthograde labeling of neurons projecting to the corpus allatum was performed in locust, grasshopper, cricket, and cockroach species in order to identify brain neurons that may be involved in the regulation of juvenile hormone production. In the acridid grasshopper Gomphocerus rufus L., and the locusts Locusta migratoria (R.&F.) and Schistocerca gregaria Forskal, the corpora allata are innervated by two morphologically distinguishable types of brain neurons. One group of 9–13 neurons (depending on species) with somata in the pars lateralis extend axons via the nervus corporis cardiaci 2 and nervus corporis allati 1 to the ipsilateral corpus allatum, whereas two cells in each pars lateralis have bilateral projections and innervate both glands. No direct connection between the pars intercerebralis and corpus allatum has been found. In contrast, neurons with paired axons innervating both glands are not present in Periplaneta americana (L.) and Gryllus bimaculatus de Geer. Instead, two cells in each pars lateralis project only to the gland contralateral to their somata. Electrophysiological experiments on acridid grasshoppers have confirmed the existence of a direct conduction pathway between the two glands via the paired axons of four cells that have been identified by neuroanatomy. These cells are not spontaneously active under experimental conditions. Ongoing discharges in the left and right nerves are unrelated, suggesting that the corpora allata receive independent neuronal inputs from the brain.  相似文献   

3.
Summary The distribution of octopamine in the metathoracic ganglion, brain and corpus cardiacum of Locusta migratoria and Schistocerca gregaria was investigated by means of immunocytochemistry with an antiserum against octopamine. The dorsal unpaired median (DUM) cells of the metathoracic ganglion were found to be strongly octopamine-immunoreactive. In the rostroventral part of the protocerebrum a group of seven immunopositive cells was demonstrated. Stained nerve fibres of these cells run into three directions: circumoesophageal connectives, midbrain, and optic lobes. As far as the protocerebrum is concerned, immunoreactive fibres were found in the central body, the protocerebral bridge, and in other neuropile areas. In the optic lobe a dense plexus of immunopositive fibres was found in the lobula and in the medulla. In the brain one other immunopositive cell was demonstrated, situated at the lateral border of the tritocerebrum. Octopamine could not be shown to occur either in the globuli cells of the mushroom bodies or in the dorsolateral part of the protocerebrum, where the perikarya of the secretomotor neurones are located that innervate the glandular cells of the corpus cardiacum. In the nervi corporis cardiaci II, which contain the axons of the neurones that extend into the glandular part of the corpus cardiacum, and in the corpus cardiacum proper no specific octopamine immunoreactivity could be found.  相似文献   

4.
Immunoreactivity to cockroach Diploptera punctata allatostatin-7 (Dippu AST-7) has been demonstrated previously in axons innervating the corpora allata of the termite Reticulitermes flavipes. This peptide and Dippu AST-11 inhibited juvenile hormone (JH) synthesis by corpora allata (CA) of brachypterous neotenic reproductives (secondary reproductives) of termites. The present study shows that R. flavipes CA are also inhibited by Dippu AST-2, AST-5, AST-8, and AST-9 at approximately the same rank order of potency as demonstrated in D. punctata. Another allatostatin from Periplaneta americana (Peram AST-12) also inhibits JH synthesis by R. flavipes CA. Sensitivity to the allatostatins is higher in glands with low rates of JH synthesis than in those with relatively high JH synthetic rates as has been demonstrated in CA from male and female secondary reproductives as well as in those from non-egg-laying and egg-laying females. The identical inhibitory effects of R. flavipes brain extract on CA from both D. punctata and R. flavipes and the isolation and identification of five cockroach allatostatins (Dippu AST-1, AST-2, AST-5, AST-8, and Peram AST-12) from termite brain extract reflect the close relationship between cockroaches and termites.  相似文献   

5.
Summary A monoclonal antibody against allatostatin I was used to demonstrate the allatostatin-immunoreactive pathways between the brain and the corpus cardiacum-corpus allatum complex in the adult cockroach Diploptera punctata. The antibody was two to three orders of magnitude more sensitive to allatostatin I than to the other four known members of the allatostatin family. Whole and sectioned brains in which immunoreactivity was localized with horseradish peroxidase-H2O2-diaminobenzidine reaction showed strongly immunoreactive cells in the pars lateralis of the brain with axons leading to and arborizing in the corpus cardiacum and the corpus allatum. Although many neurosecretory cells of the pars intercerebralis project to the corpora allata only, four strongly immunoreactive cells were evident here (two pairs on either side), and these did not project to the corpus cardiacum and corpus allatum but rather terminated within the protocerebrum in areas in which lateral cells also formed arborizations. Immunoreactivity was found in many other cells in the brain, especially in the tritocerebrum.  相似文献   

6.
Clark L  Agricola HJ  Lange AB 《Peptides》2006,27(3):549-558
Proctolin-like immunoreactivity (PLI) was widely distributed in the locust, Locusta migratoria, within the central, peripheral and stomatogastric nervous systems, as well as the digestive system and retrocerebral complex. Proctolin-like immunoreactivity was observed in cells and processes of the brain and all ganglia of the ventral nerve cord. Of interest, PLI was found in the lateral neurosecretory cells, which send axons within the paired nervi corporis cardiaci II (NCC II) to the corpus cardiacum (CC). The CC contained extensive processes displaying PLI, which continued on within the paired nervi corporis allata (NCA) to the paired corpora allata (CA) where the axons entered and branched therein. The frontal and hypocerebral ganglia of the stomatogastric nervous system contained PLI within processes, resulting in a brightly staining neuropile. Each region of the gut contained PLI in axons and processes of varying patterns and densities. The paired ingluvial ganglia contained PLI, including an extensively stained neuropile and immunoreactive axons projecting through the nerves to the foregut. The hindgut contained PLI within longitudinal tracts, with lateral projections originating from the 8th abdominal ganglion via the proctodeal nerve. The midgut contained PLI in a regular latticework pattern with many varicosities and blebs. No difference in PLI in cells and processes of the central nervous system (CNS) was found between males and females.  相似文献   

7.
To study the effect of brain signals on the biosynthesis of juvenile hormone by the corpora allata of the grey fleshfly Neobellieria bullata, exposed corpora allata connected to the brain were surgically removed from sugar-fed flies and incubated in vitro with L -[3H-methyl]methionine. After incubation, the media together with the tissues were analyzed by HPLC. [3H]Juvenile hormone III (JH III), [3H]JH III bisepoxide (BE), [3H]methyl farnesoate (MF) and an unknown [3H]labeled metabolite (Un) were identified as the primary products. The rate of synthesis of [3H]JH III bisepoxide was higher than that of [3H]JH III, [3H]MF and [3H]Un. Two days after a liver meal, female flies synthesized more JH III, MF, BE, and the Un than did males. Synthesis of JH III, BE, and MF in females was lower during the previtellogenic, sugar-feeding period than during the vitellogenic liver-feeding period. Isolated corpus cardiacum–corpus allatum (CC-CA) complexes that were incubated in vitro synthesized less JH III, MF, and BE, as compared to complexes that were attached to the brain, indicating that the brain probably modulates the biosynthesis of JH III, MF, and BE in the corpora allata. Upon incubation of brain–CC–CA complexes with Neb-TMOF (10–8 M), Neb-colloostatin (10–8 M), ovarian, or brain extracts resulted in significant inhibition of JH III and BE biosynthesis in the presence of ovarian extracts. These results indicate that allatostatin-like factors are present in the ovary of the flesh fly. Arch. Insect Biochem. Physiol. 37:248–256, 1998. © 1998 Wiley–Liss, Inc.  相似文献   

8.
Incubation of corpora cardiaca from adult male Periplaneta americana in the presence of octopamine results in elevated tissue levels of cyclic AMP. The octopamine-induced elevation of cyclic AMP is partially blocked by phentolamine, gramine and cyproheptadine but not by propranolol. Dopamine and 5-hydroxytryptamine also increase cyclic AMP levels in the corpus cardiacum and additivity studies indicate that separate octopamine- and dopamine-binding sites are present within the tissue. Cyclic AMP levels in the corpus cardiacum also increase in response to electrical stimulation of nervi corporis cardiaci II (NCC II) and the electrically induced effect is eliminated in the presence of phentolamine.A factor, which causes elevated haemolymph trehalose levels when injected into adult cockroaches, is released from corpora cardiaca incubated in the presence of octopamine. The active factor is denatured by incubation in the presence of pronase. The hypertrehalosemic factor is also released when corpora cardiaca are incubated in the presence of dibutyryl cyclic AMP or 40 mM potassium chloride; however dopamine and 5-hydroxytryptamine fail to effect a marked release of the hypertrehalosemic factor.The results are discussed in light of the proposal that the release of hypertrehalosemic hormone from corpora cardiaca is regulated by octopaminergic neurones contained within NCC II.  相似文献   

9.
In the subterranean termite Reticulitermes flavipes, allatostatins (ASTs) with the C-terminus Phe-Gly Leu-amide were localized by immunocytochemistry with antibody against a cockroach AST, Dippu AST-7. AST-immunoreactivity occurred in the corpus cardiacum and corpus allatum and in the lateral and medial neurosecretory cells of the brain that innervate these organs as well as in many other nerve cells of the brain. This was observed in workers, nymphs, soldiers and secondary reproductives. A radioimmunoassay, using anti-Dippu AST-11, demonstrated about 40 fmole equivalents of AST in brains of soldiers and secondary reproductives. The product of the corpora allata in this species was determined to be juvenile hormone III. Its synthesis by corpora allata of secondary reproductives, determined by in vitro radiochemical assay, was inhibited in a dose-dependent fashion by two cockroach allatostatins, Dippu AST-7 and Dippu AST-11. Thus, as in cockroaches and crickets, allatostatin-containing nerves innervate the corpora allata of this termite species and their production of juvenile hormone is inhibited by these neuropeptides.  相似文献   

10.
Summary The immunocytochemical reactivity of the glandular cells of the corpus cardiacum (CCG-cells) of Locusta migratoria and Schistocerca gregaria was investigated at the electron-microscopic level, using the protein A-gold method, with three antisera against fragments of the adipokinetic hormones AKH I and AKH II. This combination of antisera permitted discrimination between anti-AKH I and anti-AKH II immunoreactivity. Fixation in a mixture of 2% glutaraldehyde and 2% formaldehyde, in combination with low-temperature embedding in Lowicryl K4M, produced the highest and most consistent selective immunogold labelling of the secretory and ergastoplasmic granules. All secretory granules in all CCG-cells investigated possessed a distinct anti-AKH I-immunopositive reaction, whereas most secretory granules showed a weaker anti-AKH II immunoreaction. Ergastoplasmic granules reacted similar to the secretory granules. The average immunolabelling of the secretory granules was higher in the processes than in the cell bodies of the CCG-cells. The results in Schistocerca gregaria were essentially similar to those in Locusta migratoria. It is concluded that (i) the individual CCG-cells synthesize AKH I as well as AKH II; (ii) these hormones coexist in the same ergastoplasmic and secretory granules; and (iii) these granules contain a higher content of AKH I than AKH II.  相似文献   

11.
Retrocerebral glandular complexes of Teleogryllus commodus (Orthoptera : Gryllidae) and Periplaneta americana (Dictyoptera : Blattidae) were examined for 5-hydroxytryptamine (serotonin)-immunoreactive (5-HTi) neurons. In Teleogryllus, a prominent tract of 5-HTi axons crosses the ventral surface of the corpus allatum (CA) from nervus corporis allati 1 (NCA 1), and seems to end at varicosities in NCA 2. Serotoninergic axons within this tract pass cephalad to the corpus cardiacum (CC), which also contains numerous, fine 5-HTi branches. 5-HTi axons originate anteriorly, presumably from the pars intercerebralis (PI) and pars lateralis (PL) of the brain. This is suggested by absence of immunoreactivity at the NCA 2-subesophageal ganglion junction, by intense immunofluorescence of the nervi corporis cardiaci (NCC) 1 and 2, by the presence of 5-HTi perikarya in PI and PL, and by previous data obtained by backfilling NCA 1 and 2. In Periplaneta, 5-HTi varicosities are rare in the CA, but abound in the NCA 2, and in NCC 1, 2, and 3. A few 5-HTi fibers project anteriorly from NCA 2 into the cap-like junction of CA and CC, and some traverse the CA to enter the postallatal nerves. Large, 5-HTi axons of NCC 3 ramify within the CC, while others contribute to an anterior branch of NCA 2. As in Teleogryllus, it is unlikely that 5-HTi fibers in NCA 2 originate from somata in the subesophageal ganglion. When cobalt staining and serotonin immunocytochemistry were combined to stain subesophageal neurons of Periplaneta, 5-HTi somata could not be paired with those back-filled via NCA 2. Conspicuous 5-HTi tracts between NCA 2 and the CC of Teleogryllus have no counterpart in Periplaneta.  相似文献   

12.
Summary Neuronal circuits in the brain and retrocerebral complex of the cockroach Diploptera punctata have been mapped immunocytochemically with antisera directed against the extended enkephalin, Met-enkephalin-Arg6-Gly7-Leu8 (Met-8). The pathways link median and lateral neurosecretory cells with the corpus cardiacum/corpus allatum complex. In females, nerve fibres penetrate the corpora allata and varicosities or terminals, immunoreactive to Met-8, surround the glandular cells. Males differ in having almost no Met-8 immunoreactivity in the corpora allata. The corpora cardiaca of both males and females are richly supplied with Met-8 immunoreactive material, in particular in the cap regions immediately adjacent to the corpora allata. A similarity in the amino-acid sequences of Met-8 and the C-terminus of the recently characterised allatostatins of D. punctata suggests that the pathways identified with the Met-8 antisera may be the same as those by which the allatostatins are transported from the brain to the corpus allatum. In comparative studies on the blowfly Calliphora vomitoria, similar neuronal pathways have been identified except that no sexual dimophism with respect to amounts of immunoreactive material within the corpus allatum has been observed. These results suggest a possible homology in the neuropeptide regulation of the gland.  相似文献   

13.
Summary Sectioning of the afferent nerves (NCCl and NCCll) to the locust corpus cardiacum prevents thein vivo release of adipokinetic hormone from the glandular lobes. This failure to release the hormone during flight and the consequent lack of lipid mobilisation brings about an impairment of flight performance which can be corrected by injections of corpus cardiacum extracts. Sectioning of the NCCl and NCCll reduces markedly the activity of the corpora allata. However, the poor flight performance of allatectomised locusts is not related to an inability to mobilise lipid since injections of corpus cardiacum extract which will mobilise fat body lipid in these locusts have no effect on flight performance. The results of individual sectioning of the NCCl and NCCll suggest that a double innervation of the glandular lobes functionsin vivo to control adipokinetic hormone release but that the NCCl alone may control the release of the diuretic hormone.  相似文献   

14.
Summary The techniques of axonal iontophoresis and cobalt sulfide precipitation were used to elucidate the relationships of the brain's neurosecretory cell groups and the retrocerebral complex of the locust Schistocerca vaga. The axons of the nervi corporis cardiaci I (NCC I) arise (1) from the medial neurosecretory cells of the protocerebrum, showing only limited branching, looping or spiraling; and (2) from a cell group previously undescribed for this species, located in the tritocerebrum. The axons project into the neurohemal and the glandular portions of the corpora cardiaca and into the hypocerebral ganglion, but not into the corpora allata. Axons of the NCC II arise from the lateral neurosecretory cells of the protocerebrum and project into the center of the corpora allata via the nervi corporis allati I (NCA I), as well as into the neurohemal and glandular portions of the corpora cardiaca. Axons of the NCC III arise from another newly described cell group in the tritocerebrum and end in both the corpora cardiaca and corpora allata. Axons of the NCA II arise from cells in the subesophageal ganglion and also end in the corpora allata.Supported by NIH Predoctoral Fellowship No. 5 F 01 GM 43816-03, NSF Grant GB-23033 and NIH Grant CA-05045 to H. A. Bern and USPHS Grant 1 R 01 NS09404 to C.H.F. Rowell.I wish to express my gratitude to Professors H.A. Bern and C.H.F. Rowell for unending encouragement and advice. I am indebted to Dr. Mick O'Shea for instruction in the cobalt/axonal iontophoresis method, and to Ms. Bea Bacher for excellent technical assistance.  相似文献   

15.
Summary Neural connections of the corpus cardiacum (CC) in the African locust, Locusta migratoria, were labelled with the fluorescent tracer Lucifer yellow. (1) Unilateral anterograde labelling of the nervus corporis cardiaci I revealed fluorescent fibres in the storage lobe of the CC (CCS). Some fluorescent fibres in the CCS closely approached the ipsilateral border of the glandular lobes of the CC (CCG). Fluorescent fibres also projected into the neuropile of the hypocerebral ganglion via the ipsilateral nervi cardiostomatogastrici I and II, and from there into the oesophageal nerves. (2) Unilateral anterograde labelling of the nervus corporis cardiaci II revealed fluorescent fibres in the CCS and in the ipsilateral CCG. Fluorescent fibres also projected via the ipsilateral nervus corporis allati I into the corpus allatum. (3) Unilateral retrograde labelling of the nervus corporis allati I revealed a distinct fluorescent nerve tract that runs through the CCS and into the nervus corporis cardiaci II. The tract arises from about eight cell bodies in the brain at the rostroventral side of the ipsilateral calyx of the mushroom body. (4) Labelling of the recurrent nerve revealed fluorescent fibres and some fluorescent cell bodies in the hypocerebral ganglion and, via the nervi cardiostomatogastrici I and II, also in the CCS. Fluorescent fibres were also present in the oesophageal nerves.  相似文献   

16.
Park CW  Kim JH  Kim KM  Hwang JS  Kang SW  Kang HS  Cho BP  Yu CH  Kim HR  Lee BH 《Peptides》2004,25(11):1891-1897
Brain-derived neurotrophic factor-like neuropeptide is produced in the brain of the silk moth, Bombyx mori. Immunocytochemical studies of brain and retrocerebral complex of larvae, prepupae, pupae and adults showed that four pairs of median neurosecretory cells and six pairs of lateral neurosecretory cells which had different immunoreactivities to BDNF peptide. Day-1 adult brains showed no evidence of neurons stained by anti-BDNF antibodies. Those reactivities, which were much stronger in median cells than in lateral cells, were the weakest in an earliest larval stage and a latest pupal stage but the strongest in late larval stage. Median neurosecretory cells projected their axons into the contralateral corpora allata by decussation in the median region, nerve corpora cardiaca (NCC) I, and nerve corpora allata (NCA) I, whereas lateral neurosecretory cells extended their axons to the ipsilateral corpora allata via NCC II and NCA I.  相似文献   

17.
Summary The neurosecretory activity of azadirachtin A-treated Locusta migratoria that failed to mature was compared with that of rapidly maturing control females by means of histological techniques. High resolution drymount autoradiography was used to localize [22,23-3H2]dihydroazadirachtin A in the brain and corpus cardiacum (CC). The neurosecretory system of the locusts treated with this insecticide was accompanied by an unusually high accumulation of paraldehyde fuchsin (PAF)-stainable neurosecretory material (NSM) in the brain fibers and in the storage lobes of the CC. The control females never had such an intense accumulation of NSM. The accumulation of NSM, resulting from its poor release, may influence its synthesis which is controlled by feed-back regulation. [22,23-3H2]Dihydroazadirachtin A is localized mainly at the peripheral blood-brain barrier and does not penetrate into the brain effectively, whereas it completely covers the CC. It is concluded that azadirachtin A affects the endocrine activity of the brain in an indirect way.  相似文献   

18.
The storage part of the corpus cardiacum of Locusta migratoria consists of two compartments: a neural part on the haemocoelic side containing neuronal cell bodies that are protected by a blood-brain barrier, and a neurohaemal part adjacent to the aorta. Intracellular filling of the neurones in the neural part with Lucifer yellow followed by confocal laser scanning microscopy has revealed that these neurones can be divided into several classes. None of the neurones has processes extending into the glandular part of the corpus cardiacum. They are, therefore, not directly involved in the regulation of adipokinetic cell activity.  相似文献   

19.
Summary The neuronal pathways connecting the stomatogastric nervous system with the retrocerebral complex of the cockroach, Periplaneta americana, were investigated by means of axonal cobalt chloride iontophoresis. Somata in the hypocerebral ganglion and in the nervus recurrens sending their axons to different parts of the stomatogastric nervous system were traced. Some axons in the oesophageal nerve arise from large perikarya in the anterior part of the pars intercerebralis and pass via the NCCI to the corpora cardiaca and the oesophageal nerve. They form a profuse dendritic tree in the protocerebrum. Fibers of the NCC I and NCC II as well as the NCA I and NCA II enter the stomatogastric nervous system via the hypocerebral ganglion.  相似文献   

20.
Summary The presence and distribution of neurons immunoreactive against antibodies to serotonin (5-HT) and gastrin/cholecystokinin (gastrin/CCK) has been studied in the larval retrocerebral complex of the blowfly Calliphora erythrocephala, a composite structure which consists of the corpus cardiacum, the corpus allatum, the thoracic gland and a portion of the cephalic aorta. Immunoreactive material was found in all these elements except in the corpus allatum. Six to eight cell bodies in the corpus cardiacum and four to eight cell bodies in the thoracic gland were 5-HT immunoreactive (5-HTi). These 5-HTi cell bodies send processes to the neuropil of the corpus cardiacum and to neurohemal sites in the cephalic aorta, corpus cardiacum and ventral part of the thoracic gland. Six to eight cell bodies in the corpus cardiacum and four to six cell bodies in the thoracic gland reacted with antibodies against gastrin/CCK. These cell bodies send processes to the neuropil of the corpus cardiacum and to neurohemal sites in the corpus cardiacum and the cephalic aorta in a pattern resembling that of the 5-HTi fibers. Additional gastrin/CCK-like immunoreactive fibers were shown to come from the central nervous system via the two nervi corporis cardiaci. An electron-microscopical analysis was performed to analyze further the morphological features revealed by the light-microscopic immunocytochemical technique. This confirmed the existence of neurosecretory-like terminals among the gland cells of the thoracic glands and the existence of neurohemal sites in several regions of the larval retrocerebral complex. Some functional aspects of the retrocerebral complex are discussed on the basis of the presented data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号