首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Global warming will affect all species but in largely unknown ways, with certain regions such as the Mediterranean Basin and its major islands including Sardinia being particularly vulnerable to desertification. Olive ( Olea europaea ) is of eco-social importance in the Mediterranean where it was domesticated. This drought-resistant crop and its major pest, the olive fly ( Bactrocera oleae ), have tight biological links that make them a suitable model system for climate change studies in the Mediterranean. Here a physiologically based weather-driven demographic model of olive and olive fly is used to analyze in detail this plant–pest system in Sardinia under observed weather (10 years of daily data from 48 locations), three climate warming scenarios (increases of 1, 2 and 3 °C in average daily temperature), and a 105-year climate model scenario for the Alghero location (e.g. 1951–2055). grass gis is used to map model predictions of olive bloom dates and yield, total season-long olive fly pupae, and percent fruit attacked by the fly. Island wide simulation data are summarized using multivariate regression. Model calibration with field bloom date data were performed to increase simulation accuracy of olive flowering predictions under climate change. As climate warms, the range of olive is predicted to expand to higher altitudes and consolidate elsewhere, especially in coastal areas. The range of olive fly will extend into previously unfavorable cold areas, but will contract in warm inland lowlands where temperatures approach its upper thermal limits. Consequently, many areas of current high risk are predicted to have decreased risk of fly damage with climate warming. Simulation using a 105-year climate model scenario for Alghero, Sardinia predicts changes in the olive–olive fly system expected to occur if climate continued to warm at the low rate observed during in the past half century.  相似文献   

2.
Predators appear to be less frequently specialised (i.e. adapted to restricted diet) on their prey than herbivores, parasites or parasitoids. Here, we critically evaluate contemporary evolutionary hypotheses that might be used to explain the evolution of specialised foraging in predators. We propose a unifying concept within which we define four types of trophic categories using ecological (diet breadth) and evolutionary (degree of adaptations) contexts. We use data on spiders (Araneae), the most diversified order of terrestrial predators, to assess applicability of frameworks and evolutionary concepts related to trophic specialisation. The majority of spider species are euryphagous but a few have a restricted prey range, i.e. they are stenophagous. We provide a detailed overview of specialisation on different prey types, namely spiders, crustaceans, moths, dipterans, ants, and termites. We also review the available evidence for trophic adaptations, classified into four categories: behavioural, morphological, venomic and metabolic. Finally, we discuss the ecological and evolutionary implications of trophic specialisation and propose avenues for future research.  相似文献   

3.
  1. Spiders are successful natural enemies in different crops. Research on the role of spiders as natural enemies within agroecosystems needs to address the distribution of their communities across different spatial scales, as well as the dominant species.
  2. We studied the spatial distribution of the community of spiders of the olive agroecosystem in Northeastern Portugal and investigated potential species that could be used as bioindicators of agricultural management in the olive grove.
  3. We found nine functional groups (ambushers, foliage runner hunters, ground hunters, orb‐web builders, sheet web builders, sensing web‐builders, space web builders, stalkers and wandering sheet/tangle weavers) encompassing a community that changed significantly across the horizontal and vertical gradient.
  4. We propose Thanatus vulgaris Simon, 1870 as potential bioindicator for the ground of the olive grove central area and Ozyptila pauxilla (Simon, 1870) for the ground of the olive grove peripheral area.
  5. Adjacent shrubland areas could play an important role in biological control of pests, allowing the exchange of species and individuals with the olive crop. The role of agrobiont species as indicators of agricultural managements deserves further investigation towards the enhancement of the effectiveness of spiders within low‐impact crop management in arable landscapes.
  相似文献   

4.
Ulrich Brose Body size is recognized as an important determinant of trophic structure as it affects individual energetic demands, population density, and the interaction between potential prey and predators. However, its relationship with trophic position remains unclear. It has been hypothesized that a positive relationship between body size and trophic position would be associated to some particular trophic structures, which would allow larger organisms to satisfy their energetic demand and sustain viable population sizes at higher trophic positions, where fewer resources are available. To test this hypothesis, we analyzed the diet of 619 killifishes from four species (Austrolebias cheradophilus, A. luteoflammulatus, A. viarius and Cynopoecilus melanotaenia), collected in temporary ponds occurring in the grasslands of Rocha, Uruguay. Trophic position, diet richness, number of energy sources, and evenness were estimated for 20 size classes, formed by consecutive groups of 31 individuals. Gape limitation and preference for the larger available prey were evaluated as explanations for observed patterns with an individual based model (IBM). In agreement with the hypothesis, killifishes presented a strong positive relationship between trophic position and body size (R2=0.86), associated with a trophic structure that could allow larger organisms to have access to more energy from the environment. This was reflected in a positive relationship between body size and 1) prey richness, 2) number of basal energy sources (i.e. plants, detritus, phytoplankton and terrestrial prey), and 3) evenness in prey use. IBM results showed that changes in trophic structure with body size are well explained by gape limitation, but not by size preferences. Our results suggest that the fulfilment of the greater energetic demands of larger organism will depend on community diversity, which typically increases with ecosystem size, indicating a novel connection between area, diversity, body size, and food chain length.  相似文献   

5.
The olive fly, Bactrocera oleae (Rossi), a serious threat to the olive crop worldwide, displays ovipositon preference for some olive cultivars but the causes are still unclear. In the present work, three Portuguese olive cultivars with different susceptibilities to olive fly (Cobrançosa, Madural, and Verdeal Transmontana) were studied, aiming to determine if the olive volatiles are implicated in this interaction. Olive volatiles were assessed by SPME-GC-MS in the three cultivars during maturation process to observe possible correlations with olive fly infestation levels. Overall, 34 volatiles were identified in the olives, from 7 chemical classes (alcohols, aldehydes, aromatic hydrocarbons, esters, ketones, sesquiterpenes, and terpenes). Generally, total volatile amounts decrease during maturation but toluene, the main compound, increased in all cultivars, particularly in those with higher susceptibility to olive fly. Sesquiterpenes also raised, mainly α-copaene. Toluene and α-copaene, recognized oviposition promoters to olive fly, were correlated with the infestation level of cvs. Madural and Verdeal Trasnmontana (intermediate and highly susceptible cultivars respectively), while no correlations were established with cv. Cobrançosa (less susceptible). No volatiles with inverse correlation were observed. Volatile composition of olives may be a decisive factor in the olive fly choice to oviposit and this could be the basis for the development of new control strategies for this pest.  相似文献   

6.
The influence of food supply on the type of stabilimentum built by Octonoba sybotides, an uloborid spider, was investigated in a laboratory experiment. Spiders were separated into two groups that built distinct stabilimenta (linear or spiral), and then further subdivided into two different feeding groups (food-deprived and food-supplemented). Food-deprived spiders (a fruit fly every 10 d) tended to form spiral stabilimenta, whereas food-supplemented spiders (a fruit fly every 2 d) tended to form linear stabilimenta. Furthermore, there was a significant difference in the distribution of stabilimentum forms before and after egg production. After egg production, which involves a large expenditure of energy, spiders tended to form spiral stabilimenta. These results suggest that the spider's energetic state influences the type of stabilimentum built by O. sybotides , and that hunger induces the spider to form spiral stabilimenta.  相似文献   

7.
Quantitative approaches to predator–prey interactions are central to understanding the structure of food webs and their dynamics. Different predatory strategies may influence the occurrence and strength of trophic interactions likely affecting the rates and magnitudes of energy and nutrient transfer between trophic levels and stoichiometry of predator–prey interactions. Here, we used spider–prey interactions as a model system to investigate whether different spider web architectures—orb, tangle, and sheet‐tangle—affect the composition and diet breadth of spiders and whether these, in turn, influence stoichiometric relationships between spiders and their prey. Our results showed that web architecture partially affects the richness and composition of the prey captured by spiders. Tangle‐web spiders were specialists, capturing a restricted subset of the prey community (primarily Diptera), whereas orb and sheet‐tangle web spiders were generalists, capturing a broader range of prey types. We also observed elemental imbalances between spiders and their prey. In general, spiders had higher requirements for both nitrogen (N) and phosphorus (P) than those provided by their prey even after accounting for prey biomass. Larger P imbalances for tangle‐web spiders than for orb and sheet‐tangle web spiders suggest that trophic specialization may impose strong elemental constraints for these predators unless they display behavioral or physiological mechanisms to cope with nutrient limitation. Our findings suggest that integrating quantitative analysis of species interactions with elemental stoichiometry can help to better understand the occurrence of stoichiometric imbalances in predator–prey interactions.  相似文献   

8.
Food web studies often examine density and behaviourally mediated effects of predators on herbivores, but are less likely to assess the plant targeted by the herbivore. We conducted a study that incorporated four trophic levels examining the effect of two generalist predators (damsel bugs, Nabis kinbergii Reuter; and lynx spiders, Oxyopes molarius L. Koch) on damage to cotton bolls caused by green mirids (Creontiades dilutus (Stål)). First we tested whether lynx spiders and damsel bugs could control mirid numbers and cotton boll damage in field cages. We found that in cages containing mirids and only lynx spiders, lynx spiders reduced both mirid numbers and boll damage. However, in cages which contained mirids and both predators (lynx spiders and damsel bugs) only mirid numbers were reduced. To explain the negative effect of damsel bugs on boll damage, we examined the interactions between lynx spiders, damsel bugs and mirids. We found that lynx spiders were better mirid predators than damsel bugs, and that lynx spiders attacked damsel bugs, but not vice versa. Behaviourally, mirids responded to increasing predator pressure regardless of whether the predators were lynx spiders or damsel bugs. However, damsel bugs seemed to alter the behaviour of lynx spiders because in their presence, a higher proportion of lynx spiders moved to the top of the plant, towards the damsel bugs but away from the bolls found lower on the plant. These results suggest that the most likely explanation for the increase in boll damage in the presence of damsel bugs was that lynx spiders moved to the top of the plant in the presence of damsel bugs, which then exposed the bolls lower down on the plant to mirid attack. This work emphasizes the importance of behaviourally mediated effects in food webs extending over four trophic levels.  相似文献   

9.
Coppice abandonment had negative consequences for the biodiversity of forest vegetation and several groups of invertebrates. Most coppicing restoration studies have focused only on a single trophic level despite the fact that ecosystems are characterized by interactions between trophic levels represented by various groups of organisms. To address the patterns of functional diversity in the perspective of coppicing restoration, we studied the short-term effects of conservation-motivated tree canopy thinning in an abandoned coppice with standards in Central Europe, a region where such attempts have been rare so far. The functional diversity of vascular plants and spiders, chosen as two model trophic groups within the forest ecosystem, was compared between thinned and control forest patches. To characterize functional patterns, we examined several functional traits. These traits were assigned to two contrasting categories: response traits reflecting a change of environment (for both vascular plants and spiders) and effect traits influencing the ecosystem properties (only for vascular plants). Functional diversity was analysed by CCA using two measures: community-weighted means (CWM) and Rao’s quadratic diversity (RaoQ). CCA models revealed that the canopy thinning had a positive effect on the diversity of the response traits of both trophic groups and negatively influenced the diversity of effect traits. In addition, we found distinct seasonal dynamics in functional diversity of the spider communities, which was probably linked to leaf phenology of deciduous trees. We conclude that canopy thinning affected functional diversity across trophic groups during the initial phase of coppicing restoration. With necessary precautions, careful canopy thinning can be effectively applied in the restoration of functional diversity in abandoned coppices.  相似文献   

10.
Wolfgang Nentwig 《Oecologia》1982,53(3):412-417
Summary Only heavy insects and those that fly quickly can pass through a spider's web. When an insect is entangled in a web, permanent activity is the best way of getting free. Small wings are conducive to a successful escape, as is a special surface structure of the wings (scales, hairs, lipoid surface). The autotomy of legs, chewing mandibulae or an enzymatic lysis of single threads have nearly no effect. Experiments with approximately 40 taxa of the possible prey of web spiders explain their different behaviour in a spider's web.  相似文献   

11.

Background

Divergence in trophic niche between the sexes may function to reduce competition between the sexes (“intersexual niche partitioning hypothesis”), or may be result from differential selection among the sexes on maximizing reproductive output (“sexual selection hypothesis”). The latter may lead to higher energy demands in females driven by fecundity selection, while males invest in mate searching. We tested predictions of the two hypotheses underlying intersexual trophic niche partitioning in a natural population of spiders. Zodarion jozefienae spiders specialize on Messor barbarus ants that are polymorphic in body size and hence comprise potential trophic niches for the spider, making this system well-suited to study intersexual trophic niche partitioning.

Methodology/Principal Findings

Comparative analysis of trophic morphology (the chelicerae) and body size of males, females and juveniles demonstrated highly female biased SSD (Sexual Size Dimorphism) in body size, body weight, and in the size of chelicerae, the latter arising from sex-specific growth patterns in trophic morphology. In the field, female spiders actively selected ant sub-castes that were larger than the average prey size, and larger than ants captured by juveniles and males. Female fecundity was highly positively correlated with female body mass, which reflects foraging success during the adult stage. Females in laboratory experiments preferred the large ant sub-castes and displayed higher capture efficiency. In contrast, males occupied a different trophic niche and showed reduced foraging effort and reduced prey capture and feeding efficiency compared with females and juveniles.

Conclusions/Significance

Our data indicate that female-biased dimorphism in trophic morphology and body size correlate with sex-specific reproductive strategies. We propose that intersexual trophic niche partitioning is shaped primarily by fecundity selection in females, and results from sex-differences in the route to successful reproduction where females are selected to maximize energy intake and fecundity, while males switch from foraging to invest in mating effort.  相似文献   

12.
Domestication of crop plants selects for numerous traits that often distinguish them dramatically from their wild progenitors. In some cases, these modifications lead to increased herbivory, by enhancing their attractiveness to herbivorous insects or reducing the efficiency of natural enemies, or both. This study investigated the effects of fruit enlargement on the olive (Olea europaea L.), the specialist olive fruit fly, Bactrocera oleae (Rossi), and its specialized larval parasitoids. Wild olive fruit are small (<2 mm pulp thickness) and the larval parasitoids associated with B. oleae have short ovipositors (<3 mm), while cultivated fruit are larger (4–8 mm pulp thickness). Female flies allocate more offspring to large than to small fruit within or across different-sized commercial cultivars, without reducing the fitness of their offspring. Fly larvae move deeper into the olive pulp with their increasing age and fruit size. In contrast, the specialist larval parasitoid, Psyttalia lounsburyi (Silvestri), more effectively parasitizes hosts in smaller than larger fruit. The inverse relationship between the performance of the fly and its co-evolved parasitoids on fruit of increasing sizes indicates that olive cultivation favors the success of the fly by providing a better food resource and more enemy-free space. These findings offer some explanation for the failure of the decades-old classical biological efforts to manage B. oleae using specialized larval parasitoids in the Mediterranean Basin and provide further evidence that crop domestication can alter host–parasitoid interactions.  相似文献   

13.
14.
1. Cannibalism is considered an adaptive foraging strategy for animals of various trophic positions, including carnivores. However, previous studies on wolf spiders have questioned the high nutritional value of cannibalism. We therefore analysed two different aspects of nutritional quality of conspecifics in the wolf spider Pardosaprativaga: their value for survival, growth and development; and the growth efficiency of feeding on conspecifics. We also measured the propensity for cannibalistic attacks and the consumption rate of conspecifics in an experiment where hunger level and nutrient balance were manipulated. In all experiments, cannibalism was compared with predation on fruit flies as control prey. 2. The growth experiment gave ambiguous results regarding the nutritional quality of conspecifics. Spiders on pure cannibalistic diets split into two distinct groups, one performing much better and the other much worse than spiders on fruit fly diets. We discuss the possibility that the population is dimorphic in its cannibalistic propensity, with the latter group of individuals showing a high level of inhibition against cannibalistic attacks in spite of a high nutritional value of cannibalism. 3. The food utilization experiment confirmed the high nutritional quality of conspecifics, as cannibalistic spiders had the same growth rate as spiders fed insect prey in spite of a much lower consumption rate. 4. Inhibition against cannibalistic attacks was demonstrated in medium-sized juveniles: only half of the spiders attacked a prescribed victim of 50% the size of their opponents, and the latency for those that did attack was more than half an hour, compared with a few minutes for spiders fed fruit flies. 5. Nutrient-imbalanced spiders utilized an alternative insect diet less efficiently than balanced spiders, whereas no difference was present in efficiency of utilizing conspecifics. This result indicates that spiders can remedy at least part of a nutrient imbalance through cannibalism. 6. As spiders can escape nutritional imbalance as well as restore energy reserves through cannibalism, we predicted both nutrient imbalance and hunger to stimulate cannibalism. This prediction was confirmed only with respect to hunger. Nutrient-imbalanced spiders had reduced cannibalistic consumption, perhaps due to lowered predatory aggressiveness as a result of bad condition.  相似文献   

15.
The molecular analysis of predation through specific DNA amplification has been utilized extensively over the last decade, and has been shown to be fast and effective. However, it is necessary to evaluate the prey detectability half-life if we are to correctly infer the relevance of particular predators to particular pests and to accurately model the effect of biocontrol. We present here the design and analysis of a set of primers to amplify olive fruit fly (Bactrocera oleae) DNA in predator gut contents, allowing fast evaluation of the digestion time. We modified the existing protocol by solubilizing the prey DNA directly from the gut, and we applied this modified protocol to demonstrate that Pterostichus melas, one of the most common carabids in olive groves in Italy, feeds on B. oleae pupae. After feeding carabids with a single pupa, traces of the pest were found to be detectable more than 20 h after ingestion. This method could also be applied to other predators to evaluate trophic interactions of the olive fruit fly. The relevance of generalist predation to the mortality of the pupal stage of B. oleae is of great economic interest since B. oleae causes serious damage during olive production, reducing the commercial value of olive oil and table olives.  相似文献   

16.
1. Resting metabolic rate (RMR) is a fundamental feature of animal biology that reflects the baseline level of energy expenditure. There are two main strategies that can address energy demands; animals can reallocate energy from maintenance by reducing RMR to meet energy demands (compensation model) or they can increase intake rate by increasing metabolic activities (performance model). 2. Orb-web spiders are sit-and-wait foragers that typically reside at the centre of their web waiting to intercept prey. Given their sedentary resource acquisition strategy, it is predicted that lower RMR is favoured to reduce self-maintenance energetic costs and to allow greater allocation to oogenesis (i.e., egg sac development). 3. In this study, we tested temporal variation in RMR of female Argiope radon (Araneae: Araneidae) spiders in response to mating status. Then we tested the degree to which between-individual variation in the parental RMR relates to reproductive output and spiderling early life-history traits. 4. Despite the notable between-individual variation, we found a temporal consistency of RMR in the female spiders at early adulthood. Mated females significantly reduced their RMR by around 35% compared to their unmated stage which supports compensation model. However, there was a significant correlation between female RMR and mass of the egg sac in these spiders which is an evidence for performance model. 5. Our findings suggest that energy management in this species is a complex phenomenon, both strategies are in effect simultaneously at within- and between-individual level shaping the individuals' phenotype.  相似文献   

17.
Because all spiders are predators and most subdue their prey with poison, it has been suggested that fear of spiders is an evolutionary adaptation. However, it has not been sufficiently examined whether other arthropods similarly elicit fear or disgust. Our aim was to examine if all arthropods are rated similarly, if only potentially dangerous arthropods (spiders, bees/wasps) elicit comparable responses, or if spiders are rated in a unique way. We presented pictures of arthropods (15 spiders, 15 beetles, 15 bees/wasps, and 15 butterflies/moths) to 76 students who rated each picture for fear, disgust, and how dangerous they thought the animal is. They also categorized each animal into one of the four animal groups. In addition, we assessed the participants' fear of spiders and estimates for trait anxiety. The ratings showed that spiders elicit significantly greater fear and disgust than any other arthropod group, and spiders were rated as more dangerous. Fear and disgust ratings of spider pictures significantly predicted the questionnaire scores for fear of spiders, whereas dangerousness ratings of spiders and ratings of other arthropods do not provide any predictive power. Thus, spider fear is in fact spider specific. Our results demonstrate that potential harmfulness alone cannot explain why spiders are feared so frequently.  相似文献   

18.
Linyphiid spiders, as part of the community of natural enemies that frequent agroecosystems, can exert significant pressure on prey populations. Many aspects of linyphiid feeding ecology remain understudied, including temporal and seasonal patterns of prey utilization. To quantify the diversity, quantity, and spatial pattern of availability over diel and seasonal gradients, we monitored prey in an alfalfa crop, using web-site specific sticky traps. Although there were no differences in total number of prey between the day and night, significantly more Collembola were intercepted nocturnally rather than diurnally. Conversely, Diptera and Aphididae were significantly more abundant diurnally. Overall there were more prey at web-sites than in the general crop environment, indicating that spiders were selectively constructing webs where prey was relatively more abundant. However, spiders still may have experienced a high degree of prey limitation because the abundance of Collembola, an important detrital prey, was low over much of the season and below levels calculated as being required to sustain growth and reproductive output in linyphiid spiders. In conclusion, our data suggests that linyphiid spiders, in order to avoid food limitation, may benefit by foraging throughout the diel cycle, consuming herbivorous prey in addition to their core diet of detrital prey. This link between above and below ground food webs indicates the importance of understanding the trophic interactions between epigean spiders and their prey if they are to be integrated into future biological control programs.  相似文献   

19.
Abstract

Using problems from real life contexts which is related to learners environment or their culture plays an important role in their learning that concept. In this regard, science educators especially physics educators search for real-life domain of theoretical concepts for effective science teaching and they consider analogical and physical models as an opportunity in their instruction. In the presented activity, we worked with 66 senior pre-service science teachers from our science teaching methods course. We used crowd movements as a real-life domain of our analogical models to scientifically explain a stampede case, then utilized physical model to explore continuity equation. Real life problem based scenarios could be used while taking advantage of the 3?D modeling in teaching of scientific principle. As a result, we found that pre-service teachers were able to make scientific explanation for causes of stampedes by using modeling activity. High school teachers and upper-level instructors could benefit from including the modeling activity introduced in this study to help their students understand the concepts related to continuity equation by designing a physical model based on an analogical model. Via the physical model, students are able to make predictions, observations, interpretations and explanations of a complex and abstract scientific phenomenon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号